Газовые горелки котельных агрегатов - устройство и принцип работы. Горелочные устройства и их размещение

Горелочное устройство должно обеспечивать хорошее перемешивание пыли и воздуха, возможно более раннее воспламенение пылевоздушной смеси и способствовать практически полному выгоранию пыли. Для камерного (фа­кельного) сжигания твердого топлива наибольшее распро­странение получили вихревые круглые, а также прямоточ­ные щелевые и сопловые горелки.

Вихревыми горелками называют, у которых первичный и вторичный воздух или только вторичный воздух закручи­вается специальными завихрителями. Закручивание пото­ков достигается при помощи улиток, устанавливаемых на входе в горелку, или лопаток, устанавливаемых в горелке аксиально или тангенциально в потоке первичного или вто­ричного воздуха. Принципиальные схемы вихревых горе­лок показаны на рис.1. Наименование горелки отражает способ ввода первичного (с пылью) и вторичного воздуха. Так, в показанной на рис.1, а прямогочно-улиточиой го­релке первичный воздух с пылью (пылевоздушная смесь или аэросмесь) подается через центральную трубу прямо-точно, без закручивания. Вторичный воздух, подаваемый в топку через горелку, закручивается улиткой.

Рис. 1 Принципиальные схемы пылеугольных вихревых горелок: а-прямоточно-улиточная; б- прямоточно-лопаточная; в - двухулиточная; г- улиточно-лопаточная; д- лопаточно-лопаточная; I - первичный воздух с угольной пылью; II - вторичный воздух, III – мазут; 1 – мазутная форсунка.

Аэросмесь поступает и топку через центральную трубу, имеющую на конце чугунный наконечник. Регули­рование выходного сечения для аэросмеси осуществляется конусомрассекателем, который может перемещаться. Конус-рассекатель обеспечивает хорошее раскрытие пылевоздушной струн, а также подсос горячих топочных газов к корню факела, что интенсифицирует воспламенение топ­лива. Вторичный воздух, подаваемый через улитку, выходит в топку завихренным через кольцевое пространство, обра­зуемое наконечником и обмуровкой. Для растопки, а также при необходимости подсвечивать пылеугольный факел пре­дусматривают установку мазутной форсунки, для чего в корпусе горелки имеется отверстие. В вихревых горел­ках, показанных на рис. 1,б-д, мазутные форсунки уста­новлены по центру горелки.

Прямоточные горелки .

Рис. 2 Принципиальная схема прямоточных горелок: а-щелевая горелка: б - сопловая горелка; I - аэросмесь: II - вторичный воз­дух.

В прямоточных щелевых горелках (рис. 2, а) подача в топку аэросмеси и вторичного воздуха осуществляется раздельно через узкие щели. Такие горелки выполняются с внешним 1 и внутренним 2 вводом вторичного воздуха. В прямоточных сопловых горелках (рис. 2,6) ввод аэро­смеси и вторичного воздуха осуществляется раздельно че­рез круглые сопла.

Примером прямоточной щелевой горелки является ши­роко используемая поворотная горелка. В этой горелке аэросмесь поступает через центральный патру­бок, откуда через поворотные сопла-щели она выходит в топку. Вторичный воздух поступает в топку по наружно­му соплу. Сопла при помощи электродвигателя можно поворачивать вверх и вниз от горизонтальной плоскости на 12-20°. Это дает возможность менять положение фа­кела в топке.

Cтраница 1


Расположение плоско-пламенных горелок на своде методической печи.| Схемы печи с расположением теплогенератора вне рабочего пространства.| Схема плоско-пламенной горелки.

Тангенциальный подвод воздуха к газу в этих горелках обеспечивает получение закрученного вокруг оси горелки потока, обеспечивающего растекание пламени вблизи поверхности огнеупорной футеровки.

Тангенциальный подвод воздуха с высокой скоростью обеспечивает его интенсивное перемешивание с топливом, а наличие карборундовой обмазки способствует быстрому зажиганию и горению мазута.


Горелки снабжены тангенциальным подводом воздуха, вызывающим закручивание воздушного потока при выходе из них, что способствует укорочению факела. Поэтому такие горелки работают в действительности не как длиннопламенные.

В мельницах с тангенциальным подводом воздуха горячий воздух подается непосредственно в кожух, мельницы по всей его ширине тангенциально по отношению к поверхности ротора и в направлении вращения его. В мельницах с аксиально-тангенциальным подводом воздуха совмещены оба способа его подвода.


В циклонной печи благодаря тангенциальному подводу воздуха происходит исключительно сильное перемешивание паров серы с воздухом и интенсивность сгорания Жидкая сера. Поэтому новые циклонные печи вытесняют форсуночные печи старого типа.


Завихритель был убран и сделали тангенциальный подвод воздуха через улитку, обеспечивающий хорошее закручивание воздушного потока.

Исследования воздушного сопротивления горелок при тангенциальном подводе воздуха, выполненные ИИГ АН УССР И. Я. Сигал показали, что простой тангенциальный подвод имеет меньшее сопротивление, чем улиточный при одинаковых степенях крутки. Кроме того, простой тангенциальный подвод требует меньших затрат на изготовление и конструктивно проще осуществим.

Окружные скорости в вихревой камере с тангенциальным подводом воздуха по всей высоте возрастают при уменьшении радиуса вращения от начальной скорости до максимальной. Скорость потока у стенки, как правило, меньше, а при некоторых конструктивных соотношениях может быть равна скорости входа. Радиус, соответствующий максимальной скорости, приблизительно совпадает с радиусом выходной горловины.

Температурные поля Е конической камере.| Изменение состава газа в зависимости от концентрациии топлива в кипящем слое.

Дожигание этой пыли может быть организовано за счет тангенциального подвода воздуха в верхнюю часть конуса или в специальной циклонной камере с жидким шлакоудалением.

Были исследованы две турбулентные горелки конструкции Укргипромеза с тангенциальным подводом воздуха и так называемая польская горелка, разработанная Гипромезом на основе чертежей Biprohut zabrze. Горелки Укргипромеза отличаются друг от друга конструкцией газового сопла. Одна горелка имеет укороченное газовое сопло с выходным отверстием в виде узкой кольцевой щели (рис. 2а), и перемешивание газа с воздухом начинается внутри горелки. Вдоль оси в центре газового сопла этой горелки расположена смотровая труба, в которую может быть вставлена мазутная форсунка или запальник.

Расположение горелок на стенках топочной камеры

Полнота выгорания топлива, условия эксплуатационно-надежной работы топки в значительной степени определяются размещением пылеугольных горелок. Наибольшее распространение для обычных однокамерных топок получило фронтальное (рис. 12.8, а), встречное (рис. 12.8,6) и угловое (рис. 12.8, в) расположение горелок.

При фронтальном расположении горелок примерный характер аэродинамики топки показан на рис. 12.9, а. По выходе из отдельных горелок струи первоначально развиваются самостоятельно, а затем сливаются в общий поток. При движении к задней стенке струя подсасывает из окружающей среды топочные газы, масса ее значительно увеличивается, а концентрация окислителя снижается. При ударе факела о заднюю стенку может иметь место ее шлакование. В связи с этим при фронтальном расположении наиболее целесообразно применение вихревых горелок с относительно коротким широким факелом.

При встречном расположении горелки (рис. 12.9, б и в) могут располагаться как на противоположных боковых, так и на фронтальной и задней стенках, возможна встречно-лобовая и встречно-смещенная их компо­новка. При встречно-лобовой ориентации горелок (рис. 12.9, б) в топке получается концентрированный удар встреч­ных потоков. Часть общего потока направляется в верхнюю половину топки, часть опускается в холодную воронку. При неравенстве импульсов возникает асимметричность течения в вертикальной плоскости и результативный факел прибли­жается к одной из стен, что может вызвать ее шлакование.

При встречно-смещенной компоновке горелок по схеме МЭИ (рис. 12.9, в) горящие потоки взаимно проникают друг в друга. При этом имеет место лучшее заполнение фа­келом топочного объема, обеспечивается принудительный подвод теплоты к корню факела, улучшается выгорание топлива при бесшлаковочном режиме работы экранов. В случае применения встречно-смещенной компоновки го­релок более целесообразными являются щелевые горелки.

При угловом расположении горелок возможны следую­щие схемы их установки (рис. 12.10): диагональная, блоч­ная, тангенциальная. При таком размещении горелок воз­никает ряд конструктивных трудностей. Наблюдается так­же шлакование стенок. При тангенциальном расположении горелок при взаимодействии струй образуется единый за­крученный поток, направляющийся вверх и вниз топочной камеры. По центру топки образуется область несколько по­ниженного давления, что стабилизирует положение факела. Наличие крутки потока сохраняется вплоть до выхода из топки. При вытянутой форме сечения топки в плане может иметь место искажение аэродинамики потока, сопровож­дающееся шлакованием стенок. Поэтому при тангенциаль­ной компоновке горелок целесообразно, чтобы горизон­тальное сечение топочной камеры по форме приближалось к квадратному.

При фронтальном, встречном и угловом расположении горелки по высоте топки могут размещаться в один-два и более ярусов.

Количество горелок размещенных в топке, определяется на основе следующих расчетов. Тепловая мощность топки Q тт, МВт,

Q тт = B p Q н р (12.1)

где Вр - общий расчетный расход топлива на котел, кг/с;

Q н р - теплота сгорания топлива, МДж/кг.

Тепловая мощность горелки Q г, МВт,

Q г = В г Q н р (12.2)

где Вр-расход топлива на одну горелку, кг/с.

Количество горелок

п = В р /В г. (12.3)

С увеличением паропроизводительности котла количест­во горелок увеличивается.

Так, для котла производительностью 20,8 кг/с (75 т/ч) при тепловой мощ­ности топки около 60 МВт применяют две-три вихревые горелки при фронтальном и две-четыре горелки при встреч­ном их расположении; при угловой компоновке применяют четыре прямоточные горелки. Для котла производитель, 89 кг/с (320 т/ч) при тепловой мощности топки 290 МВт применяют 6?8 встречных или 16 угловых горе­лок.

По конфигурации факела различают топки с U-образ-ным факелом (рис. 12.1, а) и L-образным факелом (рис. 12.1, б). Наибольшее распространение нашли топки с L-об­разным факелом. По способу удаления шлака различают пылеугольные топки с твердым (гранулированным) и жид­ким шлакоудалением.

а-прямоточно-улиточная; б - прямоточно-лопаточная; в - двухулиточная; г - улиточно-лопаточная; д - лопаточно-лопаточная;

I - первичный воздух с угольной пылью; II - вторичный воздух

Рисунок 12.1 - Принципиальные схемы пылеугольных вихревых горелок


Рисунок 12.3 - Принципиальная схема прямоточных горелок

а - щелевая горелка; б - сопловая горелка; I - аэросмесь; II - вторичный воздух


1 - патрубок первичного воздуха; 2 - сопло первичного воздуха; 3 -

сопло вторичного воздуха

Рисунок 12.5 - Схема зажигания пылевоздушной смеси:

а - круглая турбулентная горелка; б - прямоточная горелка с внешним вторичным воздухом; в - прямоточная горелка с внутренним вторичным воздухом; I - аэросмесь; II - вторичный воздух


а - топка с открытой амбразурой; б - амбразура с горизонтальным рассекателем; в - эжекционная амбразура; г-амбразура с плоскими параллельными струями; д - вихревая горелка;

1 - шахта; 2 - амбразура; 3 - сопла вторичного воздуха (верхние); 4 -сопла вторичного дутья (нижние); 5 - сопла вторичного воздуха; 5 - рассекатель; 7 - горелка; 8 - ввод вторичного воздуха

Юридические услуги. Стаж 10 лет.

Газовые горелки котельных агрегатов

Классификация газовых горелок.
Газовая горелка
- это устройство для образования горючих смесей газового топлива и подачи их к месту сжигания с обеспечением его устойчивого горения и возможностью регулирования процесса горения.

Рис. 3.1. Схемы, иллюстрирующие осуществление принципов сжигания газа :
а - диффузионный; б - кинетический; в - диффузионно-кинетический в горелках с неполным предварительным смешением; г - то же, в горелках с частичным предварительным смешением;
ФДГ - фронт диффузионного горения; ФКГ - фронт кинетического горения; а - коэффициент избытка воздуха

Для сжигания топлива в топках котельных агрегатов используется много разнообразных горелочных устройств, которые можно классифицировать по ряду признаков, в том числе:
по степени подготовки горючей смеси - без предварительного смешения газа с окислителем; с полным предварительным смешением; с неполным предварительным смешением; с частичным предварительным смешением;
по способу подачи воздуха - с принудительной подачей воздуха от вентилятора; инжектированием воздуха газовой струей, а также за счет разрежения в топке;
по давлению газа перед горелками - низкого давления - до 5 кПа (500 мм вод. ст.); среднего давления - до критического перепада давлений (разности давлений в горелке и топке), при котором скорость истечения газа, а следовательно, и расход газа достигают максимальных (так называемых критических) значений; высокого давления - при критическом и сверхкритическом перепаде давлений (скорость истечения и расход газа при этом равны максимальным (критическим) значениям и не растут даже при увеличении давления);
по степени автоматизации управления горелками - с ручным управлением, полуавтоматические, автоматические;
по скорости истечения продуктов горения - низкая - до 20 м/с; средняя - 20...70 м/с; высокая - более 70 м/с.

Принципы сжигания газа. В зависимости от способа подачи в топочную камеру газа и воздуха и условий их смешения различают варианты организации процесса горения, основанные на следующих принципах горения:
диффузионный - с внешним (после горелки) смешением газа и воздуха;
кинетический - с полным предварительным (в горелке) смешением до образования однородной смеси;
диффузионно-кинетический - с неполным предварительным смешением без образования однородной смеси;
то же, с частичным предварительным смешением с образованием однородной смеси, но с недостатком окислителя в начальной смеси.
Для сжигания, например, природного газа требуется определенное время тг, которое складывается из времени смешения гсм газа с воздухом, времени нагрева тн газовоздушной смеси до температуры воспламенения и времени тх р, необходимого для протекания собственно химических реакций горения:

На рис. 3.1, а показана принципиальная схема организации диффузионного принципа сжигания. Видно, что газ и воздух в пределах горелки не контактируют. Смешение компонентов, участвующих в горении, в данном случае осуществляется в топочной камере. Для диффузионного принципа сжигания ХфИЗ » ^х.р? процесс горения при этом затягивается, и при достаточном для сжигания количестве воздуха получается относительно длинный светящийся факел ярко-соломенного цвета. Сгорание топлива происходит в тонком поверхностном слое факела.
При кинетическом принципе сжигания (рис. 3.1, б) наиболее продолжительная часть процесса - стадия смешения топлива с окислителем длительностью тсм - переносится в горелку. При этом тхр » ТфИЗ, т.е. т, = тхр. При достаточных температурах в топке процесс горения топлива происходит очень быстро и образуется короткий факел в виде голубого прозрачного конуса. Сгорание топлива в данном случае осуществляется на поверхности этого конуса, называемой фронтом кинетического горения.
При реализации диффузионно-кинетического способа сжигания (в горелках с неполным и частичным предварительным смешением), при котором продолжительности физической и химической стадий процесса соизмеримы, т.е. тфиз « тхр, факел имеет два фронта горения (рис. 3.1, в, г): кинетический в виде голубого прозрачного конуса и диффузионный, в котором происходит догорание топлива в прозрачном факеле бледно-голубого цвета.
Диффузионные горелки. В этих горелках газ смешивается с воздухом в топке вследствие взаимной диффузии (взаимного проникновения) газа и воздуха на границах вытекающего потока.
Разновидностью диффузионных горелок является подовая горелка (рис. 3.2), которая состоит из газового коллектора 2 диаметром 32...80 мм. Коллектор изготовлен из стальной трубы, заглушённой с одного торца, имеет два ряда отверстий диаметром 1...3мм, просверленных одно относительно другого под углом 60... 120°. Газовый коллектор устанавливается в щели 4, выполненной из огнеупорного кирпича, опирающегося на колосниковую решетку 3. Газ через отверстия в коллекторе выходит в щель, равномерно распределяясь по ее длине. Воздух для горения поступает в ту же щель через колосниковую решетку за счет разрежения в топке или принудительно с помощью вентилятора. В процессе работы огнеупорная футеровка щели разогревается, обеспечивая стабилизацию пламени на всех режимах работы горелки.
Для наблюдения за процессом горения и розжига горелки служит смотровое окно 1. Подовые горелки могут работать на низком и среднем давлении газа и используются в секционных котлах, котлах ТВГ, КВ-Г, ДКВР.

Инжекционные горелки низкого и среднего давления. Показанная на рис. 3.3 инжекционная газовая горелка низкого давления по принципу организации смешения газа с воздухом относится к горелкам с частичным предварительным смешением.
Струя газа под давлением выходит из сопла 1 с большой скоростью и за счет своей энергии захватывает в конфузоре 2 воздух, увлекая его внутрь горелки. Смешение газа с воздухом происходит в смесителе, состоящем из конфузора 2, горловины 3 и диффузора 4. Разрежение, создаваемое инжектором, возрастает с увеличением давления газа, и при этом изменяется количество подсасываемого первичного воздуха (от 30 до 70 %), необходимого для полного сгорания газа.


Рис. 3.2. Подовая горелка :
1 - смотровое окно; 2 - газовый коллектор; 3 - колосниковая решетка; 4 - щель; 5 - огнеупорные кирпичи


Рис. 3.3. Инжекционная газовая горелка низкого давления :
1 - сопло; 2 - конфузор; 3 - горловина; 4 - диффузор; 5 - огневой насадок; 6 - регулятор первичного воздуха

Количество воздуха, поступающего в горелку, можно изменять при помощи регулятора 6 первичного воздуха, представляющего собой шайбу, вращающуюся на резьбе. При вращении регулятора изменяется расстояние между шайбой и конфузором, и таким образом регулируется подача воздуха.
Для обеспечения полного сгорания топлива часть воздуха поступает за счет разрежения в топке. Регулирование расхода вторичного воздуха производится путем изменения разрежения в топке.
Инжекционные горелки низкого давления выполняются огневыми насадками 5 разной формы.
Инжекционные горелки обладают свойством саморегулирования, т.е. возможностью обеспечения постоянства соотношения между количеством поступающего в горелку газа и количеством подсасываемого ими первичного воздуха. При этом, если подача воздуха в горелку при помощи шайбы отрегулирована по цвету пламени или показанию газоанализатора на полное сгорание газа и горелка работает спокойно без шума, то дальнейшее изменение ее нагрузки можно проводить, увеличивая или уменьшая только расход газа, не меняя положения воздушной шайбы.
Изменяя режим работы горелки, необходимо следить за устойчивостью ее пламени, так как на характер горения газа влияют не только количество подаваемого в нее первичного воздуха, но и количество вторичного воздуха, поступающего в топку.
Инжекционная горелка среднего давления ИГК конструкции Ф.Ф.Казанцева (рис. 3.4) относится к горелкам с полным предварительным смешением и устойчиво работает при давлении газа 2...60 кПа (200...6ООО мм вод. ст.).
Газ, поступающий в горелку через газовое сопло 4, инжектирует воздух в необходимом для сжигания количестве. В смесителе 2, состоящем из конфузора, горловины и диффузора, осуществляется полное перемешивание газа с воздухом.
В конце диффузора установлен пластинчатый стабилизатор 1, который обеспечивает устойчивую работу горелок без отрыва и проскока пламени в широком диапазоне нагрузок.


Рис. 3.4. Инжекционная горелка ИГК среднего давления конструкции Ф. Ф. Казанцева :
1 - пластинчатый стабилизатор горения; 2 - смеситель; 3 - регулятор подачи воздуха; 4 - газовое сопло; 5 - гляделка

Стабилизатор горения состоит из тонких стальных пластин, расположенных на расстоянии примерно 1,5 мм одна от другой. Пластины стабилизатора стянуты между собой стальными стержнями, которые на пути движения газовоздушной смеси создают зону обратных токов горячих продуктов горения, за счет теплоты которых происходит непрерывное поджигание газовоздушной смеси. Фронт пламени удерживается на определенном расстоянии от устья горелки.
Регулирование подачи воздуха производится с помощью регулятора 3. На внутренней его поверхности укреплен клеем шумопоглощающий материал. В регуляторе выполнено смотровое окно - гляделка 5 для наблюдения за целостностью стабилизатора.
Вследствие хорошего перемешивания газа с воздухом инжекционные горелки обеспечивают создание малосветящегося факела с полным сгоранием газа при малых коэффициентах избытка воздуха а « 1,05.
К преимуществам инжекционных горелок относятся:
простота конструкции;
устойчивая работа горелки при изменении нагрузок;
надежность работы и простота обслуживания;
отсутствие вентилятора, электродвигателя для его привода, воздухопроводов к горелкам;
возможность саморегулирования, т.е. поддержания постоян¬ного соотношения газ -воздух.
К недостаткам инжекционных горелок относятся:
значительные габариты горелок по длине, особенно горелок увеличенной производительности (например, горелка ИГК-250-00 номинальной производительностью 135 м3/ч имеет длину 1 914 мм);
высокий уровень шума у инжекционных горелок среднего давления при истечении газовой струи и инжектировании воздуха;
зависимость поступления вторичного воздуха от разрежения в топке (для инжекционных горелок низкого давления), плохие условия смесеобразования в топке, приводящие к необходимости увеличения общего коэффициента избытка воздуха до а= 1,3... 1,5 и даже выше для обеспечения полного сгорания топлива.

Горелки с принудительной подачей воздуха. У большинства горелок с принудительной подачей воздуха образование газовоздушной смеси начинается в самой горелке и завершается в топке. Воздух для сгорания газа подается с помощью вентилятора. Подачу газа и воздуха осуществляют по отдельным трубам, поэтому такие горелки часто называют двухпроводными и смесительными. Работают они на газе низкого и среднего давления. Для лучшего перемешивания поток газа чаще всего направляют через многочисленные отверстия под углом к потоку воздуха. В зависимости от направления газового потока различают горелки с центральной подачей газа, если поток направлен от центра к периферии, и горелки с периферийной подачей газа, если поток направлен от периферии к центру горелки.
Во многих конструкциях горелок для улучшения условий смешения потоку воздуха сообщают вращательное движение, для чего используют завихрители с постоянным и регулируемым углом установки лопаток либо вводят воздух тангенциально в горелку цилиндрической формы.


Рис. 3.5. Горелка ГА с принудительной подачей воздуха :
1 - штуцеры для измерения давления газа и воздуха; 2 - распределительная камера; 3 - газовые трубки; 4 - огнеупорная футеровка; 5 - смесительная камера; 6 - головка с направляющими ребрами для закручивания воздуха

Горелки могут работать на горячем воздухе, подогретом за счет использования теплоты отходящих газов. На ряде горелок с принудительной подачей воздуха можно регулировать длину и светимость факела. На котлах малой и средней мощности устанавливают горелки типов ГА, ГГВ, Г-1,0 и др.
Горелка типа ГА с принудительной подачей воздуха приведена на рис. 3.5. Газ низкого или среднего давления подается в распределительную камеру 2, из которой поступает в трубки 3. На концы трубок навернуты конические головки Расположенная в центре горелки трубка предназначена для наблюдения за процессом горения, а при сжигании мазута ее используют для установки форсунки. Свободные пространства между головками трубок в устье горелки уплотняют огнеупорной футеровкой 4 (из жароупорного бетона). Это предохраняет горелку от перегрева и обеспечивает поступление воздуха только к газораспределительным головкам.
В горелке газовой вихревой ГГВ (рис. 3.6) газ из газораспределительного коллектора 2 выходит через отверстия, просверленные в один ряд, и под углом 90° поступает в закрученный с помощью лопаточного завихрителя 4 поток воздуха.


Рис. 3.6. Горелка газовая вихревая ГГВ :
1 - смотровое окно; 2 - газовый коллектор; 3 - корпус горелки; 4 - лопаточный завихритель; 5 - устье горелки; 6 - конический туннель


Рис. 3.7. Горелка для природного газа :
1 - камера смешения; 2 - конусная насадка; 3 - направляющие лопатки; 4 - трубопровод для подачи газа; 5 - трубопровод для тангенциального подвода
воздуха

Лопатки приварены под углом 45° к наружной поверхности газового коллектора. Внутри газового коллектора расположена труба для наблюдения через смотровое окно 7 за процессом горения. При работе на мазуте в нее устанавливают паромеханическую форсунку.
На рис. 3.7 показана горелка для природного газа. Производительность данной вихревой горелки до 750 м3/ч. Газ поступает в центральный трубопровод 4 горелки и выходит в камеру смешения 1 через ряд мелких отверстий в конусной насадке 2, установленной на выходе из трубопровода подачи газа. Воздух по трубопроводу 5 поступает в камеру смешения по межтрубному пространству, имея вращательное движение, обеспечиваемое тангенциальным подводом к горелке и направляющими лопатками 3.

Комбинированные горелки. В комбинированных горелках раздельно или совместно сжигается жидкое и газообразное топливо. Например, газомазутная горелка ГМГ (рис. 3.8) состоит из трех вставленных одна в другую камер. Газ поступает в среднюю узкую камеру и выходит через один или два ряда отверстий 4, расположенных по окружности. В центре горелки размещена паромеханическая форсунка, включаемая при работе на мазуте.
Необходимый для горения воздух подается в горелку двумя потоками, из которых один (примерно 15% общего расхода воздуха) проходит через завихритель J, состоящий из лопаток, установленных под углом непосредственно к корню факела. Этот воздух, называемый первичным, способствует улучшению перемешивания с газом, особенно при малых тепловых нагрузках котла. Другой поток воздуха, называемый вторичным и являющийся основным, проходит через завихритель 2 и закрученным потоком поступает к месту горения.
В последнее время выпускаются модернизированные горелки ГМГМ, в которых несколько изменены паромеханическая форсунка, завихрители первичного и вторичного воздуха.


Рис. 3.8. Газомазутная горелка ГМГ :
1 - монтажная плита; 2, 3 - завихритель вторичного и первичного воздуха соответственно; 4 - газовыходное отверстие

Газ выходит через отверстия, расположенные в один ряд по направлению движения воздуха и в два ряда в перпендикулярном направлении, что дает хорошее перемешивание газа с воздухом. Горелки ГМГМ обеспечивают полное сгорание газа при ос = 1,05.
В газомазутных горелках котлов ПТВМ газ из газопровода поступает в кольцеобразную газовую камеру 5 горелки (рис. 3.9) и выходит через два ряда отверстий в направлении, перпендикулярном направлению потока воздуха. В центральной части горелки расположена мазутная форсунка J, которая во время работы охлаждается проточной водой. При сжигании газа форсунка должна быть удалена из зоны горения. Воздух к каждой горелке подается отдельным центробежным вентилятором. Для лучшего перемешивания с газом воздух закручивается завихрителем 4.

Запальные горелки. Для розжига основной горелки служит запальная горелка. Запальные горелки могут быть переносными (для ручного розжига) и стационарными (для автоматического розжига).
Широкое распространение для ручного розжига горелок получили переносные газовые запальные горелки конструкции Мосгазпроекта. Газовая горелка присоединяется к газопроводу с помощью гибкого шланга 7 (рис. 3.10). Поток газа, выходящего из сопла б, подсасывает через отверстие 2 воздух из окружающей среды. Газовоздушная смесь поступает в огневой насадок 4 и через ряд мелких отверстий выходит из него, образуя множество факелов небольшого размера.


Рис. 3.9. Газомазутная горелка котлов ПТВМ:
1 - короб; 2 - смотровое окно; 3 - мазутная форсунка; 4 - завихритель воздуха; 5- газовая камера; 6 - шамотобетон; 7- асбестодиатомитовый бетон; 8 - магнезиальная обмазка; 9 - концевой упор горелки в экраны

Запальная горелка как вспомогательное приспособление вводится к устью разжигаемой горелки через специальное отверстие. Запальное отверстие располагается над горелкой или сбоку от нее. Для правильной установки относительно устья разжигаемой горелки запальная горелка имеет ограничитель.
Стационарные запальные горелки являются элементами запально-защитных устройств (ЗЗУ). Они предназначены для автоматического и дистанционного розжига горелочных устройств.


Рис. 3.10. Газовая запальная горелка конструкции Мосгазпроекта :
1 - штуцер-удлинитель для присоединения шланга; 2 - отверстия для прохода воздуха; 3 - торцевая пластинка; 4 - огневой насадок; 5 - воздушная обойма; 6 - сопло; 7 - гибкий шланг

Электрозапальники осуществляют воспламенение поступающего в них газа и контроль собственного пламени. В комплект электрозапальника входит трансформатор (или катушка) зажигания и электромагнитный клапан. Электрозапальник имеет трубопровод 1 (рис. 3.11) подачи газа, изолированный высоковольтный центральный электрод 6, конец которого загнут так, что между ним и корпусом горелки образуется небольшой зазор порядка 6...8 мм, стабилизатор 7 горения и контрольный электрод.
При подаче тока на трансформатор зажигания между центральным электродом и корпусом возникает высокое напряжение 8...10кВ, в результате вследствие пробоя воздушного зазора образуется искра. Одновременно с включением трансформатора зажигания открывается электромагнитный клапан подачи газа на электрозапальник. Газ поджигается искрой, и таким образом возникает факел. Контроль горения факела осуществляется с помощью контрольного электрода, включенного в электрическую цепь автомата контроля пламени. При наличии факела эта цепь замкнута, так как при высоких температурах факел электропроводен. При погасании факела электрическая цепь разрывается, и автомат контроля пламени отключает питание электромагнитного клапана. Подача газа на запальник при этом прекращается.

Блочные автоматизированные горелки со встроенным вентилятором. В последнее время в промышленности, коммунально-бытовом секторе и сельском хозяйстве появилось значительное количество котельных агрегатов (в основном жарогазотрубных) с высоким КПД, низким выбросом токсичных газов, оснащенных полностью автоматизированными горелками.


Рис. 3.11. Электрозапальник :
1 - трубопровод подачи газа; 2 - клемма высоковольтного электрода; 3 - изолятор; 4 - винт для центровки электрода; 5 - фарфоровая трубка; 6 - высоковольтный центральный электрод; 7 - стабилизатор горения

Горелочные устройства характеризуются широким диапазоном теплопроизводительности - 10...20 ООО кВт и предназначены для работы на природном и сжиженном газе, легких жидких топливах и мазуте. В комбинированных горелках сжигаются как газообразные, так и жидкие топлива.
Одной из ведущих мировых фирм по производству горелок является фирма Weishaupt (Германия), разрабатывающая и выпускающая полностью автоматизированные газовые, жидкотопливные и комбинированные горелки с одноступенчатым, двухступенчатым, плавно-двухступенчатым и модулируемым регулированием производительности.
На рис. 3.12 в качестве примера приведена автоматическая га¬зовая горелка типа WG-5 мощностью 12,5...50 кВт. Горелка предназначена для сжигания природного и сжиженного газа и оснащена следующей арматурой: шаровым краном 9 для подачи газа к горелке; реле 8 давления газа; многофункциональным газовым мультиблоком 7, в котором имеются фильтр (грязеуловитель), два магнитных клапана, регулятор давления газа. По присоединительному каналу 6 газ поступает в пламенную трубу 3.


Рис. 3.12. Автоматическая газовая горелка типа WG-5 :
1 - электронный прибор зажигания; 2 - электрод зажигания; 3 - пламенная труба; 4 - подпорная шайба; 5 - ионизационный электрод; 6 - присоединительный канал; 7 - многофункциональный газовый мультиблок; 8 - реле давления газа; 9- шаровой кран; 10 - колесо вентилятора; 11 - винт регулировки воздушной заслонки; 12- указатель положения воздушной заслонки; 13 - электродвигатель; 14 - реле давления воздуха; 15 - менеджер горения; 16 - регулировочный винт подпорной шайбы

В корпусе горелки расположены вентилятор, который приводится в действие с помощью электродвигателя 13, электронный прибор 7 зажигания, микропроцессорный менеджер горения 75.
Колесо 10 вентилятора, приводимое в действие электродвигателем, всасывает воздух через решетку воздухозаборника в корпус регулятора воздуха, в котором расположена воздушная заслонка. Положение воздушной заслонки можно изменять с помощью винта 77, и этим в процессе наладки работы горелки достигается оптимизация количества подводимого воздуха на стороне всасывания. Воздух вентилятором подается в пламенную трубу 3.
На конической части пламенной трубы находится подпорная шайба 4, за которой происходит смешивание газа и воздуха, поступающего под давлением. Регулировочным винтом 16 можно менять положение подпорной шайбы и таким образом изменять количество подаваемого воздуха на напорной стороне.
Управление работой горелки и диагностика неисправностей осуществляется с помощью микропроцессорного менеджера горения 75.
При работе горелки осуществляется постоянный контроль минимального давления газа с помощью реле давления газа. Реле 14 давления воздуха контролирует работу вентилятора горелки. Контроль наличия пламени происходит с помощью контрольного ионизационного электрода 5.
При включении горелки термостат (регулятор температуры) посылает на менеджер горения команду на включение. После этого запускается электродвигатель 13 горелки, и вентилятор начинает нагнетать воздух в камеру горения. Условием включения электродвигателя является замыкание контакта реле давления газа, подтверждающего наличие достаточного давления газа. В начале предварительной продувки топки срабатывает реле давления воздуха. По окончании продувки начинается розжиг горелки, при этом электронный прибор 7 зажигания создает высокое напряжение между электродом 2 зажигания и подпорной шайбой 4. При появлении искры открываются магнитные запорные клапаны в многофункциональном мультиблоке и происходит розжиг горелки. Сообщение о наличии пламени, контролируемое ионизационным электродом, поступает на менеджер горения.

Любые горелки служат для ввода в топку топлива и воздуха, последующего их перемешивания и для обеспечения устойчивого воспламенения топливовоздушной смеси. Другое название – горелочные устройства. Любые горелки должны удовлетворять требованиям экономичности, экологичности, технологичности и ремонтопригодности и надежности.

Конкретные требования:
1. Должны обеспечивать экономичное сжигание расчетных видов топлив во всем диапазоне нагрузок котла
2. Должны обеспечивать требуемые экологические показатели при работе на расчетных видах топлива
3. Конструкция горелок должна быть такова, чтобы обеспечивалось герметичное соединение с топкой
4. Горелки должны быть технологичными и ремонтопригодными
5. Горелки должны обеспечивать срок службы котла не менее 12000 часов без капитального ремонта

Выполнение требований 1 и 2 зависят не только от конструкции горелок но и от топочного устройства.

Классификация:
1. По виду сжигания топлива горелки бывают:
1.1. Пылеугольные
1.2. Газовые
1.3. Мазутные
1.4. Комбинированные
2. По аэродинамическому способу ввода компонентов горючей смеси:
2.1. Вихревые
2.2. Прямоточные

Под прямоточной горелкой понимается такая горелка, в которой потоки топлива и воздуха вводится в топку без закрутки. Формально, в выходном сечении она может иметь любую форму, но обычно, каналы, через которые вводятся потоки, прямоугольны в сечении и выходное сечение горелки тоже прямоугольное.

Типы прямоточных горелок:
a) Горелка с центральным вводом вторичного воздуха (с периферийным вводом пылевоздушной смеси). Обычно такие горелки используются для низкореакционных топлив.
b) Горелка с периферийным подводом вторичного воздуха (с центральным вводом П-В смеси). Используются для сжигания высокореакционных топлив.
a. Т.к. вторичный воздух в пределах этих горелок разворачивается на 90 градусов и попадает в вертикальный выходной канал с h>b, то в пределах поворота предусматривается направляющий лопаточный аппарат 4, позволяющий более равномерно распределить воздух по высоте выходного канала. — рассчитываются, чтобы неравномерность была минимальна.
c) ГПО — Горелка прямоточная, с односторонним подводом П-В смеси. Горелки ГПО разрабатывались специально для тангенциальной компоновки горелок в топке и поэтому используются только при этой компоновке. Они достаточно универсальны и поэтому применяются для любых видов топлив – как высоко- так и низко-реакционных. (15-12-4)
d) ГПЧг – Горелка прямоточная с чередующимися по высоте горизонтальными каналами. (15-12-5). Использование первой модификации – для высокореакционных топлив. Вторая модификация –специально для бурых углей.
e) ГПЧв – горелка прямоточная с чередующимися по высоте вертикальными каналами. ГПЧвр — горелка прямоточная с чередующимися по высоте вертикальными каналами и каналов рециркуляции. (15-12-6). Эти горелки предназначены для сжигания бурых углей. Большинство бурых углей – сильно шлакуюшее топливо и одновременно – они очень влажные, поэтому для бурых углей обычно используется газовая сушка топлива. Для того, чтобы в зоне активного горения не было шлакования экранов топки нужно, чтобы температуры в этой зоне были относительно невысоки, а в этом случае может оказаться полезным ввод в топку газов рециркуляции (горелки ГПЧвр). На ЗИО были разработаны унифицированные ряды этих горелок разной тепловой мощности. П-67 (Пп-2650-25-545БТ) ЗиО, работающих в составе блока 800МВт Березовской ГРЭС и сжигающий Березовский Б2. Эти котлы имеют габариты ~25х25х100м. На этих котлах установлено 32 горелки ГПЧвр в 4 яруса.

Все эти горелки целиком изготавливаются на заводе. Для проведения монтажа на них предусматриваются подсоединительные фланцы 8, для пристыковке к пыле- и воздухопроводам, а также крепежный фланец 5 для стыковки горелки с топкой. После проведения монтажа, на горелки снаружи наносится теплоизоляция и Ме обшивка для защиты теплоизоляции.

Горелки полного предварительного перемешивания (ГПП) предназначены для сжигания топлива в плоских параллельных струях и были разработаны на кафедре ПГС для сжигания торфа и подмосковного бурого угля. А последствии они использовались также для сжигания других бурых углей, а также некоторых каменных углей. ГПП применяются исключительно в сочетании с ММТ и гравитационным (шахтным) сепаратором. Горелка устанавливается в верхней части шахты и по первичному воздуху (П-В смеси является продолжением сепаратора. Вторичный воздух по каналам 1 подается в камеру смешения 6, при этом струи вторичного воздуха вытекают туда с большой скоростью и по этому эжектируют в камеру по каналам 3 П-В смесь из шахты. Внутри каналов вторичного воздуха установлены поворотные лопатки 7, которые позволяют получить на выходе из канала более равномерное распределение воздуха по высоте. Внизу канал вторичного воздуха закрыт рассекателем 2. Рассекатель позволяет улучшить аэродинамическую картину сечения и снизить сопротивление горелки; он также предохраняет нижнюю часть корпуса канала вторичного воздуха от абразивного износа. Существует две модификации ГПП: одноструйная (б) и двухструйная (а). Их применение связано с особенностями работы гравитационного сепаратора. В шахтном сепараторе, в зависимости от направления вращения ротора мельницы, существует область восходящего потока смеси и область сепарации. Область восходящего потока занимает примерно половину шахты и с этим обстоятельством связано использование одноструйных или двухструйных ГПП. Если двухструйную ГПП использовать в сочетании с ММТ, ось ротора которой расположена перпендикулярно фронту котла, то большая часть П-В смеси попадет в одну из двух амбразур, а во вторую попадет очень мало были, поэтому двухструйные ГПП обычно используют при расположении осей ММТ параллельно фронту котла, при этом в обе амбразуры попадает одинаковое количество пыли. Для одноструйных горелок расположение оси ротора не имеет значения, но обычно они используются при перпендикулярном расположении оси ротора к фронту котла. На практике ГПП применяются на котлах паропроизводительностью 50..320т/ч. На котлах производительностью =100т/ч обычно используют 3 ММТ с перпендикулярными осями и одноструйными горелками. Иногда на больших котлах (около 320 т/ч) используют двухструйные горелки – это получается из-за того, что высота одноструйных горелок была бы очень большой, в частности, три мельницы и двухструйные горелки используются на колах ТП – 208 (Еп – 670 – 13.8 – 545БТ, двухкорпусные) на Шатурской ГРЭС.

При установке трех мельниц, оси крайних мельниц повернуты под углом относительно средней мельницы. Это позволяет уменьшить воздействие крайних труб на боковые экраны топки и тем самым понизить вероятность их шлакования. Во вторых, между мельницами образуются ремонтные зоны, позволяющие в том числе вынуть ротор. Обычно этот угол порядка 15-20град. При использовании двух ММТ и двухструйных горелок, оси струн тоже наклонены друг к другу для уменьшения шлакования боковых стен.

Кроме рассмотренных прямоточных горелок существует еще:
. Плоскофакельные горелки
. Горелки ударного типа

Достоинства:
1. Конструктивно просты, по сравнению с вихревыми горелками
2. Имеют меньшее аэродинамическое сопротивление, чем вихревые горелки, следовательно расход электроэнергии на собственные нужды меньше.
3. Топки, оборудованные прямоточными горелками отличаются меньшим выходом оксидов азота NOx, чем топки с вихревыми горелками.

Недостатки:
1. Худшая, чем в вихревых, организация перемешивания потока.
2. Меньшая единичная мощность
3. Прямоточные горелки с большей степенью чувствительны к способу их компоновки в топки. Ошибка при выборе компоновочных размеров для прямоточных горелок опаснее, чем для вихревых. Это связано с механизмом стабилизации процесса горения (механизм воспламенения П-В смеси). В прямоточных горелках стабилизация процесса горения в основном протекает за счет внешней эжекции продуктов сгорания.
4. Прямоточные горелки за исключение ГПО и плоско-факельных горелок менее универсальны по топливу, чем вихревые.
5. Как правило, у прямоточных горелок более высокая дальнобойность, чем у вихревых горелок. Исключение – плоско-факельные горелки и горелки ударного типа.