Водный транспорт, противопожарная система судна. Судовое противопожарное оборудование Противопожарные системы и средства судна

Пожар на судне - одно из самых опасных бедствий. Он при­носит гораздо большие разрушения, чем любой другой вид ава­рии. При пожаре могут испортиться грузы, выйти из строя ма­шины и судовое оборудование, он представляет угрозу для жизни людей. Особенно большой ущерб причиняют пожары на пассажир­ских, грузопассажирских судах и танкерах. На последних они могут сопровождаться взрывом нефтяных паров в грузовых тан­ках. Пожар может возникнуть из-за неисправности электропро­водки, неправильной эксплуатации электрического и теплообменного оборудования, небрежного и неосторожного обращения с ог­нем, попадания искр на горючие материалы и др.

Конструктивные противопожарные мероприятия в соответ­ствии с требованиями морского Регистра и СОЛАС - 74 предусматри­ваются в процессе проектирования судна. К ним относятся разде­ление судна огнестойкими поперечными переборками, применение негорючих материалов для отделки помещений, пропитывание деревянных изделий огнестойкими составами, предотвращение искрообразования в отсеках и помещениях, где хранятся легко­воспламеняющиеся взрывоопасные жидкости или материалы, обеспечение судна противопожарным оборудованием и инвента­рем и т. д.

Но одни предупредительные меры не могут исключить пожары на судах. Борьба с пожарами осуществляется с помощью различ­ных средств, способных локализовать пожар, остановить его рас­пространение, создать вокруг источника пожара не поддерживаю­щую горения атмосферу. В качестве таких средств используют забортную воду, водяной пар, углекислый газ, пену и специаль­ные огнегасящие жидкости, так называемые хладоны. Огнегасящие вещества подаются к очагу пожара противопожарными системами: водяными, водораспыления и орошения, паротушения, углекислотного и пенного пожаротушения, объемного химического тушения, инертных газов.

Кроме стационарных систем пожаротушения суда оснащаются аппаратами пены средней кратности, переносными пенными уста­новками, ручными и пенными углекислотными огнетушителями.

К противопожарным системам относят также системы пожарной сигнализации (ручной, полуавтоматической и автоматической), которые обеспечивают профилактические противопожарные меро­приятия.

Пожарная сигнализация. Предназначена для обнаружения очага пожара в самом начале его возникновения. Пожарная сигна­лизация особенно необходима в помещениях где почти не бывает людей (грузовые трюмы, кладовые, малярные и т. п.). В систему пожар­ной сигнализации входят устройства, приборы и оборудование, служащие для автоматической пере­дачи на пост управления судном и центральный пожарный пост (ЦПП) сигналов о

возникнове­нии пожара на судне; сигнализацию предупреждения - оповеще­ние экипажа и производственного персонала о пуске в действие одной из систем объемного пожаротушения. К судовой пожарной сигнализации также относятся устройства ручной пожарно-извещательной сигнализации, позволяющие лицу, обнаружившему пожар, немедленно сообщить об этом в ЦПП; авральная сигнали­зация (колокола громкого боя, ревуны и пр.), предназначенная для сообщения всему личному составу судна о возникновении пожара

Сигнал, поданный автоматической или ручной пожарной сигнализацией, поступает на специальный щит соответствующего поста и фиксируется на нем. Сигнал тревоги личному составу (сигнализация оповещения) может подаваться с поста вручную или автоматически. Машинные, котельные и насосные отделения, а также другие пожароопасные места должны оборудоваться автоматической пожарной сигнализацией. Датчики ручной пожарно-извещательной сигнализации устанавливают в коридорах и вестибюлях жилых, служебных и общественных помещений.

Чаще всего на судах используется предусмотренная Прави­лами Регистра сигнализация, с извещателями, реагирую­щими на температуру окружающей среды. На рис. 34 приведена принципиальная схема устройства пожарной сигнализации

Сигнальный аппарат 2 установлен в охраняемом помещении. Аккумулятор­ные батареи 1 а 10 включены в электрическую сеть. Благодаря наличию значи­тельного электрического сопротивления 4 ток проходит в основном через цепь с извещателем, поэтому в ветвях сила тока оказывается недостаточной для ра­боты пожарного гонга 6, сигнального колокола 8 и красных ламп 5 и 9. Когда сигнальный аппарат разомкнет электрическую цепь, соленоиды 5, 7 и // замы­кают контакты ветвей (соленоид 3 шунтирует сопротивление 4) и электрический ток поступает в сигнальную сеть, приводя в действие соответствующие аппараты, находящиеся в ЦПП. Каждой зажигающейся красной лампе соответствует свой номер охраняемого помещения.

Конструкции некоторых сигнальных аппаратов приведены на рис. 35. Простейший максимальный температурный извещатель (рис. 35, а) представляет собой ртутный термометр с впаян­ными платиновыми контактами. При повышении температуры до определенного значения столбик ртути, расширяясь, достигает верхнего контакта и замыкает электрическую цепь. Максималь­ный извещатель термостатического типа представлен на рис. 35,б.

В качестве чувствительного элемента используется биметаллическая пла­стинка 2, закрепленная на фарфоровом или пластмассовом основании 1. Верхний слой пластинки сделан из материала с малым коэффициентом линейного расши­рения, а нижний - с.большим. Поэтому при повышении температуры пластинка прогибается вниз. Когда температура достигнет заданного предельного значения, подвижный контакт 3 соприкоснется с неподвижным 4 и замкнет цепь. Контакт 4 выполнен в виде регулировочного винта, имеющего на диске шкалу настройки. С помощью винта можно настраивать извещатель в пределах от 303 до 343 К (от 30 до 70 ° С).

Наиболее распространенным является дифференциальный тем­пературный извещатель (рис. 35, в).

Внутренняя полость его корпуса разделена мембраной 3 на две камеры. Верхняя камера 4 сообщается с помещением, а нижняя / (с глухими стенками) соединена с ней через втулку 2 с несколькими отверстиями очень малого диа­метра. На втулке укреплен стержень 7, который упирается в подвижный контакт 6. Винт 5 служит упором, ограничивающим перемещение подвижного контакта.

При постоянной температуре воздуха контролируемого помещения давление в обеих камерах одинаково и контакт 6 замкнут с неподвижным контактом. Если же температура воздуха в помещении интенсивно повышается, воздух в кор­пусе извещателя нагревается. Из верхней камеры 4 он может свободно выходить через каналы в стенках корпуса. Выход же воздуха из камеры 1 возможен только через отверстия малого диаметра во втулке 2. Поэтому возникает разность давле­ний, под действием которой мембрана 3 прогибается вверх и стержень 7 отодви­гает контакт 6 - цепь размыкается, вследствие чего в систему сигнализации подается импульс. Если температура воздуха помещения изменяется с небольшой скоростью, воздух из камеры 1 успевает вытекать из отверстия втулки 2 и кон­такты не размыкаются.

Кроме электрической системы сигнализации на судах приме­няются противопожарные дымовые системы, основанные на контроле задымленности -

воздуха с помощью сигнального аппарата пожарного поста. В этом случае сигнал пожарной опасности подается самим воздухом, засасываемым из помещения в сигналь­ный аппарат.

Система водяного пожаротушения. Система водотушения (туше­ние огня сплошной струей воды) проста, надежна и ею обору­дуются все без исключения суда независимо от условий их эксплуа­тации и назначения. Основными элементами системы являются пожарные насосы, магистральный трубопровод с отростками, пожарные краны (рожки) и шланги (рукава) со стволами (бранд­спойтами). Помимо своего прямого назначения система водотуше­ния может обеспечивать забортной водой системы водяного оро­шения, водораспыления, водяных завес, пенотушения, сприн­клерную, балластную и др.; эжекторы осушительной и водоотлив­ной систем; трубопроводы охлаждения механизмов, приборов и устройств; трубопроводы промывки фекальных цистерн. Кроме того, система водотушения подает воду для обмывки якорных цепей и клюзов, мытья палуб и продувания кингстонных ящиков.

На спасательных и пожарных судах имеется специальная система водяного пожаротушения, независимая от" общесудовой системы.

Систему водотушения нельзя использовать для тушения горя­щих нефтепродуктов, так как плотность топлива или масла мень­ше, чем воды, и они растекаются по ее поверхности, что приво­дит к увеличению охваченной огнем площади. Водой нельзя тушить пожары лаков и красок, а также электрооборудования (вода является проводником и вызывает короткое замыкание).

Магистральный трубопровод системы выполняют линейным и кольцевым. Число и расположение пожарных рожков должны быть такими, чтобы в любую точку пожара можно было подать две струи воды от независимых пожарных рожков. Пожарный рожок представляет собой запорный клапан, имеющий с одной стороны фланец, которым он соединяется с трубопроводом, а с дру­гой стороны - быстросмыкаемую гайку для присоединения пожар­ного рукава. Свернутый в кольцо рукав со стволом хранится в стальной корзине около пожарного рожка. На пожарных кате­рах, спасательных судах и буксирах помимо рожков устанавли­вают лафетные стволы, из которых можно направлять мощную струю воды на горящее судно.

Напор в магистрали должен обеспечивать высоту струи воды не менее 12 м. В качестве механизмов системы водотушения при­меняют обычно центробежные и (реже) поршневые насосы. Подачу и напор пожарных насосов рассчитывают исходя из наиболее неблагоприятного случая работы системы, например из условия одновременного обеспечения действия пожарных рожков в коли­честве 15 % от всего числа установленных на судне, водяного орошения трапов и выходов из МО, системы водораспыления в МО, системы пенотушения. По Правилам Регистра минимальный напор должен быть у ствола 0,28-0,32 МПа; а расход воды через ствол - не менее 10 м 3 /ч.

Приемные трубопроводы пожарных насосов обычно присоеди­няют к кингстонам, причем насос должен иметь возможность принимать воду не менее чем из двух мест.

На рис. 36 приведена типовая схема системы водяного пожа­ротушения с кольцевой магистралью.

К двум центробежным насосам 9 забортная вода поступает от кингстона 15 и от другой магистрали 17 через фильтр 13 и клинкетные задвижки 12. У каждого насоса имеется байпасный трубопровод с невозвратно-запорным клапаном 11, позволяющий перекачивать воду по замкнутому контуру (работать «на себя»), когда нет расхода воды на потребителей. Напорные трубопроводы обоих насосов включены в кольцевую магистраль, от которой отходят: трубы к пожарным кла­панам 2; трубопровод 1 на обмыв якорных цепей и клюзов; ответвления - 3 к системе распыления МО, 4 к системе пенотушения, 5 на промывание цистерн сбора сточных вод, 6 к системе орошения выходов и вахт.

Система водораспыления и орошения. Распыленная вода яв­ляется одним из средств борьбы с пожаром. Над очагом пожара при мелком распылении воды создается большая поверхность испа­рения, что повышает эффективность охлаждения и увеличивает скорость процесса испарения. При этом практически вся вода испаряется и образуется обеднённая кислородом паровоздушная прослойка, отделяющая очаг пожара от окружающего воздуха. На морских судах применяются несколько разновидностей водо-распылительных систем: спринклерная, водораспыления, оро­шения и водяных завес.

Спринклерная систем а предназначена для тушения огня распыленными струями воды в каютах, кают-компаниях, салонах и служебных помещениях на пассажир­ских судах. Свое название система получила от применения в ней спринклеров - распыливающих на­садок с легкоплавким замком. Сприн­ клеры при достижении в помеще­нии соответствующей температуры автоматически раскрываются и рас­пыляют воду в радиусе 2-3 м. Трубопроводы системы всегда за­полнены водой, находящейся под невысоким давлением.

Спринклерная головка (рис. 37) состоит из корпуса 3, в который ввернуто кольцо 4, снабженное дужками 6. В центре диафрагмы 5 находится отверстие, по периметру которого напаян припой, образующий седло / стеклянного кол­пака 8, служащего клапаном. Клапан снизу поддерживается замком 9, части которого соединены легкоплавким припоем, рассчитанным на температуру плав­ления от 343 до 453 К (от 70 до 180 С) (в зависимости от температурного режима помещения), а для жилых и служебных помещений - около 333 К (60 °С). При по­вышении температуры плавится припой, замок распадается и клапан 8 откры­вается под давлением воды, подводимой к отверстию 2. Вода, падая на розетку 7, разбрызгивается.

Применяются также спринклеры, выполненные в виде стеклян­ной колбы, заполненной легкоиспаряющейся жидкостью, которая при повышении температуры закипает и разрывает колбу давле­нием образующихся паров. В систему входят трубопровод, несу­щий спринклеры; контрольно-сигнальный клапан, открывающий доступ воде к спринклерам и сигнальным устройствам; пневмо-гидравлическая цистерна с автоматически включающимся насо­сом. Устройство цистерны и ее автоматика такие же, как в системе бытового водоснабжения.

Система водораспыления (рис. 38) приме­няется для тушения пожаров в МО, насосных отделениях, анга­рах, гаражах.

Она выполняется в виде трубопроводов (нижнего 10 и верхнего 5) водорас­пыления, используемых для тушения пожара в нижней части отсека или вверху при затоплении или аварии в МО 17. На трубопроводах установлены водораспы­лители - струйные 6 и щелевые //. Вода в систему, защищенную предохрани­тельным клапаном 14, подается из пожарной магистрали / по перепускному тру­бопроводу 13. Для тушения пролившегося под настил 7 топлива открывают кла­паны 12, 15 и вода из щелевых распылителей 11 веерообразными струями накры­вает поверхность настила второго дна 8 и междудонной цистерны 9. При тушении горящего топлива, разлившегося на поверхности затопленного МО, открывают через палубную втулку 3 на верхней палубе 2 с помощью валикового привода 16 клапан 4, вода поступает в верхние водораспылители 6, из которых конусообраз­ными струями направляется вниз.

Одна из разновидностей водораспылителей показана на рис. 39. Наличие штифта в конструкции водораспылителя обе­спечивает распиливание воды до состояния водяной пыли, выхо­дящей из насадки в виде почти горизонтального веера. Диаметр выходного отверстия водораспылителя равен 3-7 мм. Напор воды при указанном типе водораспылителя составляет 0,4 МПа. На 1 м 2 площади орошаемой поверхности подается 0,2-0,3 л/с воды. Система орошения трапов и выходов предусмотрена для защиты людей при выходе из МО в случае пожара путем оро­шения всего пути выхода. Питание системы производится от пожар­ной магистрали, а также от пневмоцистерн забортной воды. Си­стемы орошения применяются также для понижения температуры в погребах, где хранятся взрывчатые и легковоспламеняющиеся вещества. В этом случае системы выполняются автономными. Система водяных завес существует на пожарных катерах для прикрытия поверхностей корпуса и надстроек судна сплошными водяными завесами. Система создает с помощью щеле­вых водораспылителей плоские водяные завесы, позволяющие катеру приближаться к горящему судну и тушить на нем пожар из лафетных стволов. Система состоит из трубопроводов со щеле­выми водораспылителями, расположенными по бортам катера. Необходимый расход воды обеспечивают пожарные насосы. Для создания водяных завес на 1 м 2 защищаемой площади подается 0,2-0,3 л/с воды.


Система паротушения. Эта система относится к системам объ­емного тушения, так как рабочее вещество заполняет весь свобод­ный объем закрытого помещения инертным для процесса горения насыщенным водяным паром с давлением не выше 0,8 МПа. Си­стема паротушения опасна для людей, поэтому не применяется в жилых и служебных помещениях. Ею оборудуются топливные цистерны, малярные, фонарные, кладовые для хранения легко­воспламеняющихся грузов, глушители главных двигателей, поме­щения нефтеперекачивающих насосов и др

Проходящие в помещениях трубо­проводы паротушения должны иметь свои разобщительные клапаны, сосре­доточенные на центральной станции паротушения, снабженные отличи-

тельными надписями и окрашенные в красный цвет. Станцию паротушения следует располагать в отапливаемых помещениях, надежно защищенных от возможных механических повреждений. Система паротушения должна обеспечить заполнение паром поло­вины объема обслуживаемых ею помещений не более чем за 15 мин. Для этого необходимы трубы и отростки соответствующих размеров. Управление системой паротушения должно быть центра­лизованным, парораспределительную коробку (коллектор) надо устанавливать в доступном для обслуживания месте.

В системе паротушения с централизованным управлением (рис. 40) паро­распределительная коробка 2 снабжена манометром и клапанами: запорным 1, предохранительным 3 и редукционным 4. От распределительной коробки пар через запорные клапаны направляется в магистраль с отростками 6, идущими в трюмы. Их количество зависит от объема охраняемого помещения. Концы отростков располагают на высоте 0,3-0,5 м от настила. По отростку 5 через патрубок для присоединения шланга в систему подводится пар от внесудового источника.

Преимущество системы паротушения состоит в простоте ее устройства и эксплуатации, а также в сравнительно невысокой стоимости изготовления. Недостатки системы заключаются в том, что ее можно применять только в закрытых помещениях, пар портит грузы и механизмы и опасен для людей.

Система углекислотного тушения . Для тушения пожара в за­крытых помещениях (грузовых трюмах, топливных цистернах, МО и насосных отделениях, помещениях электростанции, спе­циальных кладовых) можно применять углекислый газ. Сущность действия углекислотного тушения сводится к разбавлению воз­духа углекислым газом для снижения в нем содержания кислорода до такого процента, при котором горение прекращается. Так, при введении в помещение углекислого газа в количестве 28,5 % от его объема атмосфера этого помещения будет содержать 56,5 % азота и 15 % кислорода. При 8 % содержании кислорода в воз­духе прекращается даже тление.

В настоящее время для тушения пожаров применяют газооб­разную и туманообразную снежную углекислоту. Углекислота выходит из баллона без "сифона (при положении баллона вентилем вверх) в газообразном состоянии. При выпуске через сифонную трубку (или при положении баллона вентилем вниз) углекислота выходит из баллона в жидком виде и, охлаждаясь у отверстия снаружи, переходит в туманообразное состояние или принимает вид хлопьев.

Углекислый газ при температуре 273 К (0 °С) и давлении 3,5 МПа обладает способностью сжижаться с уменьшением объема в 400-450 раз по сравнению с газообразным состоянием. Углеки­слота хранится в стальных баллонах по 40 л с давлением до 5 МПа.

По Правилам Регистра при пожаре нужно заполнять 30 % объема наибольшего сухогрузного трюма и 40 % МО. По Правилам Регистра 85 % расчетного количества углекис­лого газа должно быть введено в течение не более 2 мин - в ма­шинные помещения, помещения аварийных дизель-генераторов и пожарных насосов, другие помещения, где применяются жидкое-топливо или иные воспламеняющиеся жидкости; 10 мин - в по­мещения с автотранспортом и топливом (кроме дизельного) в ба­ках, а также в помещения, где нет жидкого топлива или других воспламеняющихся жидкостей.

Различают системы углекислотного тушения высокого и низ­кого давлений. В системе высокого давления число баллонов для хранения сжиженного углекислого газа определяется в зависимости от степени наполнения (количества углекислого газа на 1 л вместимости), которая должна быть не более 0,675 кг/л при расчетном давлении баллона 12,5 МПа или не более 0,75 кг/л при расчетном давлении баллона 15 МПа и более. В системе низкого давления расчетное количество сжиженного углекислого газа должно храниться в одном резервуаре при рабочем давлении около 2 МПа и температуре около 255 К (-18 °С). Степень наполнения резервуара должна быть не более 0,9 кг/л. Резервуар должен обслуживаться двумя автоном­ными автоматизированными холодильными установками, состоя­щими из компрессора, конденсатора и охлаждающей батареи. Клапаны баллонов должны иметь конструкцию, исключающую самопроизвольное их открытие в условиях эксплуатации судна.

Заполнение баллонов и выпуск из них углекислоты осущест­вляются через выпускную головку - клапан (рис. 41), распола­гаемый в верхней части баллона. Клапан соединяется с сифонной трубкой, которая не доходит до дна баллона на 5-10 мм. Внутрен­ний диаметр трубки 12-15 мм, а диаметр проходного канала в вы­пускном клапане баллона 10 мм, что обеспечивает уменьшение площади проходного канала на 20-30 мм 2 по сравнению с пло­щадью поперечного сечения сифонной трубки. Это делается для предотвращения замерзания углекислоты при выпуске ее из бал­лона. Предохранительная мембрана из калиброванной латуни


Рис. 41. Выпускная головка углекислотного баллона с приводом

от троса или валика: а - клапан закрыт; б - клапан открыт

1-предохранительная мембрана; 2-нажимной рычаг; 3-пусковой рычаг;

4- тарелка; 5-шток; 13 - трос или валик

или оловянистой бронзы выдерживает давление 18±1 МПа и раз­рушается при давлении более 19 МПа. Соединенные с баллонами предохранительные трубопроводы и мембраны позволяют выпу­скать углекислоту в атмосферу при увеличении давления в балло­нах сверх допустимого. Это предотвращает ее произвольный выход в трубопроводы системы. Углекислота выпускается в систему через мембрану, которая прорезается перемещением вниз ножа-трубы.

Типовая углекислотная установкас од­ной станцией приведена на рис. 42.

Она состоит из группы баллонов 1, где хранится жидкая углекислота, кол­лекторов 2, 5 для сбора углекислоты, выходящей из баллонов, и трубопроводов 15 для ее подачи в помещения. Истечение углекислоты происходит через сопла (насадки) 16 из кольцевого трубопровода 17, проложенного под подволоком помещения. При истечении углекислота испаряется и превращается в инертный углекис­лый газ СО 2 , который тяжелее воздуха и поэтому оседает вниз, вытесняя кислород из атмосферы. На трубопроводах системы установлены клапаны (главный сто­порный 13, пусковые 14), обеспечивающие герметичность перекрывания трубо­провода и быстрый пуск системы в действие. Давление в системе контролируется манометром 12. Каждый баллон снабжен специальной выпускной головкой 11 (см. рис. 5.48). Включение всех выпускных головок производится дистанционным пневматическим приводом 9, при поступлении в который сжатого воздуха по трубе 10 поршень 8 перемещает тяги 6 и 4. Отработанный воздух уходит в атмо­сферу по трубе 7. Для указания начала работы системы установлен извещатель 3.

В помещении станции температура воздуха не должна превы­шать 313 К (40 °С), что объясняется большим давлением (примерно 13 МПа) углекислоты при такой температуре. Станции размещают в надстройках и рубках, имеющих непосредственный выход на открытую палубу, оборудуют вентиляцией и тепловой изоляцией.

Для тушения пожаров применяют также ручные углекислотные огнетушители ОУ-2 и ОУ-5 вместимостью 2 и 5 л.

Недостатками углекислотной системы пожаротушения яв­ляются большое количество баллонов, высокая стоимость обору­дования станции, значительные расходы на перезарядку баллонов и опасность для личного состава при несоблюдении мер предосто­рожности.

Система пенотушения. Предназначена для тушения пожара путем подачи пены на горящую поверхность либо заполнением пеной защищаемого помещения. Система применяется для туше­ния пожаров в грузовых наливных отсеках, МО, грузовых насос­ных отделениях, кладовых легковоспламеняющихся материалов и веществ, малярных, закрытых грузовых палубах паромов и трей-лерных судов для перевозки автотранспорта и подвижной техники с топливом в баках и др.

Систему пенотушения не допускается использовать для тушения пожаров в грузовых помещениях контейнеровозов, а также в поме­щениях, в которых находятся химичес­кие вещества, выде­ляющие кислород или другие окисли­тели, способствую­щие горению, напри­мер нитрат целлюло­зы; газообразные продукты или сжи­женные газы с точкой кипения ниже темпе­ратуры окружающей среды (бутан, про­пан); химические ве­щества или металлы,

вступающие в реакцию с водой. Не допускается использовать систему пенотушения для ликвидации пожаров находящегося под напряжением электрооборудования.

В качестве огнегасящего средства в системе пенотушения применяется воздушно-механическая пена низкой (10: 1), сред­ней (50: 1 и 150: 1) и высокой (1000: 1) кратности. Под крат­ностью пенообразования понимается отношение объема получен­ной пены к объему исходного пенообразователя.

Химическая пена образуется при реакции растворов кислот и щелочей в присутствии специальных веществ, придающих ей клейкость. Воздушно-механическая пена получается в результате растворения пенообразующего состава в воде и смешения раствора с атмосферным воздухом. Пена в несколько раз легче воды и нефте­продуктов и поэтому плавает на их поверхности. В отличие от других огнегасительных веществ ею можно эффективно тушить горящие нефтепродукты на поверхности моря.

Пена не опасна для людей, не электропроводна, не портит грузы и нефтепродукты, не вызывает коррозии металлов. Выпу­щенная на очаг пожара пена изолирует его от кислорода атмосфер­ного воздуха, и горение прекращается.

Химическую пену получают из пенопорошков в пеногенераторах. Пенопорошки хранят на судне в герметически закрытых металлических банках. Основным недостатком химического пено­тушения является неподготовленность пеногенераторов к немед­ленному действию, так как при возникновении пожара надо вскрыть банки с порошком, что весьма трудоемко и занимает много времени. Поэтому химическое пенотушение на современ­ных судах применяется редко. Чаще применяют воздушно-механи­ческую пену, состоящую по объему из 90 % воздуха, 9,8 % воды и 0,2 % пенообразователя (жидкость специального состава).

В последнее время на морских судах получили большое рас­пространение две разновидности систем воздушно-механического пенотушения, различающиеся способом смешения пенообразователя с водой и конструктивной разновидностью устройств, в кото­рых получается пена.

На рис. 43 показана принципиальная схема автоматической дозирующей установки с подачей пенообразователя насосом. Дозирующие устройства предназначены для получения раствора пенообразующей смеси заданной концентрации с автоматической регулировкой.

Пенообразователь поступает в цистерну 3 через палубную втулку 2 с па­лубы /. Слив пенообразователя из цистерны производится через клапан 5, пере­борочный стакан и гибкий рукав 4. Пенообразователь поступает в насос 6, за­щищенный от повышения давления предохранительным клапаном 8, клапан 10 открывает поступление пенообразователя в дозатор 12, где он смешивается с во­дой, поступающей из водопожарной системы через клапан 14. Давление воды перед дозатором измеряется манометром 13. Из дозатора раствор пенообразующей смеси поступает в магистраль системы пенотушения //. Клапан ручной регу­лировки 9 позволяет излишнее количество пенообразователя направить в ци­стерну 3 при открытом клапане 7. Концентрация раствора пенообразующей смеси автоматически регулируется клапаном 16 с приводом 15.

Устройство воздушно-пенного ствола показано на рис. 44. При прохождении через суживающееся сопло струя растворен­ного пенообразователя приобретает большую скорость, с которой она входит в дырчатый диффузор. Через отверстия диффузора подсасывается окружающий воздух, в результате чего образуется воздушная пена.

На рис. 45 показана схема системы пожаротушения пеной высокой кратности с цистерной пресной воды и дозирующим уст­ройством. Система состоит из резервуара с запасом пенообразова­теля, стационарных пеногенераторов, разобщительной арматуры. Под давлением поступающей от насоса воды пенообразователь вытесняется по трубопроводу в магистраль к пеногенераторам. Дроссельные шайбы создают различные скоростные напоры пото­ков воды и пенообразователя, за счет чего обеспечивается их смешение в определенной пропорции и получение эмульсии. В пеногенераторах при смешении эмульсии с воздухом образуется пена.

Примененные в системе пеногенераторы типа ГСП обладают высокой кратностью пенообразования (свыше 70), большой пода­чей (свыше 1000 л/с), дальностью выброса струи пены 8 м при



Рис. 44. Воздушно-пенный ствол

1 - соединительная гайка; 2 - резиновое кольцо; 3 - сопло;

4 - винт; 5 - кожух; 6 - диффузор; 7 - пенопровод

Рис. 45. Принципиальная схема системы пожаротуше­ния пеной высокой кратности

/ - цистерна с пресной водой; 2, 5, 6, 8, 9, 12, 16, 19 - про­ходные запорные клапаны; 3 - центробежный, насос; 4, 10 - нанометры; 7 - резервуар с пенообразователем; // - пено: генератор; 13 - трубопровод подачи пенообразователя; 14, 18 - дроссельные шайбы; 15 - магистраль к пеногенераторам; 17 - сливной трубопровод; 20 - пожарная магистраль

давлении перед генератором 0,6 МПа. Генераторы ГСП могут быть стационарными и переносными.

Переносной генератор показан на рис. 46.

Он состоит из распылительной головки 1 с быстросмыкаемой гайкой типа PC или РОТ, конфузора 2, корпуса 3 и выходного диффузора 4 с фланцем 5. К гайке головки присоединяется шланг, по которому к генератору подводится эмульсия. В диффузоре установлена сетка 6, обеспечивающая выпуск компактной струи пены.

Безотказность и быстродействие системы многократного пенотушения обеспе-чивают ее высокую эффективность при тушении нефтепродуктов. Благодаря этим качествам системы пенотушения получили широкое применение на сухогрузах и особенно на тан­керах.

Рис. 46. Переносной пеноге-нератор Рис. 47.Принципиальная схема систе­мы ОХТ

Система объемного химического тушения. Эти системы полу­чили распространение для тушения пожаров в МО и грузовых трюмах сухогрузных судов объемным способом, т. е. парами легко-испаряющихся жидкостей. Преимущество системы объемного химического тушения (ОХТ) по сравнению с системой углекислотного тушения состоит в том, что легкоиспаряющаяся огнегасительная жидкость хранится при низком давлении, вследствие чего возможность ее потерь от утечки значительно снижается. В качестве огнегасительной жидкости применяются состав БФ-2 - смесь бромистого этила (73 %) и фреона Ф-114-В (27 %) - или чистый Ф-114В 2 . Применение БФ-2 в судовых условиях предпоч­тительно, так как при вибрациях и повышенной температуре про­исходят утечки огнегасящей жидкости через соединения трубо­проводов.

Жидкость ОХТ по огнетушащим качествам превышает угле­кислоту: на каждый 1 м 3 объема помещения для тушения пожара нефтепродуктов требуется 0,67 кг/мин углекислоты, а состава БФ-2 - всего 0,215 кг/мин. Жидкость ОХТ хранят в цистернах и подают к месту пожара с помощью сжатого воздуха с давлением 0,5-1 МПа. Баллоны размещают на станции жидкостного туше­ния. От баллонов в каждое охраняемое помещение проводится трубопровод, который заканчивается в верхней части помещений распылительными головками. При высоте помещения более 5 м устанавливают два яруса распылителей.

На рис. 47 приведена принципиальная схема системы ОХТ.

Огнегасительная жидкость находится в баллоне 1, а сжатый воздух, необ­ходимый для работы системы, - в баллоне 2. Система снабжена манометром 9 и клапанами: запорными 4, 8, предохранительным 10, редукционным 5, в котором давление воздуха снижается до требуемого. Поступающий в баллон сжатый воз­дух вытесняет огнегасительную жидкость через сифонную трубку 11 в раздаточ­ную магистраль 6. С помощью распылителей жидкость распиливается по всему помещению. По окончании работы трубопроводы системы должны быть продуты сжатым воздухом черев трубопровод 3 и клапан 7 для удаления остатков жидкости. Помещение необходимо хорошо провентилировать.

Система инертных газов . Противопожарные системы танке­ров совершенствуются с учетом передового отечественного и зару­бежного опыта. В последние годы Международная морская орга­низация (ИМО) и морской Регистр особое внимание уделяют той группе противопожарных систем, которые обеспечивают преду­преждение пожаров или взрывов на танкерах. К ним в первую очередь можно отнести систему инертных газов для грузовых и отстойных танков и устройства для предотвращения проникно­вения пламени в танки.

Система инертных газов предназначена для активной защиты грузовых отсеков танкера от пожара и взрыва путем создания и постоянного поддержания в них инертной (невоспламеняющейся) микроатмосферы с содержанием кислорода по объему не более 8 %. В такой обедненной кислородом среде невозможно воспламенение углеводородных паров, выделяемых перевозимым

Рис. 5.55. Принципиальная схема усовершенствованной системы инертных газов танкера 1 - дымоход вспомогательных котлов; 2 - устройство очистки клапана; 3 - контактнопрямоточные аппараты охлаждения иочистки газов; 4 - каплеотделитель; 5 - подача газа в танки; 6 - прием инертных газов с берега; 7 - палубный во­ дяной затвор; 8 - кингстонный ящик; 9 - сублиматор; 10 - газодувки; И - слив за борт; 12 - насосы подачи воды к палубному затвору; 13 - прием воды от кингстонов МО; 14 - насос охлаждающей забортной воды; /5 - трубопровод от резервного насоса вспомогательных механизмов; Т - реле температуры; APT - аварийное реле температуры; РД - реле давления; ОРД - оперативное реле давления; РВД, РИД - реле верхнего и нижнего давлений; О, - дистанционный контроль кислорода; АВУ, АНУ - аварийные датчики верхнего и нижнего уровня", СВУ - сигнализатор верхнего уров­ ня; ----- инертные газы; - - - груз;---- забортная вода;--------- слив воды н дренаж; X хозяйственный п

Грузом или его остатками на внутренних поверхностях грузовых танков.

Рассмотрим систему инертных газов современного танкера типа «Победа», где в качестве защитных инертных газов исполь­зуются отрабо-тавшие дымовые газы одного из двух вспомогатель­ных котлов. При тепловых нагрузках не менее 40 % котлы яв­ляются генераторами инертных газов с низким (до 5 % по объему) содержанием кислорода и температурой в районе отбора газов, не превышающей 533 К (260 °С); по достижении номинальной тепловой нагрузки температура газа возрастает до 638 К (365 °С).

Максимальное количество отбираемых из дымохода котла отработавших газов в 1,25 раза превышает суммарную подачу установленных на танкере грузовых насосов, что соответствует 7500 м 3 /ч или 30 % от общего количества дымовых газов, выбра­сываемых в атмосферу через дымоход. С такими параметрами инертные газы поступают в систему технического кондициониро­вания и подаются в грузовые и отстойные танки.

Система работает следующим образом (рис. 48). За счет раз­режения во всасывающем участке, создаваемого работающей газодувкой, инертные газы последовательно проходят через контактно-прямоточные охладители-очистители газов первой и второй сту­пени, конструкция которых приведена на рис. 49. Инертные газы охлаждаются за счет интенсифицированного контакта с за­бортной водой, подводимой в аппарат снизу через завихритель с лопатками. При температуре забортной воды 30 °С температура инертных газов на выходе из аппарата второй ступени составляет 35 °С.

В системе предусмотрена двухступенчатая очистка газов от сажи, механических примесей и сернистых соединений. Наличие двух ступеней очистки увеличивает время активного контакта двухфазной среды (газы - вода) и тем самым способствует повы­шению эффективности этой операции. В результате из отработав­ших газов удаляется от 99,1 до 99,6 % сернистых соединений.

Охлажденные и очищенные инертные газы на выходе из актив­ной зоны аппаратов подвергаются первичной сепарации содержащейся в них воды.

Эта операция осуществляется в брызгоотбойнике с профилированными лопатками, где при движении газо­вого потока центробежные силы разделяют газоводяную смесь на фазы; при этом вода удаляется из аппаратов за борт, а инерт­ные газы поступают в каплеотделитель (рис. 50). В нем произво­дится вторичная сепарация, основанная на принципах изменения направления потока влажных газов и центробежного разделения сред в завихрителе с профилированными лопатками. Отсепарированная влага удаляется за борт через общий сливной трубо­провод, а инертные газы нагнетаются газодувкой в палубную рас­пределительную магистраль через палубный водяной затвор. Последний предотвращает попадание углеводородных паров в судо­вые помещения через проходящие транзитом трубопроводы инерт­ных газов при неработающей газодувке.

Принцип работы водяного затвора (рис. 51) основан на гид­равлическом закрытии трубопровода инертных газов при нерабо­тающей газодувке, а при ее работе - на отжатии уровня воды за отражатель для прохода инертных газов. Этим предотвращаются переток пожароопасных углеводородных паров в судовые поме­щения и унос воды из затвора в грузовые отсеки при установив­шемся режиме работы системы. Для этой цели затвор оборудован специальным поворотным устройством, состоящим из заслонки с противовесом, к которому крепится открытый конец гибкого шланга, служащего для удаления воды из водяной полости затвора и обеспечения непрерывной циркуляции в ней воды при работающей и неработающей системе инертных газов. Циркуляция воды в затворе осуществляется двумя центробежными насосами, один из которых является резервным. Вода из затвора сливается за борт через кингстон, расположенный в грузовом насосном отде­лении. Затвор снабжен смотровыми стеклами, водоуказательной колонкой, паропроводом обогрева водяной полости и средствами автоматического контроля уровня и температуры воды.

Из палубного водяного затвора через установленный за ним невозвратно-запорный клапан инертные газы поступают в палуб­ную распределительную магистраль и подаются в грузовые от­секи, на ответвлениях к которым также установлены невозвратно-запорные клапаны.

Система инертных газов работает в следующих случаях:

при первоначальном заполнении грузовых отсеков инертными газами перед приемом груза;

во время перехода танкера с грузом или балластом, при по­грузке танкера для поддержания заданного избыточного давления инертных газов от 2 до 8 кПа и периодической их подкачки в танки при падении давления ниже указанного значения;

при выгрузке нефтепродукта для замещения его инертными газами;

во время мойки танков стационарными средствами, в том числе сырой нефтью;

при вентиляции грузовых отсеков инертными газами и дега­-

зации танков наружным воздухом.

Газо- и воздухообмен в грузовых танках обусловливается режимами работы системы инертных газов (рис. 52). Для эффек­тивного осуществления этого процесса каждый грузовой танк имеет палубный ввод инертных газов, продувочную трубу и авто­номную газоотводную систему. Колонки продувочных труб и газо­отвода (рис. 53) снабжаются автоматическими газовыпускными устройствами, обеспечивающими скорость газовоздушного потока не менее 30 м/с на всех режимах работы, что исключает проникно­вение пламени в танки и загазованность палубы судна и способ­ствует улучшению условий труда членов экипажа.

Трубопровод подвода инертных газов и продувочная труба раз­несены как по длине танка, так и от ДП, чем обеспечивается эффек­тивный газообмен, способствующий ускорению создания равно­мерной низкой концентрации кислорода или близкой к атмосфер­ному воздуху по концентрации кислорода среды после дегазации. Для продувки (в случае необходимости) инертными газами грузо­вой системы между ней и системой инертных газов предусмотрена перемычка, снабженная по условиям безопасности запорными органами и воздушной головкой.

Системы пожаротушения на корабле являются конструкции судна. При их проектировании учитываются многие факторы: автономность судна, наличие горючих материалов в конструкции, размещение рядом помещений с различными уровнями пожарной опасности, ограничения по ширине путей эвакуации.

Все перечисленные факторы только усугубляют пожарную опасность плавательных средств, по этому внедрению различных способов обеспечения безопасности пассажиров, а также разработкам новых более эффективных уделяется особое внимание.

Разновидности судовых систем пожаротушения

Стационарные системы пожаротушения на судне разрабатываются при проектировании корабля и монтируются во время его закладки. Современные корабли Российского торгового флота оснащаются следующими установками:

    • Спринклерные с ручным или автоматическим активированием;
    • Водяных завес;
    • Водяного распыления или орошения;
  • Газовые – на основе углекислоты или инертных газов;
  • Порошковые.

В ряде случаев в качестве , которое используется в тех же системах, выступает пена средней и высокой плотности.

Каждая из систем пожаротушения на судне используется для решения конкретной узконаправленной задачи:

  • Водяные – используются для защиты общественных и жилых помещений корабля и его коридоров, а также помещений где хранятся твердые легковоспламеняемые и горючие вещества;
  • Пенные – устанавливаются в помещениях где могут возникнуть пожары класса В;
  • Газовые и порошковые – используются для защиты от возгорания класса С.

Система аэрозольного объемного пожаротушения (АОТ)

Устанавливается в основном на пассажирских плавательных средствах речного флота.

Она размещается в следующих местах:

  • Машинном отделении, главных и вспомогательных двигателей, которые работают на жидком топливе;
  • В помещениях котлов и генераторов основных и аварийных источников электричества;
  • В местах разветвления главных энергетических магистралей и распределительных щитков;
  • В местах установки электродвигателей, как вспомогательных, так и основных – гребных;
  • В сетях вентиляции оборудования.

Все основные рабочие должны соответствовать требованиям технического регламента, в соответствии с которым производится классификация и постройка судов. Представленная аппаратура автоматического пожаротушения объемного типа была разработана лабораторией «Пламя» при военно-морском инженерном институте.

Рабочие пожаротушащие устройства представляют собой автономные модули ТОР-1500 и ТОР-3000 подключенные к единой сети внешнего управления и оповещения. Каждый модуль является баллоном с огнетушащим веществом с вмонтированным в него оптико-электронным детектором определения горения.

Проверка поступающей информации по нескольким параметрам существенно снижает риск ложного срабатывания.

Баллоны подключены к центральному аппарату и могут активироваться вручную по команде капитана или дежурного из рубки корабля.

Испытания, проводимые в 2011 году, показали высокую эффективность установленной системы. Она в состоянии тушить горящие и . В частности, на испытаниях было потушено тлеющее дерево, и погашен поддон с горящим дизельным топливом.

Система водяного на корабле монтируется при его закладке. Она может быть двух типов – кольцевая и линейная. Магистральные трубы, по которым поступает вода, имеют диаметр до 150 мм, а рабочие до 64 мм. Такой диаметр должен обеспечивать напор воды, в самой дальней точке подключения на судне, 350 кПа на грузовых судах и 520 кПа.

Участки трубопровода, которые подвергаются воздействию внешней среды и могут замерзнуть подвергаются обвязке с использованием спускного и отсечного клапана, для того чтобы при их исключении из общей системы она продолжала функционировать. Расстояние между пожарными кранами различное. Внутри судна оно составляет до 20 м при комплектации 10-15 м пожарными рукавами. На палубе дальность может составлять до 40 м при комплектации каждого крана рукавом 15-20 м.

Жилые отсеки комплектуются спринклерными системами, оборудованными распылителями с плавкими вставками, с максимальной температурой разрушения 60°С. Устройство состоит из распылителей (спринклеров) трубопровода и пневмогидравлической цистерны под давлением. Минимальная производительность одного спринклера, регламентированная нормативами, составляет 5л на 1 м 2 каюты.

Дренчерными системами комплектуются в основном грузовые суда: газовозы, танкеры, сухогрузы и контейнеровозы — размещение груза на которых осуществляется горизонтальным способом. Основной конструктивной особенностью является наличие насоса, который при срабатывании сигнала тревоги начинает забор воды и ее подачу к в дренчерный трубопровод. Дренчерные для формирования водяных завес в тех местах корабля где невозможно установить противопожарные перегородки.

Газовые системы пожаротушения на суднах

Газовая система пожаротушения на судне применяется исключительно в грузовых отсеках и в помещениях вспомогательных генераторов и насосов на камбузе. В двигательном отделении как , так и локально с направлением объемной струи непосредственно на генераторы. Ее высокая эффективность сочетается с не менее высокой стоимостью обслуживания самой системы и необходимости периодической замены огнетушащего вещества.

В последнее время на кораблях стали отказываться от использования углекислого газа в качестве огнетушащего вещества. Вместо него предпочтительней использование ОВ из семейства хладонов. Разновидность систем управления газовой установкой пожаротушения зависит от рабочего давления в трубопроводах:

  • Для устройств с низким давлением пуск и регулировка интенсивности потока осуществляется вручную;
  • Для систем среднего давления предусмотрены дублирующие приборы управления пожаротушением.

В отличие от зданий и сооружений суда постоянно совершенствуются и использование старых правил монтажа устройств пожаротушения зачастую неэффективно. Типовые расчеты для систем используются очень редко и только для небольших суден серийного производства.

Противопожарные системы

Пожар на судне представляет чрезвычайно серьезную опасность. Во многих случаях пожар наносит не только значительные материальные убытки, но является причиной гибели людей. Поэтому предупреждению пожаров на судах и мерах борьбы с огнем придается первостепенное значение.

Для локализации пожара судно разделяется на вертикальные противопожарные зоны огнестойкими переборками (типа А), которые сохраняют непроницаемость для дыма и пламени в течение 60 мин. Огнестойкость переборки обеспечивается изоляцией из несгораемых материалов. Огнестойкие переборки на пассажирских судах устанавливают на расстоянии не более 40 м друг от друга. Такими же переборками выгораживают посты управления и помещения, опасные в пожарном отношении.

Внутри противопожарных зон помещения разделяются огнезадерживающими переборками (типа В), которые сохраняют непроницаемость для пламени в течение 30 мин. Эти конструкции также имеют изоляцию из огнестойких материалов.

Все отверстия в противопожарных переборках должны иметь закрытия, обеспечивающие непроницаемость для дыма и пламени. С этой целью противопожарные двери имеют изоляцию из несгораемых материалов или с каждой стороны двери устанавливают водяные завесы. Все противопожарные двери оборудованы устройством для дистанционного закрытия с поста управления

Успех борьбы с огнем в значительной мере зависит от своевременного обнаружения очага пожара. Для этого суда оборудованы различными сигнальными системами, позволяющими обнаружить пожар в самом его начале. Существует много типов сигнальных систем, но все они работают по принципу обнаружения: повышения температуры, появления дыма и открытого пламени.

В первом случае в помещениях устанавливают термочувствительные извещатели, включенные в сигнальную электрическую сеть. При повышении температуры извещатель срабатывает и замыкает сеть, в результате на ходовом мостике загорается сигнальная лампа и включается звуковой сигнал тревоги. По такому же принципу работают сигнальные системы, основанные на обнаружении открытого пламени. В этом случае в качестве извещателей используются фотоэлементы. Недостатком этих систем является некоторое запаздывание в обнаружении пожара, так как начало пожара не всегда сопровождается повышением температуры и появлением открытого пламени.

Более чувствительными являются системы, работающие на принципе обнаружения дыма. В этих системах из контролируемых помещений по сигнальным трубам постоянно отсасывается вентилятором воздух. По дыму, выходящему из определенной трубки, можно определить помещение, в котором возник пожар

Обнаружение дыма производится чувствительными фотоэлементами, которые устанавливаются на концах трубок. При появлении дыма изменяется сила света, вследствие чего фотоэлемент срабатывает и замыкает сеть световой и звуковой сигнализации.

Средствами активной борьбы с огнем на судне являются различные системы пожаротушения: водяная, паровая и газовая, а также объемного химического тушения и пенотушения.

Система водяного тушения. Наиболее общим средством борьбы с пожарами на судне является система водяного пожаротушения, которой должны быть оборудованы все суда.
Система выполнена по централизованному принципу с линейным или кольцевым магистральным трубопроводом, который изготовлен из стальных оцинкованных труб диаметром 100-200 мм. По всей магистрали устанавливают пожарные рожки (краны) для подключения пожарных шлангов. Расположение рожков должно обеспечивать подачу двух струй воды в любое место судна. Во внутренних помещениях они установлены не более чем через 20 м, а на открытых палубах это расстояние увеличено до 40 м. Для того чтобы можно было быстро обнаружить пожарный трубопровод, его окрашивают в красный цвет. В тех случаях, когда трубопровод окрашен под цвет помещения, на него наносят два узких отличительных кольца зеленого цвета, между которыми накрашивают узкое красное предупреждающее кольцо. Пожарные рожки во всех случаях окрашивают в красный цвет.

В системе водотушения применяют центробежные насосы с независимым от главного двигателя приводом. Стационарные пожарные насосы устанавливают ниже ватерлинии, чем обеспечивается подпор на всасывании. При установке насосов выше ватерлинии они должны быть самовсасывающими. Общее число пожарных насосов зависит от размеров судна и на больших судах доходит до трех с общей подачей до 200 м3/ч. В дополнение к ним многие суда имеют аварийный насос с приводом от аварийного источника энергии. Для пожарных целей могут также использоваться балластные, осушительные и другие насосы, если они не служат для перекачки нефтепродуктов или для осушения отсеков, в которых могут оказаться остатки нефтепродуктов.

На судах валовой вместимостью 1000 peг. т и более на открытой палубе с каждого борта водопожарная магистраль должна иметь устройство для подключения международного соединения.
Эффективность системы водотушения в значительной степени зависит от давления. Минимальное давление в месте расположения любого пожарного рожка 0,25-0,30 МПа, что дает высоту струи воды из пожарного шланга до 20-25 м. С учетом всех потерь в трубопроводе такой напор у пожарных рожков обеспечивается при давлении в пожарной магистрали 0,6-0,7 МПа. Трубопровод водотушения рассчитан на максимальное давление до 10 МПа.

Система водотушения является наиболее простой и надежной, но использовать сплошную струю воды для тушения пожара можно не во всех случаях. Например, при тушении горящих нефтепродуктов она не дает эффекта, так как нефтепродукты всплывают на поверхность воды и продолжают гореть. Эффекта можно добиться только в том случае, если воду подавать в распыленном виде. В этом случае вода быстро испаряется, образуя пароводяной колпак, изолирующий горящую нефть от окружающего воздуха.

На судах вода в распыленном виде подается спринклерной системой, которой могут оборудоваться жилые и общественные помещения, а также ходовая рубка и различные кладовые. На трубопроводах этой системы, которые проложены под подволоком защищаемого помещения, установлены автоматически действующие спринклерные головки (рис. 143).

Рис 143. Спринклерные головки-а - с металлическим замком, б - со стеклянной колбой, 1- штуцер, 2- стеклянный клапан, 3- диафрагма, 4- кольцо; 5- шайба, 6- рама, 7- розетка; 8- легкоплавкий металлический замок, 9- стеклянная колба

Выходное отверстие спринклера закрыто стеклянным клапаном (шариком), который поддерживают три пластинки, соединенные между собой легкоплавким припоем. При повышении температуры во время пожара припой плавится, клапан открывается, и выходящая струя воды, ударяясь в специальную розетку, разбрызгивается. У спринклеров другого типа клапан удерживается стеклянной колбой, заполненной легко-испаряющейся жидкостью. При пожаре пары жидкости разрывают колбу, в результате чего открывается клапан.

Температуру вскрытия спринклеров для жилых и общественных помещений в зависимости от района плавания принимают 70-80 °С.

Для обеспечения автоматической работы спринклерная система должна всегда находиться под напором. Необходимое давление создает пневмоцистерна, которой оборудована система. При вскрытии спринклера давление в системе падает, в результате чего автоматически включается спринклерный насос, который обеспечивает систему водой при тушении пожара. В аварийных случаях спринклерный трубопровод может быть подключен к системе водотушения.

В машинном отделении для тушения нефтепродуктов применяют систему водораспыления. На трубопроводах этой системы вместо автоматически действующих спринклерных головок устанавливают водораспылители, выходное отверстие которых постоянно открыто. Водораспылители начинают действовать сразу же после открытия запорного клапана на подводящем трубопроводе.

Распыленную воду используют также в системах орошения и для создания водяных завес. Систему орошения применяют для орошения палуб нефтеналивных судов и переборок помещений, предназначенных для хранения взрывчатых и легко воспламеняющихся веществ.

Водяные завесы выполняют роль противопожарных переборок. Такими завесами оборудуют закрытые палубы паромов с горизонтальным способом погрузки, где установить переборки невозможно. Противопожарные двери также могут заменяться водяными завесами.

Перспективной является система мелкораспыленной воды, в которой вода распыляется до туманообразного состояния. Распыление воды производится через сферические распылители с большим количеством отверстий диаметром 1 - 3 мм. Для лучшего распыления в воду добавляют сжатый воздух и специальный эмульгатор.

Система паротушения. Работа системы парового пожаротушения основана на принципе создания в помещении атмосферы, не поддерживающей горения. Поэтому паротушение применяют только в закрытых помещениях. Так как на современных судах с двигателями внутреннего сгорания нет котлов большой производительности, то системой паротушения обычно оборудуют только топливные цистерны. Паротушение также можно применять в. глушителях двигателей и в дымовых трубах.

Система паротушения на судах выполняется по централизованному принципу. От парового котла пар давлением 0,6-0,8 МПа поступает на парораспределительную коробку (коллектор), откуда в каждый топливный танк проведены отдельные трубопроводы из стальных труб диаметром 20-40 мм. В помещения с жидким топливом пар подводится в верхнюю часть, что обеспечивает свободный выход пара при максимальном заполнении танка. На трубах системы паротушения накрашивают два узких отличительных кольца серебристо-серого цвета с красным предупреждающим кольцом между ними.

Газовые системы. Принцип действия газовой системы основан на том, что к месту пожара подается инертный газ, не поддерживающий горение. Работая на том же принципе, что и система паротушения, газовая система по сравнению с ней имеет ряд преимуществ. Применение в системе неэлектропроводного газа позволяет использовать газовую систему для прекращения пожара на работающем электрооборудовании. При пользовании системой газ не вызывает порчи грузов и оборудования.

Из всех газовых систем на морских судах широко применяется углекислотная. Жидкий углекислый газ хранится на судах в специальных баллонах под давлением. Баллоны соединены в батареи и работают на общую распределительную коробку, от которой в отдельные помещения проводятся трубопроводы из стальных цельнотянутых оцинкованных труб диаметром 20-25 мм. На трубопроводе углекислотной системы накрашивают одно узкое отличительное кольцо желтого цвета и два предупреждающих знака - один красный, а второй желтый с черными диагональными полосами. Трубы обычно прокладывают под палубой без опускающихся вниз отростков, так как углекислый газ тяжелее воздуха и при тушении пожара его необходимо вводить в верхнюю часть помещения. Из отростков углекислота выпускается через специальные насадки-сопла, количество которых в каждом помещении зависит от объема помещения. Эта система имеет устройство для контроля.

Углекислотная система может быть использована для тушения пожара в закрытых помещениях. Наиболее часто такой системой оборудуют сухогрузные трюмы, машинно-котельные отделения, помещения электрооборудования, а также кладовые с горючими материалами. Применение углекислотной системы в грузовых танках наливных судов не допускается. Нельзя также применять ее в жилых и общественных помещениях, так как даже незначительная утечка газа может привести к несчастным случаям.

Обладая определенными преимуществами, углекислотная система не лишена недостатков. Основными из них являются одноразовость действия системы и необходимость тщательно вентилировать помещение после применения углекислотного тушения.

Наряду со стационарными углекислотными установками на судах применяются ручные углекислотные огнетушители, имеющие баллоны с жидкой углекислотой.

Система объемного химического тушения. Она работает на том же принципе, что и газовая, но только вместо газа в помещение подается специальная жидкость, которая, легко испаряясь, превращается в инертный газ тяжелее воздуха.

В качестве огнегасительной жидкости на судах используется смесь, содержащая 73 % бромистого этила и 27 % тетрафтордибромэтана. Иногда применяют другие смеси, например бромистого этила и углекислого газа.

Огнегасительная жидкость хранится в прочных стальных резервуарах, от которых в каждое из охраняемых помещений проводится магистраль. В верхней части охраняемого помещения прокладывается кольцевой трубопровод с распылительными головками. Давление в системе создается сжатым воздухом, который подается в резервуар с жидкостью из баллонов.

Отсутствие в системе механизмов позволяет выполнять ее как по централизованному, так и по групповому или индивидуальному принципу.

Система объемного химического тушения может применяться в сухогрузных и рефрижераторных трюмах, в машинном отделении и помещениях с электрическим оборудованием.

Система порошкового тушения.

В этой системе используют специальные порошки, которые подаются к месту воспламенения газовой струей из баллона (обычно это азот или другой инертный газ). Чаще всего на этом принципе работают порошковые огнетушители. На газовозах иногда ставят эту систему для использования в грузовых отсеках. Такая система состоит из станции порошкового тушения, ручных стволов и особых нескручивающихся рукавов.

Система пенотушения. Принцип действия системы основан на изоляции очага пожара от кислорода воздуха путем покрытия горящих предметов слоем пены. Пену можно получить либо химическим путем в результате реакции кислоты и щелочи, либо механическим путем при смешивании водного раствора пенообразователя с воздухом. Соответственно этому система пенотушения делится на воздушно-механическую и химическую.

В системе воздушно-механического пенотушения (рис. 144) для получения пены используется жидкий пенообразователь ПО-1 или ПО-б, который хранится в специальных цистернах. При пользовании системой пенообразователь из цистерны эжектором подается в напорный трубопровод, где он смешивается с водой, образуя водяную эмульсию. На конце трубопровода имеется воздушно-пенный ствол. Водяная эмульсия, проходя через него, засасывает воздух, в результате чего образуется пена, которая подается к месту пожара.

Для получения пены воздушно-механическим способом водяная эмульсия должна содержать 4 % пенообразователя и 96 % воды. При смешивании эмульсии с воздухом образуется пена, объем которой примерно в 10 раз превышает объем эмульсии. Для увеличения количества пены применяют специальные воздушно-пенные стволы с распылителями и сетками. В этом случае получается пена с высокой кратностью пенообразования (до 1000). Тысячекратная пена получается на основе пенообразователя "Морпен".

Рис. 144. Система воздушно-механического пенотушения: 1- буферная жидкость, 2- рассеиватель, 3- эжектор-смеситель, 4- ручной воздушно-пенный ствол, 5- стационарный воздушно-пенный ствол

Рис 145 Местная воздушно-пенная установка 1- сифонная трубка, 2- резервуар с эмульсией, 3- отверстия для входа воздуха, 4- запорный клапан, 5- горловина, 6- редукционный клапан, 7- пенопровод, 8- гибкий шланг, 9- спрыск, 10- баллон сжатого воздуха; 11-трубопровод сжато- , го воздуха, 12- трехходовой кран

Наряду со стационарными системами пенотушения на судах широкое применение нашли местные воздушно-пенные установки (рис. 145). В этих установках, которые размещаются непосредственно в охраняемых помещениях, эмульсия находится в закрытом резервуаре. Для пуска установки в резервуар подают сжатый воздух, который через сифонную трубку вытесняет эмульсию в трубопровод. В этот же трубопровод через отверстие в верхней части сифонной трубки проходит часть воздуха. В результате в трубопроводе происходит перемешивание эмульсии с воздухом и образуется пена. Такие же установки небольшой вместимости могут выполняться переносными - воздушно-пенный огнетушитель.

При получении пены химическим путем в ее пузырьках содержится углекислый газ, что повышает ее гасительные свойства. Химическим способом пену получают в ручных пенных огнетушителей типа ОП, состоящих из резервуара, наполненного водным раствором соды и кислотой. Поворотом рукоятки открывают клапан, щелочь и кислота смешиваются, в результате чего образуется пена, которая выбрасывается струей из спрыска.

Система пенотушения может быть использована для тушения пожара в любых помещениях, а также на открытой палубе. Но наибольшее распространение она получила на нефтеналивных судах. Обычно на танкерах имеются две станции пенотушения: основная - на корме и аварийная - в надстройке бака. Между станциями вдоль судна проложен магистральный трубопровод, от которого в каждый грузовой танк отходит отросток с воздушно-пенным стволом. От ствола пена идет в пеносливные перфорированные трубы, расположенные в танках. Все трубы системы пенотушения имеют два широких отличительных кольца зеленого цвета с красным предупреждающим знаком между ними. Для тушения пожара на открытых палубах нефтеналивные суда оборудуются лафетными воздушно-пенными стволами, которые устанавливают на палубе надстроек. Лафетные стволы дают струю пены длиной свыше 40 м, что позволяет в случае необходимости всю палубу покрыть пеной.

Для обеспечения пожарной безопасности судна все системы пожаротушения должны находиться в исправном состоянии и всегда быть готовыми к действию. Проверка состояния системы производится путем регулярных осмотров и проведения учебных пожарных тревог. При осмотрах необходимо тщательно проверять плотность трубопроводов и исправную работу пожарных насосов. В зимнее время пожарные магистрали могут замерзнуть. Чтобы предотвратить замерзание, необходимо отключить участки, проложенные на открытых палубах, и через специальные пробки (или краны) спустить воду.

Особенно тщательного ухода требуют углекислотная система и система пенотушения. При неисправном состоянии установленных на баллонах клапанов возможна утечка газа. Для проверки наличия углекислоты баллоны следует взвешивать не реже 1 раза в год.

Все неисправности, выявленные при осмотрах и учебных тревогах, должны немедленно устраняться. Запрещается выпускать в плавание суда, если:

Хотя бы одна из стационарных систем пожаротушения неисправна; система пожарной сигнализации не работает;

Отсеки судна, защищаемые системой объемного пожаротушения, не имеют приспособлений для закрытия помещений снаружи;

Противопожарные переборки имеют неисправную изоляцию или неисправные противопожарные двери;

Противопожарное снабжение судна не соответствует установленным нормам.

Система водотушения (тушение огня сплошной струей воды) проста, надежна и ею оборудуются все без исключения суда независимо от условий их эксплуатации и назначения. Основными элементами системы являются пожарные насосы, магистральный трубопровод с отростками, пожарные краны (рожки) и шланги (рукава) со стволами (брандспойтами). Помимо своего прямого назначения система водотушения может обеспечивать забортной водой системы водяного орошения, водораспыления, водяных завес, пенотушения, спринклерную, балластную и др.; эжекторы осушительной и водоотливной систем; трубопроводы охлаждения механизмов, приборов и устройств; трубопроводы промывки фекальных цистерн. Кроме того, система водотушения подает воду для обмывки якорных цепей и клюзов, мытья палуб и продувания кингстонных ящиков.

На спасательных и пожарных судах имеется специальная система водяного пожаротушения, независимая от общесудовой системы.

Систему водотушения нельзя использовать для тушения горящих нефтепродуктов, так как плотность топлива или масла меньше, чем воды, и они растекаются по ее поверхности, что приводит к увеличению охваченной огнем площади. Водой нельзя тушить пожары лаков и красок, а также электрооборудования (вода является проводником и вызывает короткое замыкание).

Магистральный трубопровод системы выполняют линейным и кольцевым. Число и расположение пожарных рожков должны быть такими, чтобы в любую точку пожара можно было подать две струи воды от независимых пожарных рожков. Пожарный рожок представляет собой запорный клапан, имеющий с одной стороны фланец, которым он соединяется с трубопроводом, а с другой стороны - быстросмыкаемую гайку для присоединения пожарного рукава. Свернутый в кольцо рукав со стволом хранится в стальной корзине около пожарного рожка. На пожарных катерах, спасательных судах и буксирах помимо рожков устанавливают лафетные стволы, из которых можно направлять мощную струю воды на горящее судно.

Напор в магистрали должен обеспечивать высоту струи воды не менее 12 м. В качестве механизмов системы водотушения применяют обычно центробежные и (реже) поршневые насосы. Подачу и напор пожарных насосов рассчитывают исходя из наиболее неблагоприятного случая работы системы, например из условия одновременного обеспечения действия пожарных рожков в количестве 15 % от всего числа установленных на судне, водяного орошения трапов и выходов из МО, системы водораспыления в МО, системы пенотушения. По Правилам Регистра СССР минимальный напор должен быть 0,28-0,32 МПа; расход воды через ствол - не менее 10 м 3 /ч.

Приемные трубопроводы пожарных насосов обычно присоединяют к кингстонам, причем насос должен иметь возможность принимать воду не менее чем из двух мест.

На рис. 5.43 приведена типовая схема системы водяного пожаротушения с кольцевой магистралью.

Рис. 5.43. Схема системы водяного пожаротушения с кольцевой магистралью для грузовых судов
1 - магистрали на обмыв якорных цепей и клюзов; 2 - угловой клапан; 3 - к системе водораспыления в МО; 4 - к системе пенотушения; 5 - на промывание цистерн сбора сточных вод; 6 - к системе орошения выходов и вахт; 7 - концевой клапан; 8 - манометр; 9 - центробежный насос; 10 - мановакуумметр; 11 - угловой невозвратно-запорный клапан; 12 - клинкетная задвижка; 13 - водяной фильтр;- 14 - кингстонный ящик; 15 - донный кингстон; 16 - невозвратно-запорный клапан; 17 - магистрали забортной воды

К двум центробежным насосам 9 забортная вода поступает от кингстона 15 и от другой магистрали 17 через фильтр 13 и клинкетные задвижки 12. У каждого насоса имеется байпасный трубопровод с невозвратно-запорным клапаном 11, позволяющий перекачивать воду по замкнутому контуру (работать «на себя»), когда нет расхода воды на потребителей. Напорные трубопроводы обоих насосов включены в кольцевую магистраль, от которой отходят: трубы к пожарным клапанам 2; трубопровод 1 на обмыв якорных цепей и клюзов; ответвления - 3 к системе распыления МО, 4 к системе пенотушения, 5 на промывание цистерн сбора сточных вод, 6 к системе орошения выходов и вахт.


Согласно последней статистике в мире около 20% уничтоженных кораблей - жертвы пожаров. В России только в Северо - Западном Федеральном округе с 2008 по 2012 год тушить пришлось 82 пожара на речных и морских судах. Большая часть этих пожаров произошла в доках и на стоянках.

Почему происходят пожары на судах? Ведь рядом с пожаром, буквально в нескольких метрах имеется неисчерпаемый природный источник воды. Казалось бы, - возьми эту воду и потуши пожар. Однако, не все так просто, как кажется на первый взгляд. Здесь вмешиваются два фактора, которые блокируют это простое решение.

Фактор первый - скорость распространения.

Пожар на корабле распространяется молниеносно в силу конструктивных особенностей судов: низкие потолки, узкие проходы, металлические перегородки, легко пропускающие температуру в соседние отсеки, вентиляционные люки и шахты, полые конструкции с горючим теплоизоляционным наполнителем, быстро-воспламеняемые лакокрасочные покрытия и отделочные материалы, - все это приводит к тому, что пожар за 10 - 15 минут быстро набирает силу и охватывает уже сотни квадратных метров, а за 30 минут он охватывает уже все этажи много-палубного теплохода. Для борьбы с таким пожаром потребуются уже тонны и тонны воды или пены.

Фактор второй - потеря плавучести.

Использование воды приводит к быстрому наполнению трюма, постепенному крену и, как результат, к полному уходу на дно всего имущества, которое мы так активно пытались спасти. При использовании воды необходимо постоянно ее откачивать, что значительно усложняет задачу, а во многих ситуациях является просто технически невозможным.

Исходя из вышесказанного можно сделать вывод: на водном транспорте нужны новые подходы и новые, более приемлимые и эффективные технологии в пожаротушении. Одним из таких решений является применение на судах объемнго аэрозольного тушения (АОТ).

Судовые противопожарные системы АОТ - эффективный способ защиты от пожаров судов Морского и Речного Флота.



Судовая система аэрозольного объемного тушения АОТ разработана МППА "ЭПОТОС" и сертифицирована для защиты речных и морских судов. Противопожарная система судна устанавливается на пассажирских судах речного или морского флота, буксирах, грузовых танкерах и служит для защиты:

  • главных и вспомогательных двигателей, машинных отделений;
  • генераторов электроэнергии, работающих на горючем топливе;
  • помещений пожарных насосов;
  • распределительных щитов (главных и аварийных);
  • электродвигателей различного назначения (в том числе гребных двигателей);
  • систем вентиляции судового оборудования;
  • помещений с резервуарами топлива, различных масел и смазочных материалов, сбора подсланевых вод, коффердамы;
  • помещений для хранения сжиженных или сжатых газов, других легковоспламеняющихся материалов или веществ.

Система АОТ. Испытания и сертификация.

Противопожарная судовая система сертифицирована и соответствует Техническому регламенту «О безопасности внутреннего водного транспорта и связанной с ним инфраструктуры», Техническому регламенту «О безопасности объектов морского транспорта», Правилам классификации и постройки морских судов, а также Правилам классификации и постройки судов внутреннего плавания.

Элементы судовой противопожарной системы АОТ прошли испытания и сертификацию Российского Морского Регистра Судоходства (РМРС), Российского Речного Регистра (РРР). Генераторы огнетушащего аэрозоля "ТОР - 1500" и "ТОР - 3000", являющиеся исполнительными элементами системы, соответствуют международным требованиям и стандартам для судовых противопожарных систем на основе конденсированного огнетушащего аэрозоля - ISO 15779:2011 и MSC.1/Circ.1270 (IMO).

В частности, генераторы огнетушащего аэрозоля, входящие в состав системы, выдержали сертификационное испытание на коррозию, ударную деформацию (падение с высоты 2 м на жесткое основание и на копре – 1000g), вибрацию с диапазоном частот 10 - 150 Гц и максимальной амплитудой вибрационного ускорения 29,43 м/сек, температурную проверку (нагрев 250 С? в течение 10 минут).

Натурные огневые испытания системы АОТ (на соответствие ТУ и циркуляра IMO MSC 1/Circ/1270 от 04.06.08) были проведены в июне 2011 г. в испытательной центре лаборатории «Пламя» Военно-Морского Инженерного Института (ГОУ ВПО) МО РФ в г. Пушкин - 4. Для дистанционного управления судовой противопожарной системой был применен сертифицированный блок управления и сигнализации БУС собственного производства, входящий в состав системы АОТ.

В ходе проведения огневых испытаний системы были потушены модельные очаги класса А и В: тлеющие материалы (древесина), дизельное топливо в металлических поддонах (включая струю дизельного топлива под низким давлением с малым расходом). Высокая огнетушащая способность судовой противопожарной системы АОТ была подтверждена натурными испытаниями в Южной Корее на соответствие ISO 15779:2011 и MSC.1/Circ.1270(IMO), которые проводились в испытательном центре компании Koryo Pyrotechnics Co.Ltd. На основании данных испытаний фирмой был получен Сертификат Греческого Морского регистра.