Кто придает постоянную скорость планетам. Школьная энциклопедия

Первая космическая скорость - это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.

Рассмотрим движение тела в неинерциальной системе отсчета - относительно Земли.

В этом случае объект на орбите будет находиться в состоянии покоя, так как на него будут действовать уже две силы: центробежная сила и сила тяготения.

где m - масса объекта, M - масса планеты, G - гравитационная постоянная (6,67259·10 -11 м?·кг -1 ·с -2),

Первая космическая скорость, R - радиус планеты. Подставляя численные значения (для Земли 7,9 км/с

Первую космическую скорость можно определить через ускорение свободного падения - так как g = GM/R?, то

Втора?я косми?ческая ско?рость - наименьшая скорость, которую необходимо придать объекту, масса которого пренебрежимо мала по сравнению с массой небесного тела, для преодоления гравитационного притяжения этого небесного тела и покидания круговой орбиты вокруг него.

Запишем закон сохранения энергии

где слева стоят кинетическая и потенциальная энергии на поверхности планеты. Здесь m - масса пробного тела, M - масса планеты, R - радиус планеты, G -гравитационная постоянная, v 2 - вторая космическая скорость.

Между первой и второй космическими скоростями существует простое соотношение:

Квадрат скорости убегания равен удвоенному ньютоновскому потенциалу в данной точке:

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме 15. Вывод формул для 1-й и 2-й космических скоростей.:

  1. Распределение Максвелла по скоростям. Наиболее вероятная среднеквадратичная скорость движения молекулы.
  2. 14. Вывод третьего закона Кеплера для кругового движения
  3. 1. Скорость элиминации. Константа скорости элиминации. Время полуэлиминации
  4. 7.7. Формула Релея-Джинса. Гипотеза Планка. Формула Планка
  5. 13. Космическая и авиационная геодезия. Особенности зондирования в водной среде. Системы машинного зрения ближнего радиуса действия.
  6. 18. Этический аспект культуры речи. Речевой этикет и культура общения. Формулы речевого этикета. Этикетные формулы знакомства, представления, приветствия и прощания. «Ты» и «Вы» как формы обращения в русском речевом этикете. Национальные особенности речевого этикета.

Если и некоторому телу сообщить скорость, равную первой космической скорости, то оно не упадет на Землю, а станет искусственным спутником, движущимся по околоземной круговой орбите. Напомним, что эта скорость должна быть перпендикулярна направлению к центру Земли и равна по величине
v I = ?{gR} = 7,9 км/с ,
где g = 9,8 м/с 2 - ускорение свободного падения тел у поверхности Земли, R = 6,4 x 10 6 м - радиус Земли.

А может ли тело и вовсе порвать цепи тяготения, «привязывающие» его к Земле? Оказывается, может, но для этого его нужно «бросить» с еще большей скоростью. Минимальную начальную скорость, которую необходимо сообщить телу у поверхности Земли, чтобы оно преодолело земное притяжение, называют второй космической скоростью. Найдем ее значение v II .
При удалении тела от Земли сила притяжения совершает отрицательную работу, в результате чего кинетическая энергия тела уменьшается. Одновременно с этим уменьшается и сила притяжения. Если кинетическая энергия упадет до нуля до того, как станет равной нулю сила притяжения, тело вернется обратно на Землю. Чтобы этого не произошло, нужно, чтобы кинетическая энергия сохранялась отличной от нуля до тех пор, пока сила притяжения не обратится в нуль. А это может произойти лишь на бесконечно большом расстоянии от Земли.
Согласно теореме о кинетической энергии, изменение кинетической энергии тела равно работе действующей на тело силы. Для нашего случая можно записать:
0 - mv II 2 /2 = A ,
или
mv II 2 /2 = -A ,
где m - масса брошенного с Земли тела, A - работа силы притяжения.
Таким образом, для вычисления второй космической скорости нужно найти работу силы притяжения тела к Земле при удалении тела от поверхности Земли на бесконечно большое расстояние. Как это ни удиви-тельно, но работа эта вовсе не бесконечно большая, несмотря на то, что перемещение тела как будто бы бесконечно велико. Причина тому - уменьшение силы притяжения по мере удаления тела от Земли. Чему же равна работа силы притяжения?
Воспользуемся той особенностью, что работа силы тяготения не зависит от формы траектории движения тела, и рассмотрим самый простой случай - тело удаляется от Земли по линии, проходящей через центр Земли. На приведенном здесь рисунке изображен Земной шар и тело массой m , которое движется вдоль направления, указанного стрелкой.

Найдем сначала работу А 1 , которую совершает сила притяжения на очень малом участке от произвольной точки N до точки N 1 . Расстояния этих точек до центра Земли обозначим через r и r 1 , соответственно, так что работа А 1 будет равна
A 1 = -F(r 1 - r) = F(r - r 1) .
Но какое значение силы F следует подставить в эту формулу? Ведь оно изменяется от точки к точке: в N оно равно GmM/r 2 (М - масса Земли), в точке N 1 - GmM/r 1 2 .
Очевидно, нужно взять среднее значение этой силы. Так как расстояния r и r 1 , мало отличаются друг от друга, то в качестве среднего можно взять значение силы в некоторой средней точке, например такой, что
r cp 2 = rr 1 .
Тогда получаем
A 1 = GmM(r - r 1)/(rr 1) = GmM(1/r 1 - 1/r) .
Рассуждая таким же образом, найдем, что на участке N 1 N 2 совершается работа
A 2 = GmM(1/r 2 - 1/r 1) ,
на участке N 2 N 3 работа равна
A 3 = GmM(1/r 3 - 1/r 2) ,
а на участке NN 3 работа равна
A 1 + A 2 + A 2 = GmM(1/r 3 - 1/r) .
Закономерность ясна: работа силы притяжения при перемещении тела от одной точки к другой определяется разностью обратных расстояний от этих точек до центра Земли. Теперь нетрудно найти и всю работу А при перемещении тела от поверхности Земли (r = R ) на бесконечно большое расстояние (r -> ? , 1/r = 0 ):
A = GmM(0 - 1/R) = -GmM/R .
Как видно, эта работа и в самом деле не бесконечно велика.
Подставив полученное выражение для А в формулу
mv II 2 /2 = -GmM/R ,
найдем значение второй космической скорости:
v II = ?{-2A/m} = ?{2GM/R} = ?{2gR} = 11,2 км/с .
Отсюда видно, что вторая космическая скорость в ?{2} раз больше первой космической скорости:
v II = ?{2}v I .
В проведенных расчетах мы не принимали во внимание то, что наше тело взаимодействует не только с Землей, но и с другими космическими объектами. И в первую очередь - с Солнцем. Получив начальную скорость, равную v II , тело сумеет преодолеть тяготение к Земле, но не станет истинно свободным, а превратится в спутник Солнца. Однако если телу у поверхности Земли сообщить так называемую третью космическую скорость v III = 16,6 км/с , то оно сумеет преодолеть и силу притяжения к Солнцу.
Смотрите пример

Министерство образования и науки РФ

Государственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный университет экономики и финансов»

Кафедра систем технологий и товароведения

Доклад по курсу концепции современного естествознания на тему «Космические скорости»

Выполнила:

Проверил:

г. Санкт-Петербург

Космические скорости.

Космическая скорость (первая v1, вторая v2, третья v3 и четвёртая v4) - это минимальная скорость, при которой какое-либо тело в свободном движении сможет:

v1 - стать спутником небесного тела (то есть способность вращаться по орбите вокруг НТ и не падать на поверхность НТ).

v2 - преодолеть гравитационное притяжение небесного тела.

v3 - покинуть Солнечную систему, преодолев притяжение Солнца.

v4 - покинуть галактику Млечный Путь.

Первая космическая скорость или Круговая скорость V1 - скорость, которую необходимо придать объекту без двигателя, пренебрегая сопротивлением атмосферы и вращением планеты, чтобы вывести его на круговую орбиту с радиусом, равным радиусу планеты. Иными словами, первая космическая скорость - это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.

Для вычисления первой космической скорости необходимо рассмотреть равенство центробежной силы и силы тяготения действующих на объект на круговой орбите.

где m - масса объекта, M - масса планеты, G - гравитационная постоянная (6,67259·10-11 м?·кг-1·с-2), - первая космическая скорость, R - радиус планеты. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 378 км), найдем

7,9 км/с

Первую космическую скорость можно определить через ускорение свободного падения - так как g = GM/R?, то

Вторая космическая скорость (параболическая скорость, скорость убегания) - наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала относительно массы небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела. Предполагается, что после приобретения телом этой скорости оно не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).

Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой. Для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца. Для Солнца вторая космическая скорость составляет 617,7 км/с.

Параболической вторая космическая скорость называется потому, что тела, имеющие вторую космическую скорость, движутся по параболе.

Вывод формулы:

Для получения формулы второй космической скорости удобно обратить задачу - спросить, какую скорость получит тело на поверхности планеты, если будет падать на неё из бесконечности. Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния.

Запишем закон сохранения энергии

где слева стоят кинетическая и потенциальная энергии на поверхности планеты (потенциальная энергия отрицательна, так как точка отсчета взята на бесконечности), справа то же, но на бесконечности (покоящееся тело на границе гравитационного влияния - энергия равна нулю). Здесь m - масса пробного тела, M - масса планеты, R - радиус планеты, G - гравитационная постоянная, v2 - вторая космическая скорость.

Разрешая относительно v2, получим

Между первой и второй космическими скоростями существует простое соотношение:

Третья космическая скорость - минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение Солнца и в результате уйти за пределы Солнечной системы в межзвёздное пространство.

Взлетая с поверхности Земли и наилучшим образом используя орбитальное движение планеты космический аппарат может достичь третей космической скорости уже при 16,6 км/с относительно Земли, а при старте с Земли в самом неблагоприятном направлении его необходимо разогнать до 72,8 км/с. Здесь для расчёта предполагается, что космический аппарат приобретает эту скорость сразу на поверхности Земли и после этого не получает негравитационного ускорения (двигатели выключены и сопротивление атмосферы отсутствует). При наиболее энергетически выгодном старте скорость объекта должна быть сонаправлена скорости орбитального движения Земли вокруг Солнца. Орбита такого аппарата в Солнечной системе представляет собой параболу (скорость убывает к нулю асимптотически).

Четвёртая космическая скорость - минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение галактики Млечный Путь. Четвёртая космическая скорость не постоянна для всех точек Галактики, а зависит от расстояния до центральной массы (для нашей галактики таковой является объект Стрелец A*, сверхмассивная чёрная дыра). По грубым предварительным расчётам в районе нашего Солнца четвёртая космическая скорость составляет около 550 км/с. Значение сильно зависит не только (и не столько) от расстояния до центра галактики, а от распределения масс вещества по Галактике, о которых пока нет точных данных, ввиду того что видимая материя составляет лишь малую часть общей гравитирующей массы, а все остальное - скрытая масса.

Пе?рвая косми?ческая ско?рость (кругова?я ско?рость) - минимальная скорость , которую необходимо придать объекту, чтобы вывести его на геоцентрическую орбиту. Иными словами, первая космическая скорость - это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.

Вычисление и понимание

В инерциальной системе отсчёта на объект, движущийся по круговой орбите вокруг Земли будет действовать только одна сила - сила тяготения Земли. При этом движение объекта не будет ни равномерным, ни равноускоренным. Происходит это потому, что скорость и ускорение (величины не скалярные, а векторные) в данном случае не удовлетворяют условиям равномерности/равноускоренности движения - то есть движения с постоянной (по величине и направлению) скоростью/ускорением. Действительно - вектор скорости будет постоянно направлен по касательной к поверхности Земли, а вектор ускорения - перпендикулярно ему к центру Земли, при этом по мере движения по орбите эти векторы постоянно будут менять своё направление. Поэтому в инерциальной системе отсчета такое движение часто называют «движение по круговой орбите с постоянной по модулю скоростью».

Часто для удобства вычисления первой космической скорости переходят к рассмотрению этого движения в неинерциальной системе отсчета - относительно Земли. В этом случае объект на орбите будет находиться в состоянии покоя, так как на него будут действовать уже две силы: центробежная сила и сила тяготения . Соответственно, для вычисления первой космической скорости необходимо рассмотреть равенство этих сил.

Точнее, на тело действует одна сила - сила тяготения. Центробежная сила действует на Землю. Центростремительная сила, вычисляемая из условия вращательного движения, равна силе тяготения. Скорость рассчитывается исходя из равенства данных сил.

m\frac{v_1^2}{R}=G\frac{Mm}{R^2}, v_1=\sqrt{G\frac{M}{R}},

где m - масса объекта, M - масса планеты, G - гравитационная постоянная , v_1 - первая космическая скорость, R - радиус планеты. Подставляя численные значения (для Земли M = 5,97·10 24 кг, R = 6 371 км), найдем

v_1\approx 7,9 км/с

Первую космическую скорость можно определить через ускорение свободного падения . Поскольку g = \frac{GM}{R^2}, то

v_1=\sqrt{gR}.

См. также

Напишите отзыв о статье "Первая космическая скорость"

Ссылки

Отрывок, характеризующий Первая космическая скорость

И он опять обратился к Пьеру.
– Сергей Кузьмич, со всех сторон, – проговорил он, расстегивая верхнюю пуговицу жилета.
Пьер улыбнулся, но по его улыбке видно было, что он понимал, что не анекдот Сергея Кузьмича интересовал в это время князя Василия; и князь Василий понял, что Пьер понимал это. Князь Василий вдруг пробурлил что то и вышел. Пьеру показалось, что даже князь Василий был смущен. Вид смущенья этого старого светского человека тронул Пьера; он оглянулся на Элен – и она, казалось, была смущена и взглядом говорила: «что ж, вы сами виноваты».
«Надо неизбежно перешагнуть, но не могу, я не могу», думал Пьер, и заговорил опять о постороннем, о Сергее Кузьмиче, спрашивая, в чем состоял этот анекдот, так как он его не расслышал. Элен с улыбкой отвечала, что она тоже не знает.
Когда князь Василий вошел в гостиную, княгиня тихо говорила с пожилой дамой о Пьере.
– Конечно, c"est un parti tres brillant, mais le bonheur, ma chere… – Les Marieiages se font dans les cieux, [Конечно, это очень блестящая партия, но счастье, моя милая… – Браки совершаются на небесах,] – отвечала пожилая дама.
Князь Василий, как бы не слушая дам, прошел в дальний угол и сел на диван. Он закрыл глаза и как будто дремал. Голова его было упала, и он очнулся.
– Aline, – сказал он жене, – allez voir ce qu"ils font. [Алина, посмотри, что они делают.]
Княгиня подошла к двери, прошлась мимо нее с значительным, равнодушным видом и заглянула в гостиную. Пьер и Элен так же сидели и разговаривали.
– Всё то же, – отвечала она мужу.
Князь Василий нахмурился, сморщил рот на сторону, щеки его запрыгали с свойственным ему неприятным, грубым выражением; он, встряхнувшись, встал, закинул назад голову и решительными шагами, мимо дам, прошел в маленькую гостиную. Он скорыми шагами, радостно подошел к Пьеру. Лицо князя было так необыкновенно торжественно, что Пьер испуганно встал, увидав его.
– Слава Богу! – сказал он. – Жена мне всё сказала! – Он обнял одной рукой Пьера, другой – дочь. – Друг мой Леля! Я очень, очень рад. – Голос его задрожал. – Я любил твоего отца… и она будет тебе хорошая жена… Бог да благословит вас!…
Он обнял дочь, потом опять Пьера и поцеловал его дурно пахучим ртом. Слезы, действительно, омочили его щеки.
– Княгиня, иди же сюда, – прокричал он.
Княгиня вышла и заплакала тоже. Пожилая дама тоже утиралась платком. Пьера целовали, и он несколько раз целовал руку прекрасной Элен. Через несколько времени их опять оставили одних.
«Всё это так должно было быть и не могло быть иначе, – думал Пьер, – поэтому нечего спрашивать, хорошо ли это или дурно? Хорошо, потому что определенно, и нет прежнего мучительного сомнения». Пьер молча держал руку своей невесты и смотрел на ее поднимающуюся и опускающуюся прекрасную грудь.

«Равномерное и неравномерное движение» - t 2. Неравномерное движение. Яблоневка. L 1. Равномерное и. L2. t 1. L3. Чистоозерное. t 3. Равномерное движение. =.

«Криволинейное движение» - Центростремительное ускорение. РАВНОМЕРНОЕ ДВИЖЕНИЕ ТЕЛА ПО ОКРУЖНОСТИ Различают: - криволинейное движение с постоянной по модулю скоростью; - движение с ускорением, т.к. скорость меняет направление. Направление центростремительного ускорения и скорости. Движение точки по окружности. Движение тела по окружности с постоянной по модулю скоростью.

«Движение тел по плоскости» - Оценить полученные значения неизвестных величин. Подставить числовые данные в решение общего вида, произвести вычисления. Выполнить рисунок, изобразив на нем взаимодействующие тела. Выполнить анализ взаимодействия тел. Fтр. Движение тела по наклонной плоскости без силы трения. Изучение движения тела по наклонной плоскости.

«Опора и движение» - К нам скорая помощь привезла больного. Стройный, сутулый, сильный, крепкий, толстый, неуклюжий, ловкий, бледный. Игровая ситуация “Консилиум врачей”. Спать на жесткой постели с невысокой подушкой. «Опора тела и движение. Правила для поддержания правильной осанки. Правильная поза в положении стоя. Кости детей мягкие, эластичные.

«Космическая скорость» - V1. СССР. Поэтому. 12 апреля 1961г. Послание внеземным цивилизациям. Третья космическая скорость. На борту «Вояджер-2» диск с научной информацией. Расчет первой космической скорости у поверхности Земли. Первый полет человека в космос. Траектория движения Вояджер-1. Траектория движения тел движущихся с малой скоростью.

«Динамика тела» - Что лежит в основе динамики? Динамика- раздел механики, рассматривающий причины движения тел (материальных точек). Законы Ньютона применимы только для инерциальных систем отсчета. Системы отсчета, в которых выполняется первый закон Ньютона, называются инерциальными. Динамика. В каких системах отсчета применяются законы Ньютона?

Всего в теме 20 презентаций