Современное образование: робототехника в школе. У скептицизма в сторону LEGO есть две причины. Почему мы не используем инструкции
Робототехника в России в последнее время интенсивно развивается. Благодаря чему всё большее внимание уделяется использованию наукоёмких технологий и оборудования с высоким уровнем автоматизации и роботизации.
Для перехода к новым технологиям необходима система подготовки кадров для инновационной экономики (школьник – рабочий – дипломированный специалист) на современных подходах и мотивации.
В настоящее время происходит масштабная роботизация различных сфер человеческой жизни: машиностроения, медицины, космической промышленности и т.д. Промышленные роботы стали неотъемлемой частью многих сфер производства.
Образовательная робототехника сегодня набирает популярность в школах и кружках дополнительного образования. Ученики вовлечены в образовательный процесс благодаря созданию моделей – роботов, проектированию и программированию робототехнических устройств и участвуют в робототехнических соревнованиях, конкурсах, олимпиадах, конференциях.
Образовательная робототехника - часть инженерно-технического образования. Сейчас необходимо активно начинать популяризацию профессии инженера уже начиная со школы. Детям нужны образцы для подражания в области инженерной деятельности. Робототехника развивает учеников в режиме опережающего развития, опираясь на информатику, математику, технологию, физику, химию. Робототехника предполагает развитие учебно-познавательной компетентности обучающихся.
Образовательная робототехника - это учебная среда, основанная на использовании роботов для преподавательских целей. В ней учащиеся вовлечены и мотивированы самостоятельным моделированием и конструированием моделей (объектов, имеющих схожие или полностью идентичные реальным объектам характеристики). Эти модели создаются с использованием различных материалов и контролируются компьютерной программной системой, именуемой прототипом или симуляцией.
В опросе, проведенном среди 11-13-летних, было выяснено, что дети скорее предпочтут убраться в комнате, съесть суп, сходить к стоматологу, вынести мусор, чем сделать математику. Как это видимое отсутствие мотивации к изучению математики влияет на успеваемость? К сожалению, отсутствие мотивации негативно влияет на производительность в математических, научных, технологических и инженерных (STEM) областях; областях, жизненно важных для национальной глобальной конкурентоспособности, инноваций, экономического роста и продуктивности.
С этой целью увеличивается спрос на STEM-связанное образование и курсы для работников от технического до докторского уровня образования. STEM образование и курсы могут на выходе увеличить средний потенциал работников на 26%. К 2019 приблизительно 92% традиционных STEM профессий будут требовать некоторые формы дополнительного образования включая определенные уровни специфических промышленных сертификаций. Далее, некоторые отчеты предполагают, что даже работники не STEM профессий будут нуждаться в получении некоторых основных STEM компетенций чтобы соответствовать глобальным требованиям и выжить в современном технологичном обществе.
Обучение при помощи образовательной робототехники позволяет учащимся задуматься о технологиях. В процессе моделирования, конструирования, программирования и документирования автономных роботов, ученики не только учатся тому, как работают технологии, но и значимым и увлекательным способом применяют знания и умения, полученные в школе. Образовательная робототехника богата возможностями в интеграции не только в областях науки, технологии, инженерии и математики (STEM), но и во многих других областях, в том числе и грамотности, общественных науках, танцах, музыке и искусстве, позволяя ученикам находить способы работать совместно, чтобы развить их навыки сотрудничества и самовыражения, навыки решения проблем, критического и инновационного мышления.
Образовательная робототехника - это инструмент обучения, улучшающий ученический опыт через практическое изучение. И самое важное, образовательная робототехника предоставляет веселую и интересную среду обучения из-за ее практического характера и интеграции технологий. Привлекательная среда обучения мотивирует обучаться независимо от навыков и знаний, необходимых для выполнения поставленных целей для завершения заинтересовавшего их проекта.
Как преподаватель может заинтересовать учеников в изучении предметов, которые требуют наличие навыков в области науки, технологии, инженерии и математики (STEM)? Образовательная робототехника предлагает уникальную альтернативу традиционным методам обучения.
Интерес к использованию роботов для обучения учеников младших классов появился в первой половине 80-х гг. с началом использования программ, разработанных с помощью технологий, доступных на тот момент. Но он оставался невостребованным какое-то время из-за ограниченного доступа к связанным с ним технологиям, дороговизны, отсутствия исследований и необходимости проведения большого числа тестирований, что мешало обширному использованию роботов для преподавательских целей. Но времена поменялись. За прошедшее десятилетие с приходом технологических инноваций, школьники сейчас полностью аккультурированы к использованию технологий благодаря аудиоплеерам, смартфонам, планшетам, интернету и виртуальным мирам, созданным играми, в которые они играют. У учеников есть мотивация к использованию этих устройств, которые в свою очередь могут добавить новое измерение повседневному преподаванию.
Маленькие дети – настоящие инженеры. Они создают крепости, башни из кубиков, замки из песка, и разбирают свои игрушки, чтобы узнать, что внутри. И также в этом возрасте, дети в какой-то мере знакомы с конструкторами. Еще до достижения детсадовского возраста каждый ребенок уже играл с конструктором, или по крайней мере знает, что это такое. Используя эту ассоциацию можно вовлечь детей в процесс обучения.
Выбор важной и интересной для детей темы для проектирования является большой мотивацией к обучению. Например, дети на уроке узнали о цветах. Они создали небольшой сад и их задача – защитить его от вредителей. Учителем предлагается решить эту проблему, используя робототехнические наборы.
Каждому ребенку назначается его роль в проекте на основе его знаний и стиля обучения: разработчик, проектировщик, программист, фотограф, и т.д. Дети исследуют процесс проектирования при помощи следующих шагов, для решения проблемы: постановка проблемы, мозговой штурм для решения проблемы, выбор рабочей идеи, проектирование решения, создание решения, используя робототехнические наборы, программирование модели, документация процесса, и демонстрация получившегося проекта.
В процессе работы над проектом ученики узнают о физике, разработке и технологиях, развивают навыки работы в команде и коммуникативные способности посредством совместной работы над проблемой и экспериментирования с различными идеями.
Дети учатся работать совместно, и начинают быстро понимать важность каждого члена команды. Например, разработчик ничего не может создать без проектировщика, так как он не знает особенностей проектирования, а программист не может работать без разработчика, так как без готовой модели ему будет нечего программировать.
Дети не знакомые с конструкторами тоже должны создать проект на основе простых механизмов. Им предоставляется простор действий для того, чтобы помочь им учиться, играя с деталями конструктора. Также можно принести им недоработанные или сделанные некорректно модели и дать им возможность исправить их. Цель состоит в том, чтобы не давать детям пример для копирования, но предоставить им некоторое руководство о том, как сделать модель, что позволит им включиться в работу с остальной группой. Это действительно хорошо работает, и дети начинали методом проб и ошибок исправляют модель и учатся программировать ее. Они могут использовать различные стратегии для достижения конечного результата.
Конспектирование проекта также важно для детей. Оно помогает им систематизировать полученную информацию и лучше ее запомнить. Также оно помогает отслеживать их успехи в работе.
Учащиеся развивают технологическую беглость при использовании компьютеров, цифровых фотоаппаратов и прочих устройств, которые они могут использовать при разработке. Они учатся программировать и узнают базовые технические понятия, которые требуются для корректного моделирования. Развивая технологическую беглость, они самовыражаются различными способами посредством моделирования, записи, фотографировании и обсуждения их проекта. И самое главное они развивают самооценку и уверенность в себе как ученики.
Вышеописанное демонстрирует, что образовательная робототехника - это мощный инструмент, который может быть использован для обучения.
- Дети формируют свои знания благодаря процессу моделирования значимых для них проектов и воплощению их собственных идей, используя самостоятельно разработанные алгоритмы;
- Дети учатся благодаря одновременной работе в виртуальном (программирование) и реальном мире (создание модели);
- Дети сталкиваются с когнитивными конфликтами через сравнение условий и результатов в процессе программирования и тестирования модели;
- Дети учатся благодаря отражению и воспроизведению их собственных знаний, обсуждению их наблюдений;
- Дети учатся благодаря беседам, основанным на совместной работе, обсуждениям, аргументациям
Робототехника – универсальный инструмент для образования. Она хорошо подходит как для дополнительного образования, так и для внеурочной деятельности. Также она является неплохим вариантом для преподавания ее как предмета школьной программы, так как она полностью соответствует требованиям ФГОС. Обучаться робототехнике можно начиная с любого возраста.
Причем использование робототехнического оборудования – это обучение, игра и творчество одновременно, что гарантирует увлеченность и заинтересованность, а также развитие ребенка в процессе обучения.
Образовательная робототехника дает возможность на ранних шагах выявить технические наклонности учащихся и развивать их в этом направлении. В настоящее время существует большое количество различных робототехнических наборов, удовлетворяющих любым требованиям. Каждый из наборов имеет свои особенности. Это и количество, и тип деталей в наборе, и различные среды программирования, имитирующие или поддерживающие известные языки.
Робототехника в образовании
Существует множество важных проблем, на которые никто не хочет обращать внимания до тех пор, пока ситуация не становится катастрофической.
Одной из таких проблем в России становится её недостаточная обеспеченность инженерными кадрами. Все чаще падают космические ракеты и спутники, происходят техногенные катастрофы, обусловленные недостаточным профессионализмом обслуживающего персонала, разработчиков и проектировщиков.
Это вызвано, конечно, целым рядом причин. Однако, все, связанные с образовательной средой, единодушно отмечают, что в последние несколько лет наблюдается снижение интереса учащихся к изучению физики, математики, астрономии (которую, кстати, вообще вынесли за пределы школьного курса) и прочих точных наук, и, как следствие, падение качества образования в целом.
Например, А.М. Рейман, старший научный сотрудник Института прикладной физики Российской академии наук, считает: «У меня общее ощущение деградации образования в среднем звене, приводящей к уменьшению числа заинтересованных в учебе старшеклассников.... Физика воспитывать можно и нужно. И делать это надо рано, пока у ребенка горят глаза и не развился утилитарный подход к жизни. ... А еще они будут знать кое-что о современной науке, и им нельзя будет вешать лапшу...»
Работу по мотивации детей к занятиям серьезной наукой нужно начинать как можно раньше, желательно в начальной школе! Откуда такой вывод? При анкетировании детей на предмет, желают ли они заниматься в кружках технической направленности, определилась следующая картина: в девятых и более старших классах практически никакого интереса, в 6-8-х классах интерес проявился в основном у тех детей, которые самостоятельно дома или в организациях дополнительного образования занимаются лего-конструированием, радиоэлектроникой, программированием. А вот у учащихся четвертого класса интерес оказался просто огромен. То есть, если дети до 11-12 лет не касались технического творчества, то с возрастом у них интерес к этому занятию возбудить достаточно сложно. Поэтому работу по пропедевтике робототехники, физики, знакомству с началами программирования необходимо проводить в начальной школе и пятых классах. В результате в среднюю школу придут дети, у которых прилично развиты конструкторские навыки, сформировано алгоритмическое мышление, привит интерес к экспериментированию.
Таким образом, необходимо активно начинать пробуждение интереса к точным наукам и массовую популяризацию профессии инженера, причем предпринимать такие шаги необходимо для детей с достаточно раннего возраста. Необходимо вернуть в общество массовый интерес к научно-техническому творчеству.
На настоящий момент существует достаточное количество образовательных технологий, которые способствуют развитию критического мышления и умения решать задачи, однако в образовательных средах, вдохновляющих к новаторству через науку, технологию, математику, способствующих творчеству, умению анализировать ситуацию, применить теоретические познания для решения проблем реального мира, сегодня наблюдается определенный дефицит.
Наиболее перспективный путь в этом направлении – это робототехника, позволяющая в игровой форме знакомить детей с наукой. Робототехника является эффективным методом для изучения важных областей науки, технологии, конструирования, математики и входит в новую международную парадигму: STEM-образование (Science, Technology, Engineering, Mathematics).
Организация лаборатории робототехники в школе или учреждении дополнительного образования – это:
- внедрение современных научно-практических технологий в образовательный процесс;
- содействие развитию детского научно-технического творчества;
- популяризация профессии инженера и достижений в области робототехники;
- новые формы работы с одаренными детьми;
- эффективные формы работы с проблемными детьми;
- возможности инновационного обучения;
- игровые технологии в обучении;
- популяризация профессий научно-технического направления.
Образовательная робототехника
Подлесных Елена Викторовна
учитель информатики
МБОУ СОШ №17
Г. Новый Уренгой
I. Введение.
Современную жизнь очень сложно представить без использования информационных технологий. Интенсивный переход к информатизации общества обуславливает все более глубокое внедрение информационных технологий в различные области человеческой деятельности.
Введение новых государственных стандартов общего образования
предполагает разработку инновационных педагогических технологий. Важнейшей отличительной особенностью стандартов нового поколения является их ориентация на результаты образования, причем они рассматриваются на основе системно-деятельностного подхода. Деятельность выступает как внешнее условие развития у ребенка познавательных процессов. Это означает, что, чтобы ребенок развивался, необходимо организовать его деятельность. Значит, образовательная задача состоит в организации условий, провоцирующих детское действие.
Такую стратегию обучения легко реализовать в образовательной среде ЛЕГО, которая объединяет в себе специально скомпонованные для занятий в группе комплекты ЛЕГО, тщательно продуманную систему заданий для детей и четко сформулированную образовательную концепцию.
В российских образовательных программах робототехника приобретает все большее значение. Учащиеся российских школ вовлечены в проектирование и программирование робототехнических устройств, с применением LEGO-роботов, промышленных роботов, специальных роботов для МЧС России.
II. Актуальность. Человечество остро нуждается в роботах, которые могут без помощи оператора тушить пожары, самостоятельно передвигаться по заранее неизвестной, реальной пересеченной местности, выполнять спасательные операции во время стихийных бедствий, аварий атомных электростанций, в борьбе с терроризмом. Появилась необходимость в мобильных роботах, предназначенных для удовлетворения каждодневных потребностей людей. И уже сейчас в современном производстве и промышленности востребованы специалисты обладающие знаниями в этой области. Поэтому, образовательная робототехника приобретает все большую значимость и актуальность в настоящее время.
III. Проблема.
Передо мной открылась проблема: как обеспечить эффективное изучение курса робототехники и практическое применение в образовательном процессе?
IV. Цели:
- Привлечение внимания одаренных детей к сфере высоких технологий и инновационной деятельности;
- Популяризация научно-технического творчества и робототехники;
- Формирование компетенций в области технического производства с применением робототехнических систем;
V. Задачи:
- Создание кружка по робототехнике и научно-техническому творчеству.
- Разработка методики обучения основам робототехники и научно-технического творчества.
- Разработка образовательно-соревновательной площадки.
- Внедрение робототехники в уроки образовательной программы.
Конечно же, в своих рабочих программах я обязательно выделяю воспитательный аспект в преподавании курса. Стараюсь при подготовке к каждому занятию продумывать воспитательные задачи.
VI. Новизна.
Новизна концепции состоит в том, что Конструктор и программное обеспечение к нему предоставляет прекрасную возможность учиться ребенку на собственном опыте. Такие знания вызывают у детей желание двигаться по пути открытий и исследований, а любой признанный и оцененный успех добавляет уверенности в себе. Обучение происходит успешно, когда ребенок вовлечен в процесс создания значимого и осмысленного продукта, который представляет для него интерес. Важно, что при этом ребенок сам строит свои знания, а учитель лишь консультирует его.
VII. Теоретические аспекты.
Робототехника – это прикладная наука, занимающаяся разработкой автоматизированных технических систем. Она опирается на такие дисциплины как электроника, механика, программирование.
Робототехника является одним из важнейших направлений научно- технического прогресса, в котором проблемы механики и новых технологий соприкасаются с проблемами искусственного интеллекта.
Конструкторы LEGO Mindstorms позволяют организовать учебную деятельность по различным предметам и проводить интегрированные и метапредметные занятия. С помощью этих наборов можно организовать высокомотивированную учебную деятельность по пространственному конструированию, моделированию и автоматическому управлению. А педагог может создать такие условия, чтобы ученику захотелось поставить свой собственный эксперимент.
Большие возможности дают Лего-роботы для проведения уроков информатики по темам, связанным с программированием. Среда программирования Лего позволяет визуальными средствами конструировать программы для роботов, т.е. позволяют ребенку буквально “потрогать руками” абстрактные понятия информатики. Конструирование роботов остается за рамками урока информатики: дети только программируют различное поведение уже собранных роботов, оснащенных необходимыми датчиками и приборами. Это позволяет концентрировать внимание учащихся на проблемах обработки информации программируемыми исполнителями, решаемых в курсе информатики.
VIII. Методы обучения:
В своей работе я применяю объяснительно-иллюстративный, эвристический, проблемный, программированный, репродуктивный, частично-поисковый, поисковый методы обучения, а также метод проблемного изложения.
И все-таки, главным при изучении робототехники - это метод проектов.
Под методом проектов понимают технологию организации образовательных ситуаций, в которых учащиеся ставят и решают собственные задачи, и технологию сопровождения самостоятельной деятельности учащегося.
Основные этапы разработки Лего-проекта:
- Обозначение темы проекта.
- Цель и задачи представляемого проекта.
- Разработка механизма на основе конструктора Лего-модели NXT .
- Составление программы для работы механизма в среде Lego Mindstorms.
- Тестирование модели, устранение дефектов и неисправностей.
При разработке и отладке проектов учащиеся делятся опытом друг с другом, что очень эффективно влияет на развитие познавательных, творческих навыков, а также самостоятельность учащихся. Таким образом, можно убедиться в том, что Лего позволяет учащимся принимать решение самостоятельно, учитывая окружающие особенности и наличие вспомогательных материалов. И, что немаловажно, – умение согласовывать свои действия с окружающими, т.е. – работать в команде.
IX. Результаты внедрения курса робототехники в образовательный процесс .
- Lego позволяет учащимся:
- совместно обучаться в рамках одной бригады;
- распределять обязанности в своей бригаде;
- проявлять повышенное внимание культуре и этике общения;
- проявлять творческий подход к решению поставленной задачи;
- создавать модели реальных объектов и процессов;
- видеть реальный результат своей работы.
- Создана рабочая программа кружка «Лего-конструирование и основы робототехники Mindstorms NXT» на год обучения. Разрабатывается методическое обеспечение занятий: конспекты занятий и презентации к ним.
- Определены темы курса «Информатика и ИКТ», на которых возможно включение робототехники в учебный процесс. Скорректировано тематическое планирование тем. Разрабатываются методические материалы для их преподавания.
- В результате обучения учащиеся смогли показать свои достижения на городском, региональном и всероссийском уровне. Пугач Никита стал призером городской конференции «Шаг в будущее», а Репка Артем ее победителем. Команда Альфа-X (Черникова Ярослава и Пишненко Николай) заняла 1 место в городском конкурсе по робототехнике в номинации «Кегельринг». А команда NXT.exe (Воловатов Роман и Рязанов Владислав) заняли 1 место в номинации «Следование по линии» и 2 место в номинации «Кегельринг». Репка Артем и Пугач Никита стали участниками окружного конкурса юных рационализаторов и изобретателей «От замысла к воплощению». В 2012-2013 учебном году команда NXT.exe (Рязанов Владислав, Татарчук Юрий, Репка Артем, Моргунов Андрей) приняла участие в работе окружной Ассамблеи юных изобретателей в г. Надым. По результатам работы команда NXT.exe получила гранд третьей степени. На всероссийском уровне тоже имеются награды: Репка Артем занял 2 место во всероссийском конкурсе научно-технического творчества «Юные техники – будущее инновационной России». Достигнутые результаты показывают, что ребятам нравится заниматься конструированием, программированием, и они готовы продолжать осваивать столь новое, современное, востребованное направление, как робототехника.
- Подводя итоги внедрения курса в образовательное пространство школы можно сказать, что повлекло за собой:
- Повышение качества образования и заинтересованности предметом у учащихся;
- Сформированность новых моделей учебной деятельности, использующих ИКТ;
- Сформированность информационной компетентности;
- Новые формы работы с одаренными детьми;
- Инновационное профильное обучение;
- Применение игровых технологий в обучении;
- Современные ИКТ технологии в дополнительном образовании;
- Эффективная форма работы проблемными детьми;
- Развитие творческого потенциала учащихся;
- Популяризация профессии инженер (проектировщик).
- Создание условий, которые позволяют реализовать способности и интересы учащихся;
Заключение.
Привлечение школьников к исследованиям в области робототехники, обмену технической информацией и начальными инженерными знаниями, развитию новых научно-технических идей позволит создать необходимые условия для высокого качества образования, за счет использования в образовательном процессе новых педагогических подходов и применение новых информационных и коммуникационных технологий.
Поводя итог, можно сказать, что направление «Образовательная робототехника» имеет большие перспективы развития.
Тюменский областной государственный институт
развития регионального образования
ОБРАЗОВАТЕЛЬНАЯ
РОБОТОТЕХНИКА
Методические рекомендации
Составитель:
Бояркина Ю.А., к.п.н., доцент кафедры естественно-математического образования ТОГИРРО
Образовательная робототехника.
Методическое пособие. / Составитель Бояркина Ю.А.-
Тюмень: ТОГИРРО, 2013
Данное пособие является методической помощью специалистам и педагогам образовательных учреждений, ведущим практическую деятельность по реализации образовательных программ в области образовательной робототехники.
В пособии рассматривается круг вопросов, связанных с использованием образовательной робототехники на уроках в начальной школе, основной и старшей школе в условиях введения ФГОС. Пособие содержит апробированные материалы, обобщающие опыт внедрения образовательной робототехники учебными заведениями Тюменской области.
Методическое пособие рекомендуется педагогическим работникам, реализующим программы общего образования в условиях введения ФГОС в образовательном учреждении, методистам, курирующим реализацию направления робототехники, слушателям курсов повышения квалификации, руководителям образовательных учреждений.
ГЛАВА I
ТЕОРЕТИЧЕСКИЕ ОСНОВЫ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ РЕАЛИЗАЦИИ РОБОТОТЕХНИКИ В ОБРАЗОВАТЕЛЬНОМ ПРОЦЕССЕ ШКОЛЫ
Хороший инженер должен состоять из четырёх частей: на 25% - быть теоретиком; на 25% - художником, на 25% - экспериментатором и на 25% он должен быть изобретателем
П.Л.Капица
Уже в школе дети должны получить возможность
раскрыть свои способности, подготовиться к жизни
в высокотехнологичном конкурентном мире
Д. А. Медведев
ВВЕДЕНИЕ
Робототехника - прикладная наука, занимающаяся разработкой автоматизированных технических систем. Робототехника опирается на такие дисциплины, как электроника, механика, программирование.
Робототехника является одним из важнейших направлений научно- технического прогресса, в котором проблемы механики и новых технологий соприкасаются с проблемами искусственного интеллекта. На современном этапе в условиях введения ФГОС возникает необходимость в организации урочной и внеурочной деятельности, направленной на удовлетворение потребностей ребенка, требований социума в тех направлениях, которые способствуют реализации основных задач научно-технического прогресса. К таким современным направлениям в школе можно отнести робототехнику и робототехническое конструирование. В настоящий момент во многих образовательных учреждениях России и Тюменской области осуществляется попытка встроить в учебный процесс Lego робототехнику. Проводятся соревнования по робототехнике, учащиеся участвуют в различных конкурсах, в основе которых -использование новых научно-технических идей, обмен технической информацией и инженерными знаниями.
В современном обществе идет внедрение роботов в повседневную жизнь, очень многие процессы заменяются роботами. Сферы применения роботов различны: медицина, строительство, геодезия, метеорология и т.д. Очень многие процессы в жизни человек уже и не мыслит без робототехнических устройств (мобильных роботов): робот для всевозможных детских и взрослых игрушек, робот – сиделка, робот – нянечка, робот – домработница и т.д.
Специалисты, обладающие знаниями в области инженерной робототехники, в настоящее время достаточно востребованы. Благодаря этому вопрос внедрения робототехники в учебный процесс, начиная уже с начальной школы и далее на каждой ступени образования, включая ВУЗы, достаточно актуален. Если ребенок интересуется данной сферой с самого младшего возраста, он может открыть для себя много интересного и, что немаловажно, развить те умения, которые ему понадобятся для получения профессии в будущем. Поэтому внедрение робототехники в учебный процесс и внеурочное время приобретают все большую значимость и актуальность.
Целью использования Лего-конструирования в системе дополнительного образования - явля-ется овладение навыками начального технического конструирования, развитие мелкой моторики, изучение понятий конструкции и основных свойств (жесткости, прочности, устойчивости), навык взаимодействия в группе. В распоряжение детей предоставлены конструкторы, оснащенные микро-процессором и наборами датчиков. С их помощью школьник может запрограммировать робота - умную машинку на выполнение определенных функций.
Новые стандарты обучения обладают отличительной особенностью - ориентацией на резуль-таты образования, которые рассматриваются на основе системно - деятельностного подхода. Такую стратегию обучения помогает реализовать образовательная среда Лего.
Основное оборудование, используемое при обучении детей робототехнике в школах, - это ЛЕГО-конструкторы.
Конструкторы LEGO бывают различных видов, направленные на образование детей с учетом удовлетворения возрастных особенностей и потребностей ребенка.
Рассмотрим классификацию конструкторов
, используемых в образовательных учрежде-ниях.
WeDo – конструктор, предназначенный для детей от 7 до 11 лет. Позволяет строить модели машин и животных, программировать их действия и поведение.
E - lab «Энергия, работа, мощность» - для детей от 8 лет. Знакомит учащихся с различными источниками энергии, способами ее преобразования и сохранения.
E - lab «Возобновляемые источники энергии» - для детей от 8 лет. Знакомит учащихся с тремя основными возобновляемыми источниками энергии.
«Технология и физика» - для детей от 8 лет. Позволяет изучить основные законы механики и теории магнетизма.
«Пневматика» - для детей от 10 лет. Позволяет конструировать системы, в которых используется поток воздуха.
LEGO Mindstorms «Индустрия развлечений. Перворобот» (RCX ) - это конструктор (набор сопрягаемых деталей и электронных блоков) для детей от 8 лет. Предназначен для создания программируемых роботизированных устройств.
LEGO Mindstorms «Автоматизированные устройства. Перворобот» (RCX ) - для детей от 8 лет. Позволяет создать программируемые роботизированные устройства.
LEGO Mindstorms «Перворобот» (NXT ) - для детей от 8 лет. Позволяет создавать как простые, так и достаточно сложные программируемые роботизированные устройства.
Конструкторы ПервоРобот NXT позволяют учителю самосовершенствоваться, брать новые идеи, привлечь и удержать внимание учащихся, организовать учебную деятельность, применяя различные предметы, и проводить интегрированные занятия. Дополнительные элементы, содержа-щиеся в каждом наборе конструкторов, позволяют учащимся создавать модели собственного изоб-ретения, конструировать роботов, которые используются в жизни.
Данные конструкторы показывают учащимся взаимосвязь между различными областями зна-ний, на уроках информатики решать задачи по физике, математике и т.д. Модели конструктора ПервоРобота NXT дают представление о работе механических конструкций, о силе, движении и скорости, помогают производить математические вычисления. Данные наборы помогают изучить разделы информатики: моделирование и программирование.
МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ИСПОЛЬЗОВАНИЯ РОБОТОТЕХНИКИ В ОБРАЗОВАТЕЛЬНОМ ПРОЦЕССЕ
В рамках школьного урока и дополнительного образования робототехнические комплексы Лего могут применяться по следующим направлениям:
Демонстрация;
Фронтальные лабораторные работы и опыты;
Исследовательская проектная деятельность.
Объяснительно - иллюстративный - предъявление информации различными способами (объяснение, рассказ, беседа, инструктаж, демонстрация, работа с технологическими картами и др);
Эвристический - метод творческой деятельности (создание творческих моделей и т.д.);
Проблемный - постановка проблемы и самостоятельный поиск её решения обучающимися;
Программированный - набор операций, которые необходимо выполнить в ходе выполнения практических работ (форма: компьютерный практикум, проектная деятельность);
Репродуктивный - воспроизводство знаний и способов деятельности (форма: собирание моделей и конструкций по образцу, беседа, упражнения по аналогу);
Частично - поисковый - решение проблемных задач с помощью педагога;
Поисковый – самостоятельное решение проблем;
Метод проблемного изложения - постановка проблемы педагогом, решение ее самим педагогом, соучастие обучающихся при решении.
Проектно-ориентированное обучение – это систематический учебный метод, вовлекающий учащихся в процесс приобретения знаний и умений с помощью широкой исследовательской деятельности, базирующейся на комплексных, реальных вопросах и тщательно проработанных заданиях.
Основные этапы разработки Лего-проекта:
Обозначение темы проекта.
Цель и задачи представляемого проекта. Гипотеза.
Разработка механизма на основе конструктора Лего-модели NXT (RCX).
Составление программы для работы механизма в среде Lego Mindstorms (RoboLab).
Тестирование модели, устранение дефектов и неисправностей.
При разработке и отладке проектов учащиеся делятся опытом друг с другом, что очень эффективно влияет на развитие познавательных, творческих навыков, а также самостоятельность школьников. Таким образом, можно убедиться в том, что Лего, являясь дополнительным средством при изучении курса информатики, позволяет учащимся принимать решение самостоятельно, применимо к данной ситуации, учитывая окружающие особенности и наличие вспомогательных материалов. И, что немаловажно, – умение согласовывать свои действия с окружающими, т.е. работать в команде.
Дополнительным преимуществом изучения робототехники является создание команды и в перспективе участие в городских, региональных, общероссийских и международных олимпиадах по робототехнике, что значительно усиливает мотивацию учеников к получению знаний. Основная цель использования робототехники – это социальный заказ общества: сформировать личность, способную самостоятельно ставить учебные цели, проектировать пути их реализации, контролировать и оценивать свои достижения, работать с разными источниками информации, оценивать их и на этой основе формулировать собственное мнение, суждение, оценку. То есть формирование ключевых компетентностей учащихся.
Компетентностный подход в общем и среднем образовании объективно соответствует и социальным ожиданиям в сфере образования, и интересам участников образовательного процесса. Компетентностный подход – это подход, акцентирующий внимание на результатах образования, причём в качестве результата образования рассматривается не сумма усвоенной информации, а способность действовать в различных проблемных ситуациях.
Главная задача системы общего образования – заложить основы информационной компетентности личности, т.е. помочь обучающемуся овладеть методами сбора и накопления информации, а также технологией ее осмысления, обработки и практического применения.
Более подробно возможности включения робототехники в изучение общеобразовательных предметов представлены в таблице 1.
Таблица 1
Возможности использования робототехники в образовательном процессе
НАЧАЛЬНАЯ ШКОЛА |
ОСНОВНАЯ ШКОЛА |
СТАРШАЯ ШКОЛА |
||||
Урочная деятельность |
||||||
Образовательные конструкторы: Мир вокруг нас Математика Геометрия Простейшие геометрические фигуры Периметр Равные фигуры Площадь, единицы измерения площади Симметрия Логика и комбинаторика Свойства предметов, классификация по признакам Последовательности, цепочки Пары и группы предметов. Одинаковые и разные множества. Мешки Логические и комбинаторные задачи Проекты DUPLOНа уроках технологии, развития речиБуквы DUPLOНа уроках английского языка ПервоРобот ЛЕГО Урок окружающего мира Раздел «Животный мир» Показ запрограммиро-ванных роботов на уроках окружающего мира, математики (пространственные отношения). Информатика (программирование роботов)
|
ИНФОРМАТИКА http://gaysinasnz.ucoz.ru/index/planirovanie_na_2011_2012_uchebnyj_god/0-35 - эл. портфолио Гайсиной И.Р., учителя информатики, г. Снежинск |
Робототехника - универсальная наука, в которую входит большое количество специализаций, многие из них уже стали частью жизни общества. Роботы имеют связь со смартфонами, а вскоре обзаведутся своими приложениями, экосистемами. Просвещенный в этом мире человек сможет чувствовать себя как рыба в воде.
Больше полезных материалов в разделе " ": кружки, курсы и вузы (робототехника и искусственный интеллект).
Робототехника является прикладной научной отраслью, которая специализируется на создании роботов и автоматизированных технических систем. Отрасль еще называют роботостроением, что подразумевает процесс, аналогичный машиностроению. Сегодня существует промышленная, строительная, авиационная, космическая, подводная и военная робототехника. В последнее время актуальными стали боты-помощники и роботы для игр.
«Сестрой» робототехники является мехатроника - дисциплина, которая изучает создание и эксплуатацию машин, а также систем с программным управлением. Нередко мехатронику считают синонимом электромеханики и наоборот. Профессионалы-мехатроники занимаются заводскими станками, оснащенными программным обеспечением, беспилотными транспортными средствами, современной офисной техникой и пр. В общей сложности, их специализация - приборы, выполняющие конкретную задачу. Робототехника находится в родстве с мехатроникой.
Прямая задача инженера-робототехника - изготовить робота. Ему принадлежит выбрать задачи, для выполнения которых нужен бот, продумать его механику, электронную составляющую, запрограммировать действия. Естественно, одному специалисту не справиться с такой задачей, а поэтому робототехники трудятся в команде.
Но разработка и создание машины - это не все. Устройству необходимо качественное обслуживание - управление, отслеживание «самочувствия», ремонт. Здесь в игру вступает робототехник, который специализируется на обслуживании.
Основа современной робототехники состоит из механики, электроники и программирования. Футурологи прогнозируют, что со временем в ход пойдут био- и нанотехнологии. Это приведет к появлению киборга - кибернетического организма, который будет промежуточным звеном между человеком и роботом. Следовательно, получить образовании в данной сфере - означает иметь большие профессиональные и финансовые перспективы.
Где потом работать?
В специалистах по робототехнике нуждаются конструкторские бюро авиации и космонавтики, такие как НПО им. С.А.Лавочкина, научно-исследовательские центры, специализирующиеся на космической отрасли, медицине, нефтедобыче, компании, занимающиеся роботостроением.
Если Вы хотите посвятить себя робототехнике, то должны интересоваться точными науками, инженерным делом, обладать аналитическим сладом ума, отлично структурированным мышлением «приправленным» богатым воображением.
В итоге, Вам нужно овладеть знаниями в области механики, программирования, теории автоматического управления, проектирования автоматических систем. Также неплохо бы иметь навыки конструирования и «очумелые» ручки - придется работать с паяльником и не только.
Познаем азы еще в школе
Если задуматься серьезно, робототехника является идеальным предметом школьной программы. Она позволяет рисовать увлекательные образы будущего, которые популяризирует кино, литература, игры. Этот мир сегодня еще кажется сказочным, но если вникнуть глубже, то можно заметить, что он намного реальнее, чем нам может показаться.
На российском рынке присутствуют компании, которые предлагают обучающие курсы по робототехнике для школ, а также программы с использованием образовательных конструкторов для дошкольников и школьников.
В их число входят (это лишь небольшой перечень):
- «Роботбаза», «ИнноПарк», семейный досуговый центр «Интерес», Политехнический музей, музей занимательной науки «Экспериментаниум», (Москва).
- Санкт-Петербургский городской Дворец творчества юных робототехников, Санкт-Петербургский центр детского и юношеского технического творчества (Санкт-Петербург).
- Сеть учебно-творческих центров «Гений», центр инновационно-технического развития«Робот Центр», Дворец молодежи (Екатеринбург).
- Кружок робототехники при ННГУ им. Н. И. Лобачевского, Нижегородский Институт Информационных Технологий, Поволжский центр аэрокосмического образования (Нижний Новгород).
- Областной центр технического творчества учащихся, Профессиональный лицей № 3 (Ростов-на-Дону).
- Студия «Роботикс» в рамках университета «Иннополис», инновационный технопарк «Идея», Центр детского технического творчества им. В. П. Чкалова (Казань).
- «Лига Роботов» (франшиза).
- "РОББО Клуб" (франшиза).
Новый, расширенный список кружков по робототехнике для детей смотрите .
Какие навыки это позволит развить?
- Дает понятие профориентации в раннем возрасте.
- Расширяет политехнический кругозор, закрепляет на практике знания, полученные во время изучения основ наук.
- Развивает навыки проектной и конструкторской деятельности и пр.
Где получить высшее образование?
Чтобы связать свою профессиональную деятельность с этой сферой, необходимо получить образование в направлении «мехатроника и робототехника», после чего будет присвоена квалификация «инженер». Тем более что в России общее количество ВУЗов, где обучают «Мехатронике и робототехнике» доходит до 40.
Желающие могут стать студентами:
Факультета специального машиностроения кафедры «специальной робототехники и мехатроники» Московского государственного технического университета им. Н.Э. Баумана.
Кафедры «автоматизации и робототехники» Омского Государственного технического университета.
Санкт-Петербургского государственного университета аэрокосмического приборостроения (СГУАП)
Магнитогорского государственного технического Университета.
Южно-Российского Федерального Университета (Новочеркасский ГТУ).
Саратовского государственного технического Университета.
Робототехника является одним из самых перспективных направлений технологического бизнеса. Продажи роботов неустанно увеличиваются, а поэтому есть смысл серьезно задуматься о получении образования в этой сфере.