Принцип действия гидравлики. Виды гидравлики: общие классификации. Поток создаёт движение
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru//
Размещено на http://www.allbest.ru//
1.Гидравлическая система
Наиболее распространены системы управления первой группы -- гидравлические. В этом случае машинист прикладывает меньше усилий на перемещение рукояток, чем при механическом управлении, в результате чего снижается утомляемость машиниста. Конструктивно более просто решается разводка систем управления с помощью гидравлических трубопроводов и шлангов. Примером может служить управление выносными опорами. Комбинированная система позволяет использовать рычажно-шар-нирные передачи прежде, чем включится в работу гидрораспределитель. При этом гидрораспределители размещают в отдельном блоке с выводом рукояток в удобное для работы место.
Электрогидравлическая система имеет следующие преимущества: небольшие усилия на приборах управления, возможность дистанционного управления, большой кпд, небольшая масса и малая металлоемкость благодаря небольшому количеству проводов. Недостаток этой системы в том, что при резком включении и остановке механизмов возникают значительные динамические нагрузки. Электрогидравлическое управление с пропорциональными распределителями исключает этот недостаток. Для машин с электроприводом применяют электрическую систему управления.
Аппаратура управления приводами представляет собой систему устройств из сцепных муфт включения, тормозов, гидроклапанов, гидрораспределителей.
При гидравлической системе управления рабочими органами машин и их элементами все операции (подъем, опускание) обеспечиваются с помощью насосов, гидрораспределителей (механизмов управления), силовых исполнительных гидроцилиндров, запорных и предохранительных кранов и устройств.
Гидравлическая система управления включает элементы механизма привода, состоящего из одного или нескольких гидронасосов, устанавливаемых либо непосредственно на двигателе базовой машины и получающих от него привод, либо на специальном редукторе отбора мощности, также получающем привод от двигателя базовой машины; элементы механизма управления, состоящие из системы распределительных устройств (одного или нескольких гидрораспределителей), устанавливаемых, как правило, в кабине машиниста и предназначенных для включения и выключения определенных исполнительных механизмов и гидравлической следящей системы; элементы исполнительных механизмов и устройств, состоящие из гидроцилиндров или из гидродвигателей; элементы вспомогательных устройств, состоящие из бака для рабочей жидкости, магистральных фильтров, трубопроводов, запорных устройств (гидроклапанов, вентилей, заглушек и др.).
Принципиальная схема работы гидросистемы. Из бака рабочая жидкость по всасывающему трубопроводу поступает к шестеренчатому или лопастному или другому насосу, который в результате привода, получаемого непосредственно от двигателя базовой машины или специального редуктора, подает ее по трубопроводу под давлением к распределительному устройству (гидрораспределителю) и далее также под давлением в одну или в другую полость исполнительного гидроцилиндра, .соединенного с тем или другим рабочим органом машины. При направлении рабочей жидкости в одну или в другую полость исполнительного гидроцилиндра шток его, а вместе с ним система рычагов приводит в действие рабочий или другой орган машины, поднимая или опуская его или перемещая в одну или в другую сторону.
В гидравлическом приводе машин вращательное движение вала двигателя превращается во вращательное движение вала насоса, а вращение последнего превращается в поступательное движение поршня силового гидроцилиндра и далее через шток гидроцилиндра передается к исполнительным рабочим органам.
Из гидравлического бака по всасывающему трубопроводу рабочая жидкость поступает к насосу, который нагнетает ее по напорной линии к насосной полости гидрораспределителя. После этого работа гидропривода зависит от того, в какое положение будет поставлена рукоятка и связанный с ней золотник гидрораспределителя.
Гидрораспределитель состоит из корпуса, размещенного в осевом отверстии корпуса золотника и рукоятки.
Осевое отверстие корпуса гидрораспределителя снабжено специальными ответвляющими полостями. Полость соединяет гидрораспределитель с насосом, полости и подводят рабочую жидкость к гидроцилиндру, а сливные полости к соединяют гидрораспределитель с гидробаком.
В положении I пояски золотника перекрывают доступ рабочей жидкости из полости в полости к, г также слив из них через полости и. В рассматриваемом случае рабочая жидкость, находящаяся в гидроцилиндре, заперта и управляемый элемент рабочего оборудования неподвижен (находится в нейтральном положении). В дальнейшем рабочая жидкость, поступая от насоса к гидрораспределителю, повышает давление в напорной гидролинии и, преодолев сопротивление пружины переливного клапана 11, встроенного в гидрораспределитель по каналам и сливается обратно в гидробак.
В положении II, когда золотник находится в нижней части осевой расточки гидрозолотника, полость соединяется с полостью гидроцилиндра, а полость гидроцилиндра - с полостью. Тогда поршень гидроцилиндра будет выдвигаться в верхнее положение.
В положении III, когда золотник 6 будет находиться в верхней части осевой расточки гидрозолотника, направление подачи слива рабочей жидкости будет меняться на противоположное, соответственно поршень гидроцилиндра будет перемещаться в обратном направлении.
При полностью опущенном положении золотника б (положение IV) полость изолирована от обеих полостей и гидроцилиндра, которые в это время соединяются со сливными полостями. Таким образом, при воздействии внешней нагрузки от рабочего оборудования поршень (соответственно и шток) гидроцилиндра перемещается, свободно перекачивая находящуюся в нем рабочую жидкость из одной полости в другую. Такое положение называют "плавающим". Оно используется при перемещении рабочих машин, когда машина, например бульдозер или скрепер, транспортирует набранный грунт, не производя при этом заглубления рабочего органа в грунт.
В гидроприводах в качестве рабочей жидкости применяют минеральные масла, которые выбираются в зависимости от условий работы гидросистемы (летний или зимний период, климатические особенности и др.).
2.Техническое обслуживание
В современных дорожно-строительных машинах гидропривод работает при высоких давлениях, доходящих до 20-40 МПа. При этом в процессе работы температура, рабочих жидкостей гидросистем колеблется от --60 до +Ю0 °С. Поэтому для обеспечения необходимой работоспособности рабочие жидкости должны отвечать основным требованиям: вязкость должна как можно меньше изменяться при колебаниях температуры от --50 до + 50 °С и как можно меньше должно находиться механических примесей (так как это ведет к закупорке маслопроводящих путей) и агрессивных веществ; рабочие жидкости не должны вызывать набухание резинотехнических изделий (сальников, прокладок и др.).
Гидроприводы по принципу действия подразделяются на два вида -- гидростатические и гидродинамические.
Гидростатический привод состоит из насоса как ведущего звена, получающего движение от вала двигателя или какого-либо промежуточного вала (вала отбора мощности и др.). Насос, забирая из гидробака рабочую жидкость, подает ее по трубопроводу к гидрораспределителю и далее через гидрораспределитель к исполнительному (рабочему) органу машины. Рабочая жидкость, отработав в замкнутой системе гидропривода, поступает в гидробак и далее под действием насоса направляется к гидрораспределителю и т.д.
Гидродинамический привод состоит из насосного колеса как ведущего звена, получающего движение от вала двигателя или какого-либо промежуточного вала (вала отбора мощности и др.), которое, забирая из гидробака рабочую жидкость, подает ее к турбинному колесу, заполняя его и приводя во вращение, а вместе с ним и исполнительный (рабочий) орган машины или какой-либо другой (другие) элемент машины, например, ходовые колеса. Рабочая жидкость, отработав в замкнутой системе гидродинамического привода, поступает в гидробак и далее под действием насосного колеса направляется к турбинному колесу и т. д.
Гидродинамическую передачу с двумя лопастными колесами (насосным и турбинным) называют гидромуфтой, а с тремя и более (насосным, реакторным и турбинным) -- гидротрансформатором.
В дорожно-строительных машинах для привода рабочих органов преимущественное распространение имеет гидростатическая система. Эта система обеспечивает возможность применения и обслуживания относительно большого количества постов, жесткую связь с исполнительными (рабочими) органами, легкое и быстрое реверсирование исполнительных (рабочих) органов, независимое расположение элементов управления от других элементов и устройств гидропривода, простое и легкое управление рычагами гидрораспределителя.
Положительные свойства гидростатической системы, в частности, обеспечение жесткости связи с элементами исполнительных (рабочих) органов машин (вследствие несжимаемости жидкостей), позволяют принудительно перемещать и удерживать рабочие органы машин и оборудования (например, заглублять режущие элементы рабочих органов в грунт и удерживать их в требуемом положении). В то же время система имеет ряд недостатков: небольшой ход механизмов и элементов исполнительных (рабочих) органов; малые поступательные скорости движения элементов рабочих органов (не более 0,2 м/с); необходимость применения для работы специальных рабочих жидкостей, которые в зависимости от климатических условий (лето, зима) приходится часто менять в системе; трудоемкость и сложность наладки, настройки, технического обслуживания системы.
К основному оборудованию, применяемому для работы гидросистем и гидроприводов, относятся насосы, гидрораспределители, клапаны, регуляторы давления. гидравлический привод насос шестеренчатый
Насосы, применяемые в гидроприводах дорожно-строительных машин, подразделяются на аксиально-поршневые, шестеренчатые и лопастные.
Наибольшее применение имеют шестеренчатые и лопастные. Однако аксиально-поршневые насосы, обладающие способностью создавать наиболее высокие давления в гидросистемах (учитывая современные тенденции развития гидроприводов, направленные на повышение давления в гидросистемах машин), получают значительное распространение.
Шестеренчатый насос представляет собой две сопряженные шестерни размещенные в корпусе. При вращении указанных шестерен захватываемая (всасываемая) ими из камеры рабочая жидкость через пространства (между зубьями шестерен, а также между зубьями шестерен и корпусом насоса) направляется в нагнетательную полость и далее под давлением в трубопроводы. Выступающий из корпуса насоса вал ведущей шестерни имеет шлицевую нарезку, посредством которой насос соединяется с валом отбора мощности или с валом редуктора. Шестеренчатые насосы являются обратимыми, т. е. эти насосы могут работать и как насосы, и как гидродвигатели.
Лопастный (шиберный) насос состоит из статора, размещенного в корпусе с внутренней поверхностью в форме, близкой эллипсу. По этой поверхности, вращаясь, скользят лопасти-лопатки, перемещающиеся в полостях ротора. Ротор насоса, насаженный на шлицевый вал, вместе с лопастями-лопатками вращается между двумя вкладышами. В каждом из вкладышей имеется по четыре отверстия (окне), равномерно расположенных по окружности, из которых два диаметрально противоположных соединены с имеющимися в корпусе насоса каналами всасывания, а два других -- с каналами нагнетания. Во время вращения ротора насоса лопасти-лопатки под действием центробежной силы и давления рабочей жидкости, перемещаясь в пазах, прижимаются к внутренней поверхности статора. При вращении ротора пространство (объем) между смежной парой лопастей-лопаток, а также ротором и статором вследствие эллиптической формы внутренней поверхности статора меняется, в результате чего при увеличении указанного выше пространства (объема) происходит всасывание рабочей жидкости, а при уменьшении пространства (объема) -- нагнетание. Следовательно, за один оборот вала насоса процесс всасывания и нагнетания происходит дважды, поэтому лопастные насосы называют насосами двойного действия. Противоположное расположение камер всасывания (подводящее отверстие 6) и нагнетания (сливное отверстие) способствует уравновешиванию давления рабочей жидкости на ротор, освобождая цапфы насоса от односторонних радиальных нагрузок.
Размещено на Allbest.ru
...Подобные документы
Насосы - гидравлические машины, предназначенные для перемещения жидкостей. Принцип действия насосов. Центробежные насосы. Объемные насосы. Монтаж вертикальных насосов. Испытания насосов. Применение насосов различных конструкций. Лопастные насосы.
реферат , добавлен 15.09.2008
Принципиальная схема и состав гидросистемы привода конвейера каналокопателя. Расчет и выбор гидродвигателя, насоса, трубопровода. Подбор предохранительного клапана, фильтра и манометра. Вычисление КПД гидропередачи, определение теплового баланса системы.
курсовая работа , добавлен 30.04.2013
Применение лопастных насосов для перекачки жидкостей - от химикатов до сжиженных газов. Одноступенчатые и многоступенчатые насосы. Организации монтажа насоса, проведение контроля его качества. Обслуживание и ремонт насоса. Соблюдение техники безопасности.
курсовая работа , добавлен 07.12.2016
Использование штанговых скважинных насосов для подъема нефти на поверхность. Техническая схема станка-качалки. Установки погружных электроцентробежных, винтовых, диафрагменных электронасосов. Система периодической и непрерывной газолифтной добычи.
курсовая работа , добавлен 11.05.2011
Развитие добывающей и перерабатывающей промышленности, назначение и применение горных машин. Техническое описание вибрационного грохота, возможные отказы, методы и средства их устранения, техническое обслуживание, необходимое количество запасных частей.
курсовая работа , добавлен 21.03.2010
Техническая характеристика роторных насосов. Назначение и принцип работы консольных насосов, их конструктивные особенности. Определение оптимальной зоны работы центробежного насоса, изменения производительности насосной станции, подачи по трубопроводу.
курсовая работа , добавлен 23.11.2011
Диапазон и условия работы центробежных лопастных машин (вентиляторов, нагнетателей и компрессоров). Назначение диффузора и обводного канала. Уравнение Эйлера для рабочего колеса. Производительность, мощность и совместная работа центробежной машины.
презентация , добавлен 07.08.2013
Виды систем охлаждения и принцип их работы, устройство и работа приборов жидкостной системы. Проверка уровня и плотности жидкости, заправка системы, регулировка натяжения ремня привода насоса. Основные неисправности и техническое обслуживание системы.
реферат , добавлен 02.11.2009
Принцип действия, устройство, схема вихревого насоса, его характеристики. Рабочее колесо вихревого насоса. Движение жидкости в проточных каналах. Способность к сухому всасыванию. Напор и характеристики вихревых насосов. Гидравлическая радиальная сила.
презентация , добавлен 14.10.2013
Анализ работы гидравлического привода. Предварительный и уточненный расчет гидросистемы. Выбор насоса, гидроцилиндра, трубопровода. Расчет предохранительного клапана, золотникового гидрораспределителя. Исследование устойчивости гидрокопировальной системы.
Гидравлическая система представляет собой устройство, предназначенное для преобразования небольшого усилия в значительное с использованием для передачи энергии какой-либо жидкости. Разновидностей узлов, функционирующих по этому принципу, существует множество. Популярность систем этого типа объясняется прежде всего высокой эффективностью их работы, надежностью и относительной простотой конструкции.
Сфера использования
Широкое применение системы этого типа нашли:
- В промышленности. Очень часто гидравлика является элементом конструкции металлорежущих станков, оборудования, предназначенного для транспортировки продукции, ее погрузки/разгрузки и т. д.
- В авиакосмической отрасли. Подобные системы используются в разного рода средствах управления и шасси.
- В сельском хозяйстве. Именно через гидравлику обычно происходит управление навесным оборудованием тракторов и бульдозеров.
- В сфере грузоперевозок. В автомобилях часто устанавливается гидравлическая тормозная система.
- В судовом оборудовании. Гидравлика в данном случае используется в рулевом управлении, входит в конструктивную схему турбин.
Принцип действия
Работает любая гидравлическая система по принципу обычного жидкостного рычага. Подаваемая внутрь такого узла рабочая среда (в большинстве случаев масло) создает одинаковое давление во всех его точках. Это означает то, что, приложив малое усилие на маленькой площади, можно выдержать значительную нагрузку на большой.
Далее рассмотрим принцип действия подобного устройства на примере такого узла, как гидравлическая тормозная система автомобиля. Конструкция последней довольно-таки проста. Схема ее включает в себя несколько цилиндров (главный тормозной, заполненный жидкостью, и вспомогательные). Все эти элементы соединены друг с другом трубками. При нажатии водителем на педаль поршень в главном цилиндре приходит в движение. В результате жидкость начинает перемещаться по трубкам и попадает в расположенные рядом с колесами вспомогательные цилиндры. После этого и срабатывает торможение.
Устройство промышленных систем
Гидравлический тормоз автомобиля — конструкция, как видите, довольно-таки простая. В промышленных машинах и механизмах используются жидкостные устройства посложнее. Конструкция у них может быть разной (в зависимости от сферы применения). Однако принципиальная схема гидравлической системы промышленного образца всегда одинакова. Обычно в нее включаются следующие элементы:
- Резервуар для жидкости с горловиной и вентилятором.
- Фильтр грубой очистки. Этот элемент предназначен для удаления из поступающей в систему жидкости разного рода механических примесей.
- Насос.
- Система управления.
- Рабочий цилиндр.
- Два фильтра тонкой очистки (на подающей и обратной линиях).
- Распределительный клапан. Этот элемент конструкции предназначен для направления жидкости к цилиндру или обратно в бак.
- Обратный и предохранительный клапаны.
Работа гидравлической системы промышленного оборудования также основывается на принципе жидкостного рычага. Под действием силы тяжести масло в такой системе попадает в насос. Далее оно направляется к распределительному клапану, а затем - к поршню цилиндра, создавая давление. Насос в таких системах предназначен не для всасывания жидкости, а лишь для перемещения ее объема. То есть давление создается не в результате его работы, а под нагрузкой от поршня. Ниже представлена принципиальная схема гидравлической системы.
Преимущества и недостатки гидравлических систем
К достоинствам узлов, работающих по этому принципу, можно отнести:
- Возможность перемещения грузов больших габаритов и веса с максимальной точностью.
- Практически неограниченный диапазон скоростей.
- Плавность работы.
- Надежность и долгий срок службы. Все узлы такого оборудования можно легко защитить от перегрузок путем установки простых клапанов сброса давления.
- Экономичность в работе и небольшие размеры.
Помимо достоинств, имеются у гидравлических промышленных систем, конечно же, и определенные недостатки. К таковым относят:
- Повышенный риск возгорания при работе. Большинство жидкостей, используемых в гидравлических системах, являются горючими.
- Чувствительность оборудования к загрязнениям.
- Возможность протечек масла, а следовательно, и необходимость их устранения.
Расчет гидравлической системы
При проектировании подобных устройств принимается во внимание множество самых разных факторов. К таковым можно отнести, к примеру, кинематический коэффициент вязкости жидкости, ее плотность, длину трубопроводов, диаметры штоков и т. д.
Основными целями выполнения расчетов такого устройства, как гидравлическая система, чаще всего является определение:
- Характеристик насоса.
- Величины хода штоков.
- Рабочего давления.
- Гидравлических характеристик магистралей, других элементов и всей системы в целом.
Производится расчет гидравлической системы с использованием разного рода арифметических формул. К примеру, потери давления в трубопроводах определяются так:
- Расчетную длину магистралей делят на их диаметр.
- Произведение плотности используемой жидкости и квадрата средней скорости потока делят на два.
- Перемножают полученные величины.
- Умножают результат на коэффициент путевых потерь.
Сама формула при этом выглядит так:
- ?p i = l х l i(p) : d х pV 2: 2.
В общем, в данном случае расчет потерь в магистралях выполняется примерно по тому же принципу, что и в таких простых конструкциях, как гидравлические системы отопления. Для определения характеристик насоса, величины хода поршня и т. д. используются другие формулы.
Типы гидравлических систем
Подразделяются все такие устройства на две основные группы: открытого и закрытого типа. Рассмотренная нами выше принципиальная схема гидравлической системы относится к первой разновидности. Открытую конструкцию имеют обычно устройства малой и средней мощности. В более сложных системах закрытого типа вместо цилиндра используется гидродвигатель. Жидкость поступает в него из насоса, а затем снова возвращается в магистраль.
Как выполняется ремонт
Поскольку гидравлическая система в машинах и механизмах играет значимую роль, ее обслуживание часто доверяют высококвалифицированным специалистам занимающихся именно этим видом деятельности компаний. Такие фирмы обычно оказывают весь комплекс услуг, связанных с ремонтом спецтехники и гидравлики.
Разумеется, в арсенале этих компаний имеется все необходимое для производства подобных работ оборудование. Ремонт гидравлических систем обычно выполняется на месте. Перед его проведением при этом в большинстве случаев должны быть произведены разного рода диагностические мероприятия. Для этого компании, занимающиеся обслуживанием гидравлики, используют специальные установки. Необходимые для устранения проблем комплектующие сотрудники таких фирм также обычно привозят с собой.
Пневматические системы
Помимо гидравлических, для приведения в движение узлов разного рода механизмов могут использоваться пневматические устройства. Работают они примерно по тому же принципу. Однако в данном случае в механическую преобразуется энергия сжатого воздуха, а не воды. И гидравлические, и пневматические системы довольно-таки эффективно справляются со своей задачей.
Плюсом устройств второй разновидности считается, прежде всего, отсутствие необходимости в возврате рабочего тела обратно к компрессору. Достоинством же гидравлических систем по сравнению с пневматическими является то, что среда в них не перегревается и не переохлаждается, а следовательно, не нужно включать в схему никаких дополнительных узлов и деталей.
Гидроклапан давления (рис.1.1а) состоит из корпуса I, в котором находится золотник 2, поджатый с торца пружиной 4, усилие которой регулируется винтом 5 и имеет полости подвода (Р) и отвода (А,Т), вспомогательные полости (а,б), каналы управления (в,г,д,е,ж,а) и демпферное отверстие (и).
В нижнем нормальном положении золотника 2 полости (Р) и (А, Т) разъединены, если сила давления рабочей жидкости на нижний торец золотника 2 в полости (a) не превышает усилие регулируемой пружины 4 и силу давления рабочей жидкости на верхний торец золотника в полости (б). В случае превышения — золотник 2 перемещается вверх и полость подвода (Р) соединяется через проточку на золотнике с полостью отвода (А,Т).
Такой принцип работы гидроклапана давления в общем случае, однако в зависимости от способа управления, т.е. от того как соединены каналы управления с основными линиями или используются независимо, могут быть четыре способа подключения гидроклапана давления (рис. 1.1 б,в,г,д), имеющие различное функциональное назначение.
Рис.1.1. Общий вид (а) и схема исполнений
(б- первая, в- вторая, г- третья, д- четвертая) гидроклапана давления.
Гидроклапан давления первого исполнения (рис. 1.1б) может применяться в качестве предохранительного или переливного клапана (подсоединен параллельно), а также клапана разности давлений (подсоединен последовательно). При работе гидроклапана давления по схеме первого исполнения рабочая жидкость подводится в полость (Р) и поступает по каналам управления (е,ж,з) и демпферному отверстию (и) во вспомогательную полость (а), в которой создается давление на нижний торец золотника 2. Полость отвода (Т) предохранительных и переливных клапанов соединяется со сливом, а полость (А) клапанов разности давления — с гидросистемой.
При применении гидроклапана давления в качестве предохранительного клапана в объемном гидроприводе с регулируемым насосом через него не проходит в нормальных условиях поток рабочей жидкости. Клапан срабатывает лишь при превышении установленного давления в гидросистеме по каким-либо причинам, например, превышение допустимой нагрузки на цилиндр, остановка на упоре и т.д. В этом случае давление в подводящей гидролинии (Р) возрастает, а следовательно, повышается давление в полости (а) на нижний торец золотника 2. Если усилие от давления на золотник 9 полости (а) превышает усилие регулируемой пружины, золотник перемещается вверх и напорная линия через полости (Р) и (Т) соединяется со сливной линией. Рабочая жидкость под давлением пропускается в бак и давление в напорной линии уменьшается. В результате этого уменьшается давление в полостях (Р) и (а) и при условии, что усилие от давления на нижний торец золотника станет ниже усилия пружины на верхний торец, золотник опустится под действием пружины и отсоединит полость (Р) от (Т).
При применении гидроклапана давления в качестве переливного клапана в системах с дроссельным регулированием через него постоянно протекают излишки рабочей жидкости, т.е. он постоянно находится в работе, т.к. дроссель ограничивает поток рабочей жидкости в систему. С помощью гидроклапана давления обеспечивается настройка требуемого давления и поддержание его практически постоянным независимо от изменения нагрузки на цилиндр. Это достигается тем, что золотник 2 под действием усилия от давления на нижний торец находится в равновесии в таком положении, при котором имеется определенных размеров дросселирующая щель через проточку на золотнике из полости (Р) в полость (Т). В случае превышения уста-новленного давления повысится давление на нижний торец золотника,нарушится его равновесие и он будет смещаться вверх, увеличивая размеры дросселирующей щели. При этом увеличивается поток жидкости на слив, в результате чего давление понижается, т.е. восстанавливается, а золотник уравновесится. При понижении давления по сравнению с установленным равновесие золотника также нарушится, но золотник под действием пружины будет перемещаться вниз, размеры дросселирующей щели и поток жидкости на слив уменьшаются и давление восстановится.
При применении гидроклапана давления в качестве клапана разности давлений полость (Р) соединяется с напорной линией, а полость (А) — с какой-либо другой гидролинией системы. Так как полость (а) нижнего торца золотника соединена с полостью (Р), а полость (б) верхнего торца золотника с полостью (А), то разность давлений в подводящем и отводящем потоках будет определяться усилием регулируемой пружины и поддерживаться постоянной независимо от изменения давленая в гидросистеме.
При применении гидроклапана давления в качестве клапана последовательности используются второе, третье и четвертое исполнения. При работе гидроклапана давления по второй схеме исполнения (рис. 1.1в) в канал (е) устанавливается пробка, а через канал (з) под нижний торец золотника подводится управляющий поток (х). Пропускание потока рабочей жидкости из полости подвода (Р) в полость отвода (А,Т) обеспечивается только при достижении в линии управления (х) соответствующей величины давления, определяемой настройкой регулируемой пружины и величиной давления в отводимом потоке. В этом случае усилие на нижний торец золотника от давления в управляющем потоке превышает усилие пружины и усилие от давления в полости (б) на верхний торец, золотник поднимается и соединяет полости (Р) и (А,Т). При этом обеспечивается поддержание постоянной разности давлений в управляющем (х) и отводимом (А) потоках.
При работе гидроклапена давления по третьей схеме исполнения (рис.1.1г) канал (д) заглушается пробкой, а полость (б) над верхним торном золотника соединяется через канал (в) с баком или улравляющим потоком (у). Пропускание потока рабочей жидкости из полости подвода (Р) в полость отвода (А,Т) обеспечивается при достижении в полости подвода заданной величины давленая, определяемой настройкой пружины и давлением в линии управления (у). В атом случае усилие от давления на нижний торец золотника превышает усилие пружины и усилие от давления управляющего потока в полости (б), золотник перемещается и соединяет полости (Р) и (А).
При работе гидроклапана давления по четвертой схеме исполнения (рис1.1 д) каналы (д) и (е) заглушаются пробками, полость (б) над верхним торцом золотника соединяется через канал (в) с баком или управляющим потоком (у), а в полость (а) под нижний торец золотника и канал (з) подается управляющий поток (х). Пропускание потока рабочей жидкости обеспечивается в обоих направлениях при достижении в линиях управляющих потоков (х) и (у) заданной разности давлений, определяемой настройкой пружины. В этом случае усилие от давления в полости (а) управляющего потока (х) превыша-ет усилие пружины и усилие от давления в полости (б) управляющего потока (у), золотник поднимается и соединяются полости (Р) и (А).
ГИДРАВЛИЧЕСКИЙ ПРИВОД
ТИПЫ ПРИВОДА
Для передачи механической энергии от двигателя внутренней сгорания к исполнительным механизмам рабочего оборудованияприменяется гидравлический привод (гидропривод), в котором механическая энергия на входе преобразуется в гидравлическую, а затем на выходе снова в механическую, приводящую в действие механизмы рабочего оборудования. Гидравлическая энергия передается жидкостью (обычно минеральное масло), которая служит рабочим телом гидропривода и называется рабочей жидкостью.
В зависимости от типа применяемой передачи гидропривод подразделяется на объемный и гидродинамический.
В объемном гидроприводе применяется объемная гидропередача. В ней энергия передается статическим напором (потенциальной энергией) рабочей жидкости, который создается насосом объемного тип и реализуется в гидравлическом двигателе такого же типа, например в гидроцилиндре.
В объемном гидроприводе преобразователем механической энергии на входе в гидропередачу служит объемный насос. Вытеснение жидкости из рабочих камер насоса и заполнение, ею всасывающих камер происходит в результате уменьшения или увеличения геометрического объема этих камер, герметично отделенных друг от друга Работа вытеснения и всасывания совершается рабочим органом насос - плунжером, поршнем, пластиной, зубчатым колесом в зависимости от типа насоса. Обратным преобразователем энергии в объемной гидропередаче служит гидродвигатель, рабочий ход которого осуществляется в результате увеличения объема рабочих камер под действием поступающей в них жидкости под давлением.
Преобразователи энергии в гидроприводе (насосы и двигатель называются гидромашинами. В основе работы гидромашины лежит изменение объема рабочих камер в результате подвода механической энергии (насос) либо в результате подвода гидравлической энергии потоком рабочей жидкости под давлением (двигатель).
Энергия передается по трубопроводам, включающим гибкие рукава, в любое место машины. Эта особенность гидропривода называется дистанционностью. С помощью гидропривода можно приводить в действие несколько исполнительных двигателей от одного насоса или группы насосов, при этом возможно независимое включение двигателей.
Принцип действия гидропривода основан на использовании двух главных свойств рабочего тела гидропередачи - рабочей жидкости. Первое свойство - жидкость является упругим телом и практически несжимаема; второе - в замкнутом объеме жидкости изменение давления в каждой точке передается в другие точки без изменения. Работу гидропривода рассмотрим на примере действия гидравлического домкрата (рис. 56). Объемный гидропривод включает насос, бак и гидравлический двигатель. Объемный насос образован цилиндром /, плунжером 2 с серьгой 3 и рукояткой 4. Гидравлический двигатель поступательного действия включает цилиндр 7 и плунжер 6. Эти составные части соединены трубопроводами, которые называются гидролиниями. На гидролиниях установлены обратные
Рис. 56. Гидравлический домкрат:
/, 7 - цилиндры, 2, 6 - плунжер, 3 - серьга, 4 - рукоятка, 5 - бак, 8 - гидролиния, 9 - вентиль, 10, 11 - клапаны
клапаны 10 и //. Клапан 10 пропускает жидкость только в направлении от полости цилиндра 1 к полости цилиндра 7, а клапан 11 - от бака 5 к цилиндру /. Полость цилиндра 7 соединена дополнительной гидролинией с баком 5. В этой гидролинии установлен запорный вентиль 9, который перекрывает эту линию при работе насоса.
Качанием рукоятки 4 плунжеру 2 сообщается возвратно-поступательное движение. При ходе вверх плунжер засасывает рабочую жидкость из бака 5 через клапан // в полость цилиндра /. Жидкость заполняет полость цилиндра под действием атмосферного давления а жидкость в баке. При входе вниз жидкость из полости цилиндра / вытесняется в полость цилиндра 7 через клапан 10. Объем вытесненной из полости цилиндра / жидкости за счет несжимаемости последуй полностью поступает в полость цилиндра 7 и поднимает на некоторую высоту плунжер.
Ход плунжера 2 насоса вниз - рабочий, а ход вверх - холостой гидролиния, соединяющая бак с насосом, называется всасывающей, гидролиния, соединяющая насос с гидродвигателем, - напорной. Кратные клапаны выполняют функцию распределителей потока и обеспечивают непрерывность действия насоса.
Плунжер 6 при работе насоса совершает движение только в одном направлении - вверх. Для того чтобы плунжер 6 опустить вниз (под
воздействием внешней нагрузки или силы тяжести), необходимо открыть вентиль и выпустить жидкость из полости цилиндра 7 в бак.
Рассмотрим основные технические характеристики насоса. При ходе плунжера насоса из одного крайнего положения в другое объем цилиндра 1 изменяете величину, равную Vi = Fi * Si , где Fi и Si - соответственно площадь и ход плунжера. Этот объем определяет теоретическую подачу насоса за один рабочий ход и называется рабочим объемом а. В насосах, где входное звено совершает не возвратно-поступательное, а непрерывное вращательное движение, рабочим объемом называют подачу за один оборот вала. Рабочий объем измеряется в дм 3 , л, см 3 .
Произведение рабочего объема на число рабочих ходов или оборотов вход вала насоса в единицу времени - теоретическая подача насоса Q , измеряется в л/мин, определяет скорость исполнительных механизмов.
Жидкость, заключенная в замкнутом объеме между плунжерами насоса и исполнительного цилиндра, в состоянии покоя действует на их рабочие площади с одинаковым давлением. Это давление также действует на стенки цилиндров и трубопроводов. Оно зависит от величины внешней нагрузки. Давлением жидкости, или рабочим давлением гидропривода, называется сила, приходящаяся на единицу рабочей поверхности плунжеров, стенки цилиндров и трубопроводов и т. д. Превышение давления сверх рабочего, на которое рассчитаны детали и механизмы гидропривода, приводит к преждевременному износу их и может вызвать разрыв трубопроводов и другие поломки.
Так как давление жидкости передается во все стороны равномерно и силы уравновешены этим давлением, то при условии пренебрежения трением плунжеров и их уплотнений рабочее давление Pi == pF - i ; Pg == pFs , где р - рабочее давление.
Это соотношение обратной пропорциональности представляет собой передаточное число гидропривода с гидромашинами поступательного движения. Оно аналогично передаточномучислу простого рычага. Действительно, если к длинному концу рукоятки 4 приложить силу Р, то этим рычагом можно преодолеть силу Р, во столько раз большую d Р[, во сколько раз короткое плечо рычага меньше длинного, а путь S 1 во столько меньше пути S2, во сколько раз короткое плечо рычага меньше длинного. Это прав рычага представляется также в виде обратной пропорциональности.
В источниках механической энергии гидропривода, двигатель внутреннего сгорания и электродвигателях выходным звеном служит вращающийся вал, от которого приводится один или несколько гидронасосов, которые в качестве входного звена имеют также вращающийся вал. Гидропривод вращательного действия (рис. 57) включает например, одинаковые по конструкции насос и мотор.
Насос состоит из неподвижного корпуса (статора), вращающегося ротора 3, в продольных пазах 4 которого скользят шиберы 5 и 6. (ротора смещена относительно оси статора (на рисунке влево), поэтому при вращении его наружная поверхность то приближается, то уделяется от внутренней поверхности корпуса. Шиберы 5, вращаясь вместе с ротором и скользя по стенкам статора, одновременно вдвигаются в пазы или выдвигаются из пазов ротора. Если вращать ротор в указанном стрелкой направлении то между его стенкой, стенкой корпуса и шибером 5 образуется непрерывно расширяющаяся серповидная полость Ai , в которую из бака 1 будет засасываться рабочая жидкость. Полость Bi в это время будет непрерывно уменьшаться в объеме и находящаяся в ней жидкость будет вытесняться из корпуса насоса через кран 8 и подаваться к мотору.
В показанном на рисунке положении крана 8 жидкость будет заполнять полость Ai и оказывать давление на шибер 11, заставляя его вместе с ротором 10 поворачиваться по часовой стрелке. Из полости 5.2 жидкость через кран 8 будет вытесняться в бак. При дальнейшем повороте ротора 3 насоса та- __________
Рис, 57, Гидропривод вращательного действия:
1 - бак, 2, 13 - корпуса, 3, 10 - роторы. 4 - паз, 5, 6, 9, II - шиберы, 7 - клапан, 8 - кран, A i , Б i - полости насоса, А i , Б i - полости мотора
кую же работу будут совершать шибер 6 насоса и шибер 9 мотора, и процесс вращения ротора будет протекать непрерывно.
Для того чтобы вращать ротор мотора в противоположном направлении, необходимо переключить кран 8. Тогда полость Б1 насоса будет сообщена с полостью Б2 мотора и в эту полость рабочая жидкость будет поступать под давлением, а из полости Лз жидкость будет сливаться в бак. При перегрузке мотора его ротор остановится, в то время как насос будет продолжать подачу жидкости. В результате давление в полости насоса, гидромотора и напорном трубопроводе будет возрастать до тех пор, пока не откроется предохранительный клапан 7, выпуская жидкость в бак и предохраняя тем самым гидропередачу от поломки.
Вращательное движение передается так же, как в ременной передаче. В последней механическая энергия передается посредством ремня, в гидропередаче - потоком рабочей жидкости. В ременной передаче число оборотов ведущего и ведомого шкивов обратно пропорционально отношению их радиусов. При одинаковом количестве проходящей жидкости скорость вращения роторов насоса и мотора обратно пропорциональна их рабочим объемам. Эти соотношения действительны при отсутствии объемных потерь в передачах.
Мощность, передаваемую через ременную передачу, можно увеличить путем увеличения ширины ремня при неизменной скорости вращения. Очевидно, что в гидропередаче этого можно достигнуть (при постоянном давлении) увеличением рабочего объема насоса путем, например, расширения корпуса и ротора с пластинами.
Для гидропривода, включающего приводной насос и гидромотор на исполни тельном механизме, общий КПД представляет собой отношение мощности, снимаемой с вала гидромотора, к мощности, подводимой к валу насоса.
Гидропривод погрузчиков включает составные части, присущи всякому гидроприводу: насос, гидродвигатели и устройства для управления потоком и предохранения гидросистемы от перегрузок.
Рис. 58. Структурная схема гидропривода:
1, 2, 3, 4. 5. 6 - гидролинии; ДВС - двигатель внутреннего сгорания, Н - насос, Б - бак, П - предохранительный клапан, М - манометр, Р - распределитель;
Д1, Д2, Д3 - гидродвигатели. N - подводимая энергия, N 1, N 2, N 3 - расходуемая энергия
рис. 58 показана типичная структурная схема гидропривода. ut да гателя внутреннего сгорания ДВС энергия поступает к насосу Н может расходоваться через гидродвигатели Д1, Д2 и Д3 а привод рабочих механизмов машины. Рабочая жидкость поступает к насосу из бака Б по всасывающей гидролинии 1 и подается по напорной гидролинии 2 к распределителю Р, перед которым установлен пред хранительный клапан П. Распределитель Р соединен с каждым гидродвигателем исполнительными гидролиниями 4, 5 и 6. В напорной магистрали установлен манометр М для контроля давления в гидросистеме.
При отключенных гидродвигателях рабочее тело гидропривода - жидкость - перекачивается насосом Н из бака Б к распределителю Р 0 обратно в бак Б. Всасывающая, напорная и сливная гидролинии образуют цепь циркуляции. Поступающая от ДВС энергия расходуется на преодоление механических и гидравлических потерь в цепи циркуляции. Эта энергия в основном идет на нагрев жидкости и гидосистемы.
Гидродвигатель включается распределителем Р, при этом он выполняет функции регулирования потока как по расходу (в момент включения), так и по направлению движения жидкости (реверсированию) к двигателям. Реверсивные гидродвигатели соединяются с распределителем двумя исполнительными линиями, соединяемыми, в свою очередь, попеременно с напорной 2 или сливной 3 линиями циркуляционной цепи в зависимости от требуемого направления движения двигателя.
Во время работы гидродвигателя цепь циркуляции включает двигатель и его исполнительные гидролинии, при остановке, например при подходе штока гидроцилиндра в крайнее положение, циркуляционная цепь прерывается и наступает состояние перегрузки гидросистемы, так как насос Н продолжает получать энергию от двигателя ДВС. В этом случае давление начнет резко увеличиваться и в результате либо остановится двигатель ДВС, либо выйдет из строя один из механизмов гидросистемы, например разорвется гидролиния 2. Для того чтобы этого не произошло, на напорной гидролинии установлены предохранительный клапан П и манометр М. Клапан отрегулирован на давление, превышающее рабочее, как правило, на 10- 15 %. При достижении этого давления клапан срабатывает и соединяет
напорную гидролинию 2 со сливной 3, восстанавливая круг циркуляции жидкости.
В некоторых случаях для уменьшения скорости гидродвигателя в одной исполнительной линии устанавливают дроссель, ограничивающий при заданном давлении подвод жидкости к двигателю. Если производительность насоса при этом оказывается больше заданной, то клапан выпускает часть жидкости на слив в бак. Манометр М предназначен для контроля давления в гидросистеме.
Гидросистемы машин обычно включают дополнительные устройства: обратные управляемые клапаны (гидрозамки), вращающиеся соединения (гидрошарниры), фильтры; применяются распределители с o встроенными предохранительными и обратными клапанами. На погрузчиках применяются гидроусилители руля, которые относятся также к гидроприводу, но имеют свои характерные особенности устройства и работы.
В гидродинамическом приводе используется гидродинамическая передача, в которой энергия также передается жидкостью, но основное значение имеет не напор (энергия давления), а скорость движения этой жидкости в круге ее циркуляции, т. е. кинетическая энергия.
В гидромеханической передаче исключены сцепление и коробке передач, а режим движения машины изменяется без отсоединения передачи от двигателя изменением его частоты вращения, что позволило уменьшить количество органов управления.
Рис. 59. Гидродинамическая передача:
1 - ось, 2, 16 - валы, .3 - муфта, 4, 5, 9 - колеса. 6 - зубчатый венец, 7 - маховик, 8 - маслоуказатель, 10, 22, 23 - шестерни, II, 14 - т op моза. 12, I 3 - блок шестерни, 15 - барабан, 17 - крышка, 18 - распределитель, 19 - винт, 20 - н aco с 21 - фильтр, 24 - картер
Гидродинамическая передача (рис. 59) содержит размещенный в одном картере гидротрансформатор и две планетарные зубчатые передачи. Гидротрансформатор предназначен для изменения крутящего момента на выходном валу, заменяя сцепление и коробку передач, а планетарные передачи служат для изменения направления движения машины, заменяя механизм обратного хода.
Гидротрансформатор состоит из насосного 9, турбинного 5 и реакторного 4 колес. Насосное колесо соединено с маховиком 7 двигателя, турбинное - с валом 2, реакторное колесо через обгонную муфту 3 соединено с осью /, закрепленной на картере 24. Планетарная блок-шестерня 13 закреплена на выходном валу 16 и взаимодействует с одной стороны с шестернями-сателлитами блок-шестерни 12, с другой - солнечной шестерней тормозного барабана 15. Блок-шестерня 12 свободно посажена на вал картера, входит в зацепление с сателлитами блок-шестерни 13, а наружной поверхностью образует тормозной шкив, взаимодействующий с тормозом 11. Насосное колесо 9 содержит шестерню 10, которая через колесо связана с шестерней 22 гидронасоса 20.
Насосное, турбинное и реакторное колеса выполнены с лопатками, расположенными под углом к плоскости вращения.
Ленточные тормоза приводятся в действие от гидроцилиндров с помощью распределителя 18, который управляется от рукоятки на пульте управления. При переднем ходе затормаживается барабан 15, при заднем - блок 12. Насос 20 предназначен для нагнетания масла к гидротрансформатору, планетарным передачам и в цилиндры управления тормозами.
При работающем двигателе масло между лопатками насосного колеса под действием центробежных сил отжимается к периферии колеса и направляется на лопатки турбинного колеса, а затем навстречу неподвижным лопаткам реакторного колеса.
На малых оборотах двигателя масло вращает реакторное колесо, а турбинное остается неподвижным. При увеличении оборотов обгонная муфта 3 заклинивается на валу и начинает вращаться турбинное колесо, передавая крутящий момент двигателя через планетарные передачи выходному валу 16. Направление вращения этого вала зависит от того, какой тормоз включен. С увеличением частоты вращения двигателя крутящий момент на валу 16 уменьшается, а скорость вращения увеличивается. Между входным валом 16 и ведущим мостом устанавливается одноступенчатый редуктор с передаточным числом 0,869.
В условиях эксплуатации следят за уровнем масла и его чистотой. Фильтр 21
систематически промывают, Частое его засорение свидетельствует о необходимости замены масла.
РАБОЧИЕ ЖИДКОСТИ
Рабочая жидкость гидросистем рассматривается как составная часть гидропривода, так как она служит рабочим телом гидропередачи. Одновременно рабочая жидкость охлаждает гидросистему, смазывает трущиеся части и защищает детали от коррозии. Поэтому от свойств жидкости зависят работоспособность, срок службы и надежность гидропривода.
Погрузчики работают на открытом воздухе в самых различны районах страны. В холодное время года машина и рабочая жидкость могут охлаждаться до -55 °С, а в некоторых районах Средней Азии летом во время работы жидкость нагревается до 80 °С. В среднем жидкость должна обеспечивать работу гидропривода в пределах тем ператур от -40 до +50 "С. Жидкость должна иметь долгий срок службы, быть нейтральной к применяемым в гидроприводе материалам, в особенности к резиновым уплотнениям, а также иметь хорошую теплоемкость и одновременно теплопроводность для того, чтобы охлаждать гидросистему.
В качестве рабочих жидкостей применяют минеральные масла. Однако нет масел, которые подходили бы одновременно для всех условий эксплуатации. Поэтому масла в зависимости от их свойств выбирают для конкретных условий работы (климатической зоны, в которой используется машина, и времени года).
Надежность и долговечность гидросистемы во многом зависят, правильного подбора рабочей жидкости, а также от стабильности свойств.
Один из основных показателей, по которым подбирают и оценивают
масла, это вязкость. Вязкость характеризует способность рабочей жидкости оказывать сопротивление деформации сдвига; измеряется в сантистоксах (сСт) при заданной температуре (обычно 50 °С) и в условных единицах - градусах Энглера, которые определяют с помощью вискозиметра и выражают отношение времени истечет жидкости заданного объема (200 см 3) через калиброванное отверстие ко времени истечения такого же объема воды. От вязкости прежде всего зависит возможность работы гидропривода при низких и высоких температурах. В процессе работы машины вязкость рабочей жидкости снижается и ухудшаются ее смазывающие свойства, что сокращает срок службы гидропривода.
При окислении из масла выпадают смолистые отложения, образующие тонкий твердый налет на рабочих поверхностях деталей разрушающе действующие на резиновые уплотнения, фильтрующие элементы. Интенсивность окисления масла резко возрастает с повышением температуры, поэтому не следует допускать повышения темпе ратуры масла выше 70 °С.
Обычно рабочие жидкости полностью заменяют весной и осенью
Если используется всесезонное масло, то его необходимо замена через 300-1000 ч работы гидропривода в зависимости от сорта май (срок замены указывается в инструкции), но не реже одного раза в года. При этом систему промывают керосином на холостом ходу. Периодичность замены зависит от марки жидкости, режима работа объема системы и бака по отношению к подаче насоса. Чем больше вместимость системы, тем реже надо менять масло.
На долговечность гидросистемы влияет присутствие в масле механических примесей, поэтому в гидросистему включают фильтры для очистки масла от механических примесей, а также магнитные пробки.
За основу выбора масла для гидросистемы берется температура предела применения этой жидкости в зависимости от типа насоса гидропривода. Нижний температурный предел применения определяют не по температуре застывания рабочих жидкостей, а по пределу прокачиваемости насоса с учетом потерь во всасывающей гидролинии. для шестеренных насосов этим пределом является вязкость 3000- 5000 сСт, что соответствует пределу прокачиваемости при кратковременном (пусковом) режиме эксплуатации. Нижний температурный предел устойчивой работы определяется по заполнению рабочей камеры насоса, при котором объемный КПД достигает наибольшей величины, что приближенно для шестеренных насосов соответствует вязкости 1250-1400 сСт.
Верхний температурный предел применения рабочей жидкости определяется по наименьшему значению вязкости с учетом нагрева ее в процессе работы. Превышение этого предела вызывает увеличение объемных потерь, а также прихватывание поверхностей сопряженных пар трения, их интенсивный местный нагрев и износ из-за ухудшения смазывающих свойств масла.
Основанием для применения того или иного сорта масла служит рекомендация завода-изготовителя гидроприводной машины.
Перед доливом или заменой масла проверяют нейтральность смешиваемых масел. Появление хлопьев, выпадение осадка и вспенивание указывают на недопустимость смешивания. В этом случае старое масло надо слить, а систему промыть.
При заправке системы принимают меры, обеспечивающие чистоту заливаемого масла. Для этого проверяют исправность заливных фильтров, чистоту воронки и заправочной емкости.
ГИДРОМАШИНЫ
В объемном гидроприводе применяют гидромашины: насосы, насосмоторы и гидродвигатели, работа которых основана на попеременном заполнении рабочей камеры рабочей жидкостью и вытеснении ее из рабочей камеры.
Насосы преобразуют подводимую к ним механическую энергию от двигателя в энергию потока жидкости. Входному валу насоса сообщается вращательное движение. Их входным параметром является частота вращения вала, а выходным - подача жидкости. Жидкость перемещается в насосе за счет ее вытеснения из рабочих камер поршнями, шиберами (лопастями), зубьями шестерен и т. п. При этом рабочая камера представляет собой замкнутое пространство, которое при работе попеременно сообщается либо со всасывающей гидролинией, либо с напорной.
В гидродвигателях происходит обратное преобразование энергии потока рабочей жидкости в механическую энергию на выходном звене (валу гидромотора), которое также совершает вращательное движение. По характеру движения выходного звена различают двигатели вращательного движения - гидромоторы и поступательного - гидроцилиндры.
Гидромоторы и насосы подразделяются по возможности регулирования, по возможности изменения направления вращения, по конструкции рабочей камеры и другим конструктивным признакам.
Некоторые конструкции насосов (гидромоторов) могут выполнять функции гидромотора (насоса), они называются насос-моторы.
На погрузчиках применяются нерегулируемые (нереверсируемые насосы различных конструкций: шестеренные, шиберные, аксиально-поршневые. Регулируемые гидромоторы (насосы) выполняют с изменяемым объемом рабочих камер.
Шестеренный насос (рис. 60) состоит из пары сцепляющихся между собой шестерен, помещенных в плотно охватывающий их корпус, имеющий каналы со стороны входа в зацеплении и выхода из него. Насосы с цилиндрическими шестернями внешнего зацепления наиболее просты и отличаются надежностью в эксплуатации, малыми габаритными размерами и массой, компактностью и другими положительными качествами. Максимальное давление шестеренных насосов 16-20 МПа, подача до 1000 л/мин, частота вращения до 4000 об/мин, срок службы
Рис. 60. Схема действия шестеренного насоса
среднем 5000 ч.
При вращении шестеренжидкость, заключенная во впадине зубьев, переносится из камеры всасывания по периферии корпуса в камеру нагнетания и далее, в напорную гидролинию. Это происходит за счет того, что при вращении шестерен зубья загоняют больше жидкости, чем может поместиться в пространстве, освобождаемом находящимися в зацеплении зубьями. Разность объемов, описываемых этими двумя парами зубьев, составляет количество жидкости, которая вытесняете в нагнетательную полость. По мере приближения к нагнетательной камере давление жидкости повышается, как показано стрелками. В гидросистемах применяют насосы НШ-32, НШ-46, НШ-67К их модификации - НШ-32У и НШ-46У.
Насос НШ (рис. 61) содержит размещенные в корпусе 12 ведущую и ведомую 11 шестерни и втулки 6. Корпус закрыт крышкой 5, привернутой винтами 1. Между корпусом 12 и крышкой 5 проложен уплотнительное кольцо 8. Ведущая шестерня выполнена заодно ц шлицевым валом, который уплотняется манжетой 4, установление в расточке крышки 5 с помощью опорного 3 и пружинного 2 колец Передние втулки 6 размещаются в расточках крышки 5 и уплотнен) резиновыми кольцами. Они могут перемещаться вдоль своих осей. Нагнетательная полость насоса соединена каналом с пространство между торцами указанных втулок и крышкой. Под давлением жидкости передние втулки вместе с шестернями поджимаются к задней которые, в свою очередь, прижимаются к корпусу 12, обеспечивая автоматическое уплотнение торцов втулок и шестерен.
В нагнетательной полости насоса около угольника 13 давление на торцы втулок во много раз больше, чем с противоположной стороны. Одновременно давление на торцы крышек со стороны корпуса стремится прижать втулки к крышке 5. В совокупности это может вызвать перекос втулок в сторону всасывающей полости, односторонний износ втулок и повышенные утечки масла. Для того чтобы уменьшить неравномерность нагружения втулок, часть площади торцов втулок закрывают разгрузочной пластиной 7, уплотняемой по контуру резиновым кольцом. Это кольцо плотно зажимается между торцами корпуса и крышки и в результате создается относительное равенство действующих на втулки сил.
Втулки по мере работы насоса изнашиваются, и расстояние между торцами и крышкой увеличивается. При этом кольцо разгрузочной пластины 7 расширяется, поддерживая необходимое уплотнение между крышкой и втулками. От натяга этого кольца зависит надежная и длительная работа насоса.
Рис. 61. Шестеренный насос НШ:
/ - винт, 2, 3, 8 - кольца. 4 - манжета, 5 - крышка, 6 - втулка шестерни, 7 - пластина, 9 - шплинт, 10, II - шестерни, 12 - корпус, 13 - угольник
Между сопряженными втулками при сборке оставляют зазор 0,1- 0,15 мм. После сборки этот зазор принудительно выбирают. Для этого втулки разворачивают и фиксируют пружинными штифтами, которые устанавливают в отверстия втулок.
Насосы НШ выпускают правого и левого вращения. На корпусе насоса направление вращения ведущего вала указывается стрелкой. У насоса левого вращения (если смотреть со стороны крышки) ведущая вал-шестерня вращается против часовой стрелки, а сторона всасывания находится справа. Насос правого, вращения отличается от насоса левого вращения направлением вращения ведущей шестерни и ее расположением.
При замене насоса, если новый и заменяемый насосы отличаются направлением вращения, нельзя изменять направление входа и выхода жидкости в насос. Всасывающий патрубок насоса (большого диаметра) всегда должен быть соединен с баком. В противном случае уплотнение ведущей шестерни окажется под высоким давлением и будет выведено из строя.
При необходимости насос левого вращения можно переоборудовать в насос Правого вращения. Для того чтобы собрать насос правого вращения (рис. 62, а, б), необходимо снять крышку, вынуть из корпуса передние втулки /, 2 в сборе с пружинными шплинтами 4, повернуть на 180° и установить на место. При этом линия стыка втулок будет повернута, как показано на рис. 62. Затем ведущую и ведомую шестерни меняют местами и вставляют их цапфы в прежние втулки. Передние втулки переставляют точно так же, как и задние. После этого устанавливают на то же место разгрузочную пластину 7 (см. рис. 61) с уплотнительным кольцом 8, а затем крыш предварительно повернутую на 180°.
Насосы НШ-32 и НШ-46 унифицированы по конструкции, их стержни отличаются только длиной зуба, что определяет рабочий объем насосов.
Насосы НШУ (индекс У означает «унифицированные») отличаются от НШ следующими особенностями. Вместо разгрузочной пластины и кольца 8 устанавливается сплошная резиновая пластина 12 (рис. (Зажатая между крышкой 3 и корпусом 1. В месте прохода цапф втулок в пластине 12 выполнены отверстия, в которые устанавливаются уплотнительные кольца 13 с прилегающими к крышке тонкими стальными шайбами. На прилегающих к шестерням торцах втулок выполнены дугообразные каналы 14. Направляющие пружинные шплинты 9 (см. рис. 61) изъяты, а на стороне всасывания в расточку корпуса вставлено сегментообразное резиновое уплотнение 15 (см. рис. 63) и алюминиевый вкладыш 16.
Рис. 62. Сборка втулок насосов НШ:
а - левого вращения, б - правого вращения; I, 2 - втулки, 3 - колодец, 4 - шплинт, 5 - корпус
Рис. 63. Шестеренный насос НШУ:
/ - корпус, 3, 4 - шестерни, 9 - крышка 5, 6 - втулки, 7, 9, 13 - кольца, 8 - манжета, 10 - болт, // - шайба, 12 - пластин 14 - каналы втулок, 15 - уплотнение. 16 - вкладыши; А - пространство под крышкой насоса
При работе насоса НШУ масло из камеры нагнетания поступает в пространство над передними втулками и стремится прижать эти втулки к торцам шестерен. Одновременно со стороны зубьев на втулка действует давление масла, попадающего в дугообразные каналы 14 в результате действия давления на втулки шестерни находятся и время работы насоса под некоторым усилием, направленным от крышки в глубь корпуса насоса. Такая конструкция обеспечивает автоматический поджим, а следовательно, торцовый износ шестерен и втулок и влияет на уплотняющие свойства пластины 12. Резиновое уплотнение 15 необходимо для того, чтобы масло из пространства над втулками не проникало в полость всасывания.
На ряде моделей погрузчиков применяются насосы НШ-67К и HUJ -100 K (рис. 64). Эти насосы состоят из корпуса /, крышки 2, поджимной 7 и подшипниковой 5 обойм, ведомой 3 и ведущей 4 шестерен, центрирующей втулки, уплотнений и крепежных изделий.
Рис. 64. Гидронасос НШ-67К(НШ-100К):
/ - корпус, 2 - крышка, 3, 4- шестерни, 5, 7, - обоймы, 6. 11, 14, 15 - манжеты, 8 - болт, 9 - шайба, 10 - кольцо, 12 - пластина, I 3 - платики
Подшипниковая обойма 5 выполнена в виде полуцилиндра с четырьмя подшипниковыми гнездами, в которой размещаются ведомая 3 и ведущая 4 шестерни. Поджимная обойма 7 обеспечивает радиальное уплотнение, она опирается на цапфы шестерен опорными поверхностями. Для радиального уплотнения служит также манжета 13, в которой создается усилие поджима обоймы к зубьям шестерни. Опорная пластина 12 предназначена для перекрытия зазора между корпусом и поджимной обоймой. Поджимная обойма 7 компенсирует радиальный зазор между собственной уплотняющей поверхностью и зубьями шестерен по мере износа опорных поверхностей.
По торцам шестерни уплотняются с помощью двух платиков 13, которые поднимаются усилием от давления в полости, уплотненной манжетами 14. Усилие, создаваемое в камерах поджимной обоймы, уплотненных манжетами 15, уравновешивает обойму 7 от усилия, которое передается из камер через манжеты 14. Приводной вал уплотняется с помощью манжет, которые удерживаются в корпусе опорным и стопорным кольцами. Качающий элемент (шестерни в сборе с обоймами и платиками) фиксируется от поворота в корпусе центрирующей втулкой.
Кольцо 10 уплотняет разъем между корпусом и крышкой, соединенных между собой болтами.
Исправная работа и долговечность насосов обеспечиваются соблюдением правил технической эксплуатации.
В гидросистему необходимо заливать чистое масло надлежащего качества и соответствующей марки, рекомендуемое для данного насоса при работе в заданном температурном интервале; следить за исправностью фильтров и требуемым уровнем масленом в баке. В холодное время года нельзя сразу включать насос на рабочую нагрузку.
Необходимо дать насосу поработать на холостом ходу в течение 10-15 мин на средних оборотах двигателя. За это время рабочая жидкость прогреется и гидросистема будет готова к работе. Не допускается при прогреве давать насосу максимальные обороты.
Для насоса опасна кавитация - местное выделение из жидкости газов и парс
(вскипание жидкости) с последующим разрушением выделившихся парогазовых пузырьков, сопровождающееся местными гидравлическими микроударами высокой частоты и «забросами» давления. Кавитация вызывает механические повреждения в насосе и может вывести насос из строя. Чтобы предотвратить кавитацию, необходимо устранять причины, которые могут ее вызвать: вспенивание масла в баке, которое вызывает разрежение в полости всасывания насоса, подсос воздуха во всасывающую полость насоса через уплотнение вала, засорение фильтра во всасывающей магистрали насоса, что ухудшает условия заполнения его камер, отделение воздуха от жидкости в приемных фильтрах (в результате жидкость в баке насыщается пузырьками воздуха и эта смесь всасывается насосом), высокую степень разрежения во всасывающей магистрали по следующим причинам: высокая скорость жидкости, большая вязкость и увеличенная высота подъема жидкости,
Работа насоса во многом зависит от вязкости применяемой рабочей жидкости. Выделяют три режима работы, зависящие от вязкости Режим скольжения характеризуется значительными объемными потерями за счет внутренних перетечек и наружных утечек, которые с увеличением вязкости уменьшаются. В этом режиме резко уменьшается объемный КПД насоса, например, у насоса НШ-32 при вязкости 10 сСт он составляет 0,74-0,8, у НПА - 0,64-0,95. Режим устойчивой работы характеризуется стабильностью объемного КПД в определенном диапазоне вязкости, ограничиваемом верхним пределом вязкости, при котором рабочие камеры насоса заполняются полностью. Режим срыва подачи - нарушение работы из-за недостаточного заполнения рабочих камер.
Шестеренные насосы характеризуются наиболее широким диапазоном устойчивой работы в зависимости от вязкости. Это свойство насосов сделало эффективным их применение на машинах, работающих на открытом воздухе, где в зависимости от времени года и дня температура окружающего воздуха меняется в значительных пределах.
Вследствие износа шестеренных насосов ухудшаются их характеристики. Насос не развивает требуемого рабочего давления и уменьшает подачу. В насосах НШ из-за износа торцовых сопрягающихся поверхностей втулок уменьшается натяг уплотнительного кольца, охватывающего разгрузочную пластину. Это приводит к циркуляции масла внутри насоса и уменьшению его подачи. Такие же последствия имеет перекос шестерен и втулок в комплексе в вертикальной плоскости вследствие неравномерного износа втулок со стороны всасывающей полости насоса.
Шиберный насос (рис. 65) применяется на некоторых моделях погрузчиков для привода гидроусилителя руля, при этом используется насос гидроусилителя руля автомобиля ЗИЛ-130. Ротор 10 насоса, свободно сидящий на шлицах вала 7, имеет пазы, в которых перемещаются шиберы 22. Рабочая поверхность статора 9, прикрепленного к корпусу 4 насоса, имеет овальную форму, за счет чего обеспечиваются два цикла всасывания и нагнетания за один оборот вала. Распределительный диск // в полости крышки 12 при. жимается давлением масла, поступающего в полость из зоны нагнетания. В зоны всасывания масло подается с обеих сторон ротора через два окна в торце корпуса.
Поршневые насосы и гидромоторы изготовляют различных типов и назначения, в зависимости от расположения поршней по отношению к оси блока цилиндров или оси вала они подразделяются на аксиально-поршневые и радиально-поршневые. Оба типа могут работать и насосами, и гидромоторами. Поршневой гидромотор (насос), у которого оси поршней параллельны оси блока цилиндров или составляют с ней углы не более 40°, называется аксиально-поршневым. Радиально-поршневой гидромотор имеет оси поршней, перпендикулярные оси блока цилиндров или расположенные под углом не более 45°,
Аксиально-поршневые моторы выполняют с наклонным блоком (рис. 66, а), в них движение осуществляется благодаря углу между осью блока цилиндров и осью выходного звена либо с наклонной шайбой (рис. 66, б), когда движение выходного звена осуществляется благодаря связи (контакту) поршней с плоским торцом диска, наклоненным к оси блока цилиндров.
Гидромоторы с наклонной шайбой изготовляют, как правило нерегулируемыми (с постоянным рабочим объемом), а гидромоторы (насосы) с наклонным блоком - нерегулируемыми или регулируемыми (с переменным рабочим объемом). Рабочий объем регулирую изменением угла наклона блока. Когда торцы блока цилиндров) шайбы параллельны, поршни не движутся в цилиндрах и подача на coca прекращается, при наибольшем угле наклона - подача максимальная.
б) г)
Рис. 66. Поршневые гидромоторы:
а - аксиально-поршневой с наклонным блоком, б - тоже, с наклонной шайбой. 9 - радиально-поршневой кулачковый, г - то же. кривошипно-шатунный; / - блок. 2 - шатун. 3 - поршень, 4 - ротор, 5- корпус, 6 - шайба
Радиально-поршневые гидромоторы выполняются кулачковыми и кривошипными. В кулачковых (рис. 66, в) передача движения от поршней к выходному звену осуществляется кулачковым механизмом, в кривошипно-шатунных (рис. 66, г) - кривошипно-шатунным механизмом.
Гидроцилиндры по назначению делятся на основные и вспомогательные. Основные гидроцилиндры - составная часть исполнительного механизма, его двигатель, а вспомогательные обеспечивают работу системы управления, контроля или приводят в действие вспомогательные устройства.
Различают цилиндры одностороннего действия - плунжерные и двустороннего действия - поршневые (табл. 4). У первых - выдвижение входного звена (плунжера) происходит за счет напора рабочей жидкости, а движение в противоположную сторону - за счет усилия пружины или силы тяжести, у второго - движение выходного звена; (штока) в обе стороны производится напором рабочей жидкости.
Плунжерный цилиндр (рис. 67) применяется для приведения в действие» грузоподъемника. Он состоит из сварного корпуса 2, плунжера 3, втулки 6, гайки 8 и уплотнительных элементов, манжеты, уплотнительного 5 и грязесъемных колец.
Втулка 6 служит направляющей плунжера и одновременно ограничивает его ход вверх. Она закреплена в корпусе с помощью гайки 8. Манжета уплотняет сопряжение плунжера и втулки, а кольцо 5 - сопряжение втулки и корпуса. К плунжеру с помощью шпильки 10 крепится траверса. Периодически в цилиндре накапливается воздух. Для его выпуска в атмосферу служит пробка 4. Поверхность плунжера имеет высокую чистоту обработки. Для того чтобы она не повреждалась при работе, устанавливают грязесъемное кольцо, чтобы пыль и абразивные частицы не попадали в сопряжение плунжера 3 и втулки 6; втулку 6 изготовляют из чугуна, чтобы не задирался стальной плунжер; цилиндр опирают на подвижную и неподвижную части грузоподъемника через сферические поверхности, чтобы исключались изгибающие нагрузки.
Рис. 67, Плунжерный цилиндр:
/ - штифт, 2 - корпус; 3 - плунжер, 4 - пробка, 5, 9 - кольца, 6 - втулка,-7 - уплотнительное устройство, 8 - гайка, 10- шпилька
Масло в цилиндр подводится через штуцер внизу корпуса 2. При крайнем верхнем положении плунжер 3 упирается буртом во втулку 6.
Поршневые цилиндры (рис. 68) имеют разнообразные конструкции. Например, цилиндр наклона вил погрузчика состоит из корпуса 12, включающего гильзу и приваренное к ней днище штока // с поршнем 14 и уплотнительными кольцами 13. Поршень 14 закреплен на хвостовике штока 11 с помощью гайки 3 со шплинтом 2. На хвостовике выполнена канавка под уплотнительное кольцо 4. Спереди в цилиндре размещается головка 5 цилиндра с втулкой. Шток в головке имеет уплотнение в виде манжеты 9 с упорным кольцом 10. Головка закрепляется в цилиндре резьбовой крышкой 6 с грязесъемником 7.
Необходимым условием работы гидравлического цилиндра является герметизация штока (плунжера) в месте его выхода из корпуса цилиндра, а в поршневом цилиндре - герметизация штоковой и поршневой полостей. В большинстве конструкций для герметизации используются стандартные резиновые кольца и манжеты. Неподвижное уплотнение осуществляется с помощью резиновых колец круглого сечения.
На поршнях устанавливаются в качестве уплотнителей резиновые кольца круглого сечения или манжеты. Срок службы круглого кольца значительно увеличивается, если его устанавливают в комплекте с одним (для одностороннего уплотнения) или с двумя (для двустороннего уплотнения) тефлоновыми кольцами прямоугольного сечения.
В штоковых крышках устанавливается одно или два уплотнителя, а также грязесъемник для очистки штока при втягивании в цилиндр. Пластмассовые уплотнения при меньших габаритных размерах имеют в сравнении с резиновыми значительно больший срок службы.
Рис. 68. Поршневой цилиндр:
1 - заглушка, 2 - шплинт, 3 - гайка, 4, 10, 13 - кольца. S - головка цилиндра, 6 - крышка, 7 - грязесъемник, 8 - масленка. 9 - манжета, // - шток, 12 - корпус, 14 - поршень
При технической эксплуатации гидроцилиндров следует соблюдать следующие основные правила. При работе не допускать попадания на рабочую поверхность штока грязи и предохранять эту поверхность от механических повреждений; даже царапина нарушает герметичность цилиндра.
Если машина долго стояла с открытой рабочей поверхностью штока, то перед работой очищают шток мягкой тряпкой, смоченной в масле или керосине.
Нарушение герметичности между поршневой и штоковой полостями в то время, когда цилиндр находится под значительной нагрузкой, может привести к повреждению корпуса или вырыву штоковой крышки из-за штокового эффекта,
Перепад давления, возникающий при заданном расходе, при в котором клапан перемещается, дросселируя поток, определяется настройкой пружины с помощью гайки. Чем больше затянута пружина тем при большем грузе сработает клапан. Пружина регулируется так чтобы обеспечивалось устойчивое опускание грузоподъемника без груза.
Установка обратно-дросселирующего клапана обеспечивает постоянную скорость опускания, но не исключает опускания груза и потере жидкости при внезапном обрыве подводящей гидролинии, что является недостатком описанной конструкции. Возможность регулирования скорости опускания путем изменения подачи насоса реализуется yc тановкой блока клапанов цилиндра подъема, который закрепляете непосредственно на цилиндре.
Блок клапанов выполняет четыре функции: пропускает весь поток жидкости в цилиндр при минимальном сопротивлении и запирает жидкость в цилиндре при нейтральном положении золотника распределителя и при повреждении подводящей гидролинии регулирует выходящий из цилиндра поток жидкости с помощью управляемого дроссельного клапана, при этом расход из цилиндра пропорционален производительности насоса; обеспечивает аварийный спуск груза при отказе гидропривода (гидронасоса, трубопроводов) у двигателя.
Блок клапанов (рис. 74) состоит из корпуса 10, в котором размещены обратный клапан 4 со стержнем 5 и пружиной 6, управляемый клапан / с пружиной 2, штуцеры 3 и 9, крышки, седла клапанов и уплотнения. В штуцере 9 закреплена гайка-демпфер с калиброванным отверстием.
Включением распределителя на подъем жидкость через штуцер 3 направляется к торцу клапана 4, сжимая пружину силой давления, открывает его и поступает в полость А цилиндра. Усилием пружины 2 клапан / плотно прижат к седлу. В полости Б давление отсутствует.
Рис. 74. Блок клапанов:
1,4 - клапаны, 2, 6 - пружины. 3,9 - штуцеры. 5 - стержень, 7 - контргайка; 8 - колпак, 10 - корпус
В нейтральном положении золотника распределителя давлением находящейся в цилиндре жидкости и усилием пружины клапан 4 плотно прижат к седлу; также прижат к своему седлу клапан / пружиной 2, исключая утечку жидкости из цилиндра. Включением распределителя на опускание напорная гидролиния от насоса соединяется с полостью Б и через дроссельную шайбу со сливом В, а полость Д сообщается со сливом. Чем выше производительность насоса, тем большее Давление создается в полости Б, так как возрастает перепад давления На дроссельной шайбе. Давлением жидкости клапан / перемещается влево, сообщая полость А с полостью Д, и жидкость через кольцевой зазор перепускается в бак.
При перемещении клапана увеличиваются сжатие пружины и давление в полости В, поскольку гидравлическое сопротивление сливной
магистрали растет с увеличением расхода пропорционально открыл клапана, и уравновешивается давление в полости Б. Движение клапана также уменьшится, и клапан переместится направо под действием пружины 2 и давления в полости В, перекрыв частично кольцевую щель. Если при этом уменьшить подачу насоса и тем самым давление перед гайкой-демпфером, то давление в полости Б также уменьшится и усилием пружины 2 клапан переместится направо, перекрыв частично кольцевую щель.
Плавная и надежная работа управляемого клапана обеспечивается подбор пружины 2, диаметром клапана 1 и углом его конусной части, объемом полости и диаметром калиброванного отверстия в гайке-демпфере. В этой связи какое-либо изменение управляемого клапана недопустимо, так как может привести к нарушений его правильной работы, например, к возникновению автоколебаний, что сопровождается ударами клапана о седло и шумом.
При отказе привода аварийный спуск подъемника производится в такой последовательности: рукоятку распределителя устанавливают в нейтральное положена снимают защитный колпак 8; стержень 5 удерживают от проворота, вставив в прорезь отвертку и отвернув контргайку 7; стержень 5 поворачивают отверткой против часовой стрелки на 3-4 оборота (считая обороты по прорези); рукоятку распределителе устанавливают в положение «спуск» и опускают грузоподъемник. Если грузоподъемник не опускается, то рукоятку распределителя устанавливают в нейтральное положение и дополнительно отвертывают стержень 5.
После спуска стержень необходимо вернуть в исходное положение вращение по часовой стрелке и установить на место контргайку и защитный колпачок.
Если при установке рукоятки распределителя в нейтральное положение груз опускается под действием силы тяжести, то это свидетельствует о неполном закрытии клапанов. Причинами могут быть: негерметичность в месте сопряжения седел с конусными поверхностями из-за попадания твердых частиц; заедание одного из клапанов в результате попадания твердых частиц в зазор между корпусом и клапанами; управляемый клапан не упирается в седло из-за засорения калиброванного отверстия в гайке-демпфере (жидкость в полости Б оказывается запертой).
Если при перемещении рукоятки в положение «спуск» грузоподъемник не опу c кается, то это свидетельствует о засорении калиброванного отверстия.
Для обеспечения безопасности при изменении наклона грузоподъемника в гидролиниях к цилиндрам наклона устанавливаются дросселирегулируемый дроссель с обратным клапаном. Последний устанавливается в гидролинии к поршневой полости цилиндра наклона.
Дроссель с обратным клапаном (рис. - 75) состоит из корпуса. в котором размещается клапан 7, пружина 6, гайка 5, плунжер с уплотнением 2, гайка 4 и контргайка. При наклоне грузоподъемника назад жидкость проходит в цилиндр через обратный клапан 7, при обратном ходе жидкость из полости цилиндра вытесняется на слив через кольцевой зазор между боковым отверстием корпуса и конусов плунжера и наклонное отверстие в корпусе. Вращением гайки устанавливается зазор, обеспечивающий безопасную скорость наклона грузоподъемника вперед.
На погрузчиках обычно для привода рабочего оборудования гидроусилителя руля используются два отдельных насоса. В случае использования одного насоса для питания потребителей в гидросистеме устанавливается делитель потока. Он предназначен для деления потока жидкости на привод рабочего оборудования и на гидроусилитель, при этом должна быть обеспечена постоянная скорость поворота колес при различной подаче насоса.
Делитель потока (рис. 76) имеет корпус 1 с полым плунжером 5, предохранительным клапаном 4, пружиной 2, пробкой 3 и штуцером 7. В плунжере закреплена диафрагма 6 с отверстием. От насоса жидкость поступает в полость А и через отверстие в диафрагме в полость Б к гидроусилителю (или гидрорулю). Диаметр отверстия в диафрагме выбран так, что в полость Б поступает 15 л/мин на малых оборотах двигателя. С возрастанием производительности насоса давление в полости А возрастает, плунжер 5 поднимается, сжимая пружину 2, и через боковые отверстия в плунжере часть потока жидкости поступает в распределитель. Одновременно возрастает поток жидкости в полость Б, давление в ней возрастает и излишек жидкости через предохранительный клапан 4 направляется в полость В и далее в бак. Перемещение плунжера 5 и работа клапана 4 обеспечивают постоянство расхода жидкости на питание гидроусилителя.
Рис. 75. Дроссель с обратным клапаном:
/ - корпус, 2 - уплотнение, 3 - плунжер,
4, 5 - гайка, 6 - пружина, 7 - клапан
Рис. 76. Делитель потока:
/ - корпус. 2 - пружина. 3 - пробка, 4 - клапан, 5 - плунжер, 6 - диафрагма, 7 - штуцер; А, Б, В, Д - полости
В других конструкциях делителей вместо диафрагмы с отверстием устанавливается регулируемый дроссель.
Поворотом рукоятки клапана сифон соединяется с атмосфер предотвращая вытекание жидкости из бака под действием силы тяжести.
Если клапан открыть и запустить насос, то жидкость вспенится насос будет работать с шумом и не развивать давление в гидросистеме. Поэтому следует всегда перед началом работы, перед запуском двигателя проверить закрытие клапана.
Запорный кран устанавливается в гидросистеме погрузчика для отсоединения манометра. Для замера давления необходим отвернуть кран на один-два оборота, после замера следует выключить распределитель и завернуть кран. Работа с включенным постоянно манометром не допускается.
ГИДРОБАКИ, ФИЛЬТРЫ, ТРУБОПРОВОДЫ
Гидробак предназначен для размещения и охлаждения рабочей жидкости гидросистемы. Его объем в зависимости от подачи насосом и объема гидроцилиндров равен 1-3-минутной подаче насоса. Гидробак включает заливную горловину с сетчатым фильтром и клапаном, соединяющим его полость с атмосферой, указатель уровня жидкости спускную пробку. Резервуар бака - сварной, с поперечной перегородкой. Всасывающая и сливная трубки в виде сифонов размещаются с разных сторон перегородки, что позволяет демонтировать подходящие к гидробаку гидролинии, не сливая жидкость. 10-15 % объема бака обычно занимает воздух.
Фильтры служат для очистки рабочей жидкости в гидросистеме.
Фильтры встраиваются в бак или устанавливаются отдельно. Фильтр в заливной горловине гидробака обеспечивает очистку при заправке. Он выполняется из проволочной сетки; его фильтрующие качества характеризуются размером ячейки в свету и площадью проходного сечения ячеек в единице площади поверхности. В некоторых случаях применяют сетчатые фильтры с 2-3 слоями фильтрующих сеток, что повышает эффективность очистки.
На сливной гидролинии отечественных погрузчиков устанавливается сливной фильтр с перепускным клапаном (рис. 77). Фильтр состоит из корпуса 6 с крышкой 10 и штуцером 1, в котором на трубке 5 размещены фильтрующие элементы 4 с войлочными кольцами 7 по концам, затянутыми с помощью гайки 16. Сверху трубки закреплен корпус 14 перепускного клапана. Шарик 13 поджимается пружиной /5, которая удерживается в трубке с помощью скоб 17, 18. Фильтр установлен на сливной гидролинии из гидроусилителя руля.
Жидкость попадает на наружную сторону фильтрующих элементов и, пройдя сквозь ячейки элементов и через прорезь в трубке 5, попадает в центральный канал, соединенный со сливной гидролинией. По мере работы гидросистемы фильтрующие элементы загрязняются, сопротивление фильтра возрастает, по достижении давления 0,4 МПа открывается перепускной клапан, и жидкость сливается в бак неочищенной. Прохождение жидкости через клапан сопровождается специфическим шумом, что свидетельствует о необходимости очистить фильтр. Очистка производится путем частичной разборки фильтра и промывки фильтрующих элементов. Установка фильтра на сливе из гидроусилителя, работающего при меньшем давлении, не вызывает потерь давления в гидросистеме рабочего оборудования.
На погрузчиках «Балканкар» фильтр устанавливается во всасывающей гидролинии (всасывающий фильтр) и размещается в гидробаке. Всасывающий фильтр (рис. 78) содержит корпус /,
Рис. 77. Сливной фильтр с перепускным клапаном:
/ - штуцер, 2, 7, 11, 12 - кольца, 3 - штифт, 4 - фильтрующий элемент, 5 - трубка, 6 - корпус, 8 - колпачок. 9, 15 - пружины, 10 - крышка, 13 - шарик. 14 - корпус, клапана, 16 - гайка, 17, I 8 - скобы
Рис. 78. Всасывающий фильтр:
/ - корпус, 2 - пружина, 3 - крышка, 4 фильтрующий элемент, 5 - клапан
между крышками 3 которого размещен фильтрующий элемент 4. Крышки и элемент прижимаются к корпусу пружиной 2. Фильтрующий элемент выполнен из латунной сетки, которая имеет 6400 отверстий на 1 см 2 , что обеспечивает точность очистки 0,07 мм. При засорении сетки жидкость засасывается гидронасосом через перепускной клапан 5. Выполненную на заводе-изготовителе настройку перепускного клапана не надо нарушать в эксплуатации - это может вызвать подпор на сливе, если фильтр установлен на сливной гидролинии, или кавитацию гидронасоса, если фильтр установлен во всасывающей магистрали.
Трубопроводы гидропривода выполняют из стальных труб, рукавоввысокого и низкого давления (всасывающая гидролиния). Рукава используют для соединения подвижных относительно друг к другу частей гидросистем.
Для монтажа частей трубопроводов служат соединения с внутренним конусом (рис. 79, а). Герметичность соединения обеспечивается плотным контактом поверхности стального шарового ниппеля с конической поверхностью штуцера / с помощью гайки 2. Ниппель приваривается встык к трубе.
Рис. 79. Соединения трубопроводов:
а - с внутренним кольцом, б - с развальцовкой, в - с врезающимся кольцом;
1 - штуцер, 2 - гайка, 3, 5 - ниппели, 4 - труба, 6 - врезающееся кольцо
Трубы небольшого диаметра (6,8 мм) соединяют с развальцовкой (рис. 79, б) или с врезающимся кольцом (рис. 79, в). В первом случае труба 4 прижимается к штуцеру конусным ниппелем 5 с помощь гайки, во втором - уплотнение производится острой кромкой кольца при завинчивании накидной гайки.
При монтаже рукавов их нельзя перегибать в месте заделки, скручивать вдоль их продольной оси. Необходимо предусматривать запас по длине на сокращение длины рукава под действием давления. Рукава не должны касаться подвижных частей машины.
ГИДРАВЛИЧЕСКИЕ СХЕМЫ ПОГРУЗЧИКОВ
Принципиальные гидравлические схемы показывают устройстве гидросистем с помощью условных графических обозначений (табл. 5),
Рассмотрим типовую гидравлическую схему погрузчика 4045Р (рис. 80). Она включает две независимые гидросистемы с общим баком 1. Бак оснащен заливочным фильтром 2 с вентиляционным клапаном-суфлером, а идущая из бака всасывающая гидролиния имеет клапан 3 разрыва струи. От общего вала приводятся два гидронасоса малый 5 - для привода гидроусилителя и большой 4 - для привода рабочего оборудования. От большого насоса жидкость подается к моноблочному распределителю, включающему предохранительный клапан и три золотника: один для управления цилиндром подъема, другой - цилиндром наклона, третий - для работы с дополнительный навесным оборудованием. От золотника 6 жидкость через одну гидролинию направляется к блоку 12 клапанов и в полость цилиндра подъема, а через другую параллельно полости управления блока клапанов и в сливную линию через дроссель 13.
Исполнительные гидролинии золотника 7 соединены параллельно с цилиндрами наклона грузоподъемника: одна - с поршневыми полостями, другая - со штоковыми полостями. На входе в полости установлены дроссели. Третий золотник - резервный. 1
При нейтральном положении распределителя жидкость от насоса подается к каждому золотнику распределителя и через открытый канал в золотниках сливается в бак. Если золотник сдвинуть в то или иное рабочее положение, то сливной канал запирается и через открывшийся при этом другой канал жидкость поступает в исполнительную гидролинию, а противоположная гидролиния сообщается со сливной.
В положении золотника цилиндра подъема «На подъем» жидкость проходит в полость цилиндра через обратный клапан блока клапанов и производит подъем грузоподъемника. В указанном и нейтральном положениях золотника обратный ток жидкости исключен, т. е. грузоподъемник не может опуститься. В положении золотника « Ha опускание» напорная линия от насоса сообщается со сливом через дроссель и одновременно поступает в полость управления блока клапанов. При малых оборотах двигателя давление в полости небольшой управляемый клапан откроется немного, из полости цилиндра расход будет небольшим и скорость опускания груза будет ограничена.
Для увеличения скорости опускания необходимо увеличить обороты двигателя, давление перед дросселем возрастет, управляемый, клапан откроется на большую величину и расход из полости цилиндра увеличится.
В гидролиниях к полостям цилиндров наклона установлены дроссели, которые ограничивают скорость наклона грузоподъемника.
В гидросистеме погрузчиков «Балканкар» (рис. 81) для привода рабочего оборудования и механизма поворота колес используется
Рис. 80. Гидравлическая схема погрузчика 4045Р:
I - бак, 2 - фильтр, 3 - клапан, 4, 5 - гидронасосы, 6, 7 - золотники. 8 - кран, 9 - манометр. 10, II - цилиндры, 12 - блок клапанов, 13 - дроссель, 14, - фильтр, 15 - гидроусилитель
один насос. Рабочая жидкость к насосу поступает из бака / через фильтр 2 с перепускным клапаном и подается к делителю потока, который направляет часть жидкости к гидрорулю 17, а остальной поток - к секционному распределителю //, содержащему четыре золотника и предохранительный клапан 5. От золотника 9 к полости цилиндра подъема 13 через обратнодросселирующий клапан 12 идет одна гидролиния. При подъеме весь поток жидкости направится в полость цилиндра, а при опускании расход лимитируется проходным сечением дросселя. Также через обратнодросселирующий клапан,
Рис. 81. Гидросистема погрузчика «Балканкар»: I
1 - бак, 2 - фильтр. 3 - насос, 4, 5, 10, It , 15 - клапаны, 6-9 - золотники, 11 - распределитель. 13, 14, 16 - цилиндры, 16 - делитель потока, 17 - гидроруль
масло направляется в штоковые полости цилиндров наклона, обеспечивая медленный наклон грузоподъемника вперед с целью обеспечения безопасности.
Золотники б и 7 предназначены для навесного рабочего оборудования. Давление жидкости в исполнительных гидроцилиндрах навесного оборудования регулируется отдельным предохранительным клапаном.
Гидравлические системы используются в разнообразном оборудовании, но работа каждой из них основана на схожем принципе. В его основе лежит классический закон Паскаля, открытый еще в XVII веке. Согласно ему, давление, которое приложено к объему жидкости, создает силу. Она равномерно передается во всех направлениях и создает одинаковое давление в каждой точке.
Основа работы гидравлики любого вида - использование энергии жидкостей и возможность, приложив малое усилие, выдерживать увеличенную нагрузку на значительной площади – так называемый гидравлический мультипликатор. Таким образом, к гидравлике можно отнести все виды устройств, работающих на основе использования гидравлической энергии.
Спецтехника с гидроузлами
Гидрофицированные роботы на заводе «Камаз»
Виды гидравлики по сферам применения
Несмотря на общий «фундамент», гидросистемы поражают разнообразием. Начиная от базовых гидравлических конструкций, состоящих из нескольких цилиндров и трубок, и заканчивая , в которых объединены гидроэлементы и электротехнические решения, они демонстрируют широту инженерной мысли и приносят прикладную пользу в самых разных отраслях:
- промышленности - как элемент литейного, прессового, транспортировочного и погрузочно-разгрузочного оборудования, металлорежущих станков, конвейеров;
- сельском хозяйстве - навесное оборудование тракторов, экскаваторов, комбайнов и бульдозеров управляется именно гидроузлами;
- автомобильном производстве: гидравлическая тормозная система - «must have» для современного легкового и грузового автотранспорта;
- авиакосмической отрасли: системы, независимые или объединенные с пневматикой, используются в шасси, управляющих устройствах;
- строительстве: практически вся спецтехника оснащена гидрофицированными узлами;
- судовой технике: гидравлические системы используются в турбинах, рулевом управлении;
- нефте- и газодобыче, морском бурении, энергетике, лесозаготовительном и складском хозяйстве, ЖКХ и многих других сферах.
Гидростанция к токарному станку
В промышленности (для металлорежущих и других станков) современную производительную гидравлику используют благодаря ее способности обеспечить оптимальный режим работы с помощью бесступенчатого регулирования, получать плавные и точные движения оборудования и простоты его автоматизации.
На производственных станках широко применяют системы с автоматическим управлением, а в строительстве, благоустройстве, дорожных и других работах - экскаваторы и другую гусеничную или колесную с гидрофицированными узлами. Гидросистема работает от мотора техники (ДВС или электрического) и обеспечивает функционирование навесных элементов - ковшей, стрел, вил и так далее.
Гидрофицированный экскаватор-погрузчик
Виды гидравлики с разными гидроприводами
В оборудовании для разных сфер используются гидроприводы одного из двух типов - гидродинамические, работающие преимущественно на кинетической энергии, или объемные. Последние используют потенциальную энергию давления жидкостей, обеспечивают большое давление и, благодаря техническому совершенству, широко используются в современных машинах. Системы с компактными и производительными объемными приводами устанавливают на сверхмощных экскаваторах и станках - их рабочее давление достигает 300 МПа и больше.
Пример техники с объемным гидроприводом
Рабочее колесо гидротурбины для гидроагрегата ГЭС
Объемные гидроприводы используют в большинстве современных гидростистем, устанавливаемых в прессах, экскаваторах и строительной спецтехнике, металлообрабатывающих станках и так далее. Устройства классифицируют по:
- характеру движения выходных звеньев гидромотора - оно может быть вращательным (с ведомым валом или корпусом), поступательным или поворотным, с движением на угол до 270 градусов;
- регулированию: регулируемые и нерегулируемые в ручном или автоматическом режиме, дроссельным, объемным или объемно-дроссельным способом;
- схемам циркуляции рабочих жидкостей - компактной замкнутой, используемой в мобильной технике, и разомкнутой, которая сообщается с отдельным гидробаком;
- источникам подачи жидкостей: с насосами или гидроприводами, магистральными или автономными;
- типу двигателя - электрический, ДВС в автомобилях и спецтехнике, турбины корабля и так далее.
Турбина Siemens с гидроприводом
Конструкция гидравлики разных видов
В промышленности используют машины и механизмы со сложным устройством, но, как правило, гидравлика в них работает по общей принципиальной схеме. В систему включены:
- рабочий гидроцилиндр, преобразовывающий гидравлическую энергию в механическое движение (или, в более мощных промышленных системах, гидродвигатель);
- гидронасос;
- бак для рабочей жидкости, в котором предусмотрена горловина, сапун и вентилятор;
- клапаны - обратный, предохранительный и распределительный (направляющий жидкость к цилиндру или в резервуар);
- фильтры тонкой очистки (по одному на подающей и обратной линии) и грубой очистки - для удаления примесей механического характера;
- система, управляющая всеми элементами;
- контур (емкости под давлением, трубопроводная обвязка и другие компоненты), уплотнители и прокладки.
Классическая схема раздельноагрегатной гидросистемы
В зависимости от вида гидросистемы, ее конструкция может отличаться - это влияет на сферу применения устройства, его рабочие параметры.
Стандартный рабочий гидроцилиндр тормоза для комбайна «Нива СК-5»
Виды конструктивных элементов гидросистемы
Прежде всего, важен тип привода - части гидравлики, преобразующей энергию. Цилиндры относятся к роторному типу, и могут направлять жидкости только в один конец или в оба (однократное или двойное действие соответственно). Усилие их направлено прямолинейно. Гидравлика открытого типа с цилиндрами, которые сообщают выходным звеньям возвратно-поступательное движение, используется в мало- и среднемощном оборудовании.
Спецтехника с гидродвигателем
В сложных промышленных системах вместо рабочих цилиндров устанавливают гидродвигатели, в которые из насоса поступает жидкость, а затем возвращается в магистраль. Гидрофицированные моторы сообщают выходным звеньям вращательное движение с неограниченным углом поворота. Их приводит в действие рабочая гидравлическая жидкость, поступающая от насоса, что, в свою очередь, заставляет вращаться механические элементы. В оборудовании для разных сфер устанавливают шестеренчатые, лопастные или поршневые гидромоторы.
Радиально-поршневой гидромотор
Потоками в системе управляют гидрораспределители - дросселирующие и направляющие. По особенностям конструкции их делят на три разновидности: золотниковые, крановые и клапанные. Наиболее востребованы в промышленности, инженерных системах и коммуникациях гидрораспределители первого типа. Золотниковые модели просты в эксплуатации, компактны и надежны.
Гидронасос - еще один принципиально важный элемент гидравлики. Оборудование, преобразующее механическую энергию в энергию давления, используют в закрытых и открытых гидросистемах. Для техники, работающей в «жестких» условиях (бурильной, горнодобывающей и так далее) устанавливают модели динамического типа - они менее чувствительны к загрязнениям и примесям.
Гидравлический насос
Гидронасос в разрезе
Пара гидронасос-гидромотор
Также насосы классифицируют по действию - принудительному или непринудительному. В большинстве современных гидросистем, использующих повышенное давление, устанавливают насосы первого типа. По конструкции выделяют модели:
- шестеренчатые;
- лопастные;
- поршневые - аксиального и радиального типов.
- и др.
Гидрофицированные манипуляторы для 3D-печати
Существует видов использования законов гидравлики - изготовители придумывают новые модели техники и оборудования. Среди наиболее интересных - гидросистемы, устанавливаемые в манипуляторах для 3D-печати, коллаборативных роботах, медицинских микрофлюидных устройствах, авиационном и другом оборудовании. Поэтому любая классификация не может считаться полной - научный прогресс дополняет ее чуть ли не каждый день.
pi4 workerbot - ультрасовременный индустриальный робот, воспроизводящий мимику
Гидравлический манипулятор, распечатанный на 3D-принтере
Гидрооборудование на линиях авиационного завода