Тепловая мощность n. Определение тепловой мощности систем отопления

Создавать систему отопления в собственном доме или даже в городской квартире – чрезвычайно ответственное занятие. Будет совершенно неразумным при этом приобретать котельное оборудование, как говорится, «на глазок», то есть без учета всех особенностей жилья. В этом вполне не исключено попадание в две крайности: или мощности котла будет недостаточно – оборудование станет работать «на полную катушку», без пауз, но так и не давать ожидаемого результата, либо, наоборот, будет приобретен излишне дорогой прибор, возможности которого останутся совершенно невостребованными.

Но и это еще не все. Мало правильно приобрести необходимый котел отопления – очень важно оптимально подобрать и грамотно расположить по помещениям приборы теплообмена – радиаторы, конвекторы или «теплые полы». И опять, полагаться только лишь на свою интуицию или «добрые советы» соседей – не самый разумный вариант. Одним словом, без определенных расчетов – не обойтись.

Конечно, в идеале, подобные теплотехнические вычисления должны проводить соответствующие специалисты, но это часто стоит немалых денег. А неужели неинтересно попытаться выполнить это самостоятельно? В настоящей публикации будет подробно показано, как выполняется расчет отопления по площади помещения, с учетом многих важных нюансов. По аналогии можно будет выполнить , встроенный в эту страницу, поможет выполнить необходимые вычисления. Методику нельзя назвать совершенно «безгрешной», однако, она все же позволяет получить результат с вполне приемлемой степенью точности.

Простейшие приемы расчета

Для того чтобы система отопления создавала в холодное время года комфортные условия проживания, она должна справляться с двумя основными задачами. Эти функции тесно связаны между собой, и разделение их – весьма условно.

  • Первое – это поддержание оптимального уровня температуры воздуха во всем объеме отапливаемого помещения. Безусловно, по высоте уровень температуры может несколько изменяться, но этот перепад не должен быть значительным. Вполне комфортными условиями считается усредненный показатель в +20 °С – именно такая температура, как правило, принимается за исходную в теплотехнических расчетах.

Иными словами, система отопления должна быть способной прогреть определенный объем воздуха.

Если уж подходить с полной точностью, то для отдельных помещений в жилых домах установлены стандарты необходимого микроклимата – они определены ГОСТ 30494-96. Выдержка из этого документа – в размещенной ниже таблице:

Предназначение помещения Температура воздуха, °С Относительная влажность, % Скорость движения воздуха, м/с
оптимальная допустимая оптимальная допустимая, max оптимальная, max допустимая, max
Для холодного времени года
Жилая комната 20?22 18?24 (20?24) 45?30 60 0.15 0.2
То же, но для жилых комнат в регионах с минимальными температурами от - 31 °С и ниже 21?23 20?24 (22?24) 45?30 60 0.15 0.2
Кухня 19?21 18?26 Н/Н Н/Н 0.15 0.2
Туалет 19?21 18?26 Н/Н Н/Н 0.15 0.2
Ванная, совмещенный санузел 24?26 18?26 Н/Н Н/Н 0.15 0.2
Помещения для отдыха и учебных занятий 20?22 18?24 45?30 60 0.15 0.2
Межквартирный коридор 18?20 16?22 45?30 60 Н/Н Н/Н
Вестибюль, лестничная клетка 16?18 14?20 Н/Н Н/Н Н/Н Н/Н
Кладовые 16?18 12?22 Н/Н Н/Н Н/Н Н/Н
Для теплого времени года (Норматив только для жилых помещений. Для остальных – не нормируется)
Жилая комната 22?25 20?28 60?30 65 0.2 0.3
  • Второе – компенсирование потерь тепла через элементы конструкции здания.

Самый главный «противник» системы отопления — это теплопотери через строительные конструкции

Увы, теплопотери – это самый серьезный «соперник» любой системы отопления. Их можно свести к определенному минимуму, но даже при самой качественной термоизоляции полностью избавиться от них пока не получается. Утечки тепловой энергии идут по всем направлениям – примерное распределение их показано в таблице:

Элемент конструкции здания Примерное значение теплопотерь
Фундамент, полы по грунту или над неотапливаемыми подвальными (цокольными) помещениями от 5 до 10%
«Мостики холода» через плохо изолированные стыки строительных конструкций от 5 до 10%
Места ввода инженерных коммуникаций (канализация, водопровод, газовые трубы, электрокабели и т.п.) до 5%
Внешние стены, в зависимости от степени утепленности от 20 до 30%
Некачественные окна и внешние двери порядка 20?25%, из них около 10% - через негерметизированные стыки между коробками и стеной, и за счет проветривания
Крыша до 20%
Вентиляция и дымоход до 25 ?30%

Естественно, чтобы справиться с такими задачами, система отопления должна обладать определенной тепловой мощностью, причем этот потенциал не только должен соответствовать общим потребностям здания (квартиры), но и быть правильно распределенным по помещениям, в соответствии с их площадью и целым рядом других важных факторов.

Обычно расчет и ведется в направлении «от малого к большому». Проще говоря, просчитывается потребное количество тепловой энергии для каждого отапливаемого помещения, полученные значения суммируются, добавляется примерно 10% запаса (чтобы оборудование не работало на пределе своих возможностей) – и результат покажет, какой мощности необходим котел отопления. А значения по каждой комнате станут отправной точкой для подсчета необходимого количества радиаторов.

Самый упрощённый и наиболее часто применяемый в непрофессиональной среде метод – принять норму 100 Вт тепловой энергии на каждый квадратный метр площади:

Самый примитивный способ подсчета — соотношение 100 Вт/м?

Q = S x 100

Q – необходимая тепловая мощность для помещения;

S – площадь помещения (м?);

100 — удельная мощность на единицу площади (Вт/м?).

Например, комната 3.2 x 5,5 м

S = 3,2 x 5,5 = 17,6 м?

Q = 17,6 x 100 = 1760 Вт ? 1,8 кВт

Способ, очевидно, очень простой, но весьма несовершенный. Стоит сразу оговориться, что он условно применим только при стандартной высоте потолков – примерно 2.7 м (допустимо – в диапазоне от 2.5 до 3.0 м). С этой точки зрения, более точным станет расчет не от площади, а от объема помещения.

Понятно, что в этом случае значение удельной мощности рассчитано на кубический метр. Его принимают равным 41 Вт/м? для железобетонного панельного дома, или 34 Вт/м? — в кирпичном или выполненном из других материалов.

Q = S x h x 41 (или 34)

h – высота потолков (м);

41 или 34 – удельная мощность на единицу объема (Вт/м?).

Например, та же комната, в панельном доме, с высотой потолков в 3.2 м:

Q = 17,6 x 3,2 x 41 = 2309 Вт ? 2,3 кВт

Результат получается более точным, так как уже учитывает не только все линейные размеры помещения, но даже, в определенной степени, и особенности стен.

Но все же до настоящей точности он еще далек – многие нюансы оказываются «за скобками». Как выполнить более приближенные к реальным условиям расчеты – в следующем разделе публикации.

Возможно, вас заинтересует информация о том, что собой представляют

Проведение расчетов необходимой тепловой мощности с учетом особенностей помещений

Рассмотренные выше алгоритмы расчетов бывают полезны для первоначальной «прикидки», но вот полагаться на них полностью все же следует с очень большой осторожностью. Даже человеку, который ничего не понимает в строительной теплотехнике, наверняка могут показаться сомнительными указанные усредненные значения – не могут же они быть равными, скажем, для Краснодарского края и для Архангельской области. Кроме того, комната - комнате рознь: одна расположена на углу дома, то есть имеет две внешних стенки, а другая с трех сторон защищена от теплопотерь другими помещениями. Кроме того, в комнате может быть одно или несколько окон, как маленьких, так и весьма габаритных, порой – даже панорамного типа. Да и сами окна могут отличаться материалом изготовления и другими особенностями конструкции. И это далеко не полный перечень – просто такие особенности видны даже «невооруженным глазом».

Одним словом, нюансов, влияющих на теплопотери каждого конкретного помещения – достаточно много, и лучше не полениться, а провести более тщательный расчет. Поверьте, по предлагаемой в статье методике это будет сделать не так сложно.

Общие принципы и формула расчета

В основу расчетов будет положено все то же соотношение: 100 Вт на 1 квадратный метр. Но вот только сама формула «обрастает» немалым количеством разнообразных поправочных коэффициентов.

Q = (S x 100) x a x bx c x d x e x f x g x h x i x j x k x l x m

Латинские буквы, обозначающие коэффициенты, взяты совершенно произвольно, в алфавитном порядке, и не имеют отношения к каким-либо стандартно принятым в физике величинам. О значении каждого коэффициента будет рассказано отдельно.

  • «а» - коэффициент, учитывающий количество внешних стен в конкретной комнате.

Очевидно, что чем больше в помещении внешних стен, тем больше площадь, через которую происходит тепловые потери. Кроме того, наличие двух и более внешних стен означает еще и углы – чрезвычайно уязвимые места с точки зрения образования «мостиков холода». Коэффициент «а» внесет поправку на эту специфическую особенность комнаты.

Коэффициент принимают равным:

— внешних стен нет (внутреннее помещение): а = 0,8 ;

— внешняя стена одна : а = 1,0 ;

— внешних стен две : а = 1,2 ;

— внешних стен три: а = 1,4 .

  • «b» - коэффициент, учитывающий расположение внешних стен помещения относительно сторон света.

Возможно, вас заинтересует информация о том, какие бывают

Даже в самые холодные зимние дни солнечная энергия все же оказывает влияние на температурный баланс в здании. Вполне естественно, что та сторона дома, которая обращена на юг, получает определенный нагрев от солнечных лучей, и теплопотери через нее ниже.

А вот стены и окна, обращённые на север, Солнца «не видят» никогда. Восточная часть дома, хотя и «прихватывает» утренние солнечные лучи, какого-либо действенного нагрева от них все же не получает.

Исходя из этого, вводим коэффициент «b»:

— внешние стены комнаты смотрят на Север или Восток : b = 1,1 ;

— внешние стены помещения ориентированы на Юг или Запад : b = 1,0 .

  • «с» - коэффициент, учитывающий расположение помещения относительно зимней «розы ветров»

Возможно, эта поправка не столь обязательна для домов, расположенных на защищенных от ветров участках. Но иногда преобладающие зимние ветры способны внести свои «жесткие коррективы» в тепловой баланс здания. Естественно, что наветренная сторона, то есть «подставленная» ветру, будет терять значительно больше тела, по сравнению с подветренной, противоположной.

По результатам многолетних метеонаблюдений в любом регионе составляется так называемая «роза ветров» - графическая схема, показывающая преобладающие направления ветра в зимнее и летнее время года. Эту информацию можно получить в местной гидрометеослужбе. Впрочем, многие жители и сами, без метеорологов, прекрасно знают, откуда преимущественно дуют ветра зимой, и с какой стороны дома обычно наметает наиболее глубокие сугробы.

Если есть желание провести расчеты с более высокой точностью, то можно включить в формулу и поправочный коэффициент «с», приняв его равным:

— наветренная сторона дома: с = 1,2 ;

— подветренные стены дома: с = 1,0 ;

— стена, расположенные параллельно направлению ветра: с = 1,1 .

Естественно, количество теплопотерь через все строительные конструкции здания будет очень сильно зависеть от уровня зимних температур. Вполне понятно, что в течение зимы показатели термометра «пляшут» в определенном диапазоне, но для каждого региона имеется усредненный показатель самых низких температур, свойственных наиболее холодной пятидневке года (обычно это свойственно январю). Для примера – ниже размещена карта-схема территории России, на которой цветами показаны примерные значения.

Обычно это значение несложно уточнить в региональной метеослужбе, но можно, в принципе, ориентироваться и на свои собственные наблюдения.

Итак, коэффициент «d», учитывающий особенности климата региона, для наших расчетом в принимаем равным:

— от – 35 °С и ниже: d = 1,5 ;

— от – 30 °С до – 34 °С: d = 1,3 ;

— от – 25 °С до – 29 °С: d = 1,2 ;

— от – 20 °С до – 24 °С: d = 1,1 ;

— от – 15 °С до – 19 °С: d = 1,0 ;

— от – 10 °С до – 14 °С: d = 0,9 ;

— не холоднее – 10 °С: d = 0,7 .

  • «е» - коэффициент, учитывающий степень утепленности внешних стен.

Суммарное значение тепловых потерь здания напрямую связано со степенью утепленности всех строительных конструкций. Одним из «лидеров» по теплопотерям являются стены. Стало быть, значение тепловой мощности, необходимое для поддержания комфортных условий проживания в помещении, находится в зависимости от качества их термоизоляции.

Значение коэффициента для наших расчетов можно принять следующее:

— внешние стены не имеют утепления: е = 1,27 ;

— средняя степень утепления – стены в два кирпича или предусмотрена их поверхностная термоизоляция другими утеплителями: е = 1,0 ;

— утепление проведено качественно, на основании проведенных теплотехнических расчетов: е = 0,85 .

Ниже по ходу настоящей публикации будут даны рекомендации о том, как можно определить степень утепленности стен и иных конструкций здания.

  • коэффициент «f» - поправка на высоту потолков

Потолки, особенно в частных домах, могут иметь различную высоту. Стало быть, и тепловая мощность на прогрев того или иного помещения одинаковой площади будет различаться еще и по этому параметру.

Не будет большой ошибкой принять следующие значения поправочного коэффициента «f»:

— высота потолков до 2.7 м: f = 1,0 ;

— высота потоков от 2,8 до 3,0 м: f = 1,05 ;

— высота потолков от 3,1 до 3,5 м: f = 1,1 ;

— высота потолков от 3,6 до 4,0 м: f = 1,15 ;

— высота потолков более 4,1 м: f = 1,2 .

  • « g» - коэффициент, учитывающий тип пола или помещение, расположенное под перекрытием.

Как было показано выше, пол является одним из существенных источников теплопотерь. Значит, необходимо внести некоторые корректировки в расчет и на эту особенность конкретного помещения. Поправочный коэффициент «g» можно принять равным:

— холодный пол по грунту или над неотапливаемым помещением (например, подвальным или цокольным): g = 1,4 ;

— утепленный пол по грунту или над неотапливаемым помещением: g = 1,2 ;

— снизу расположено отапливаемое помещение: g = 1,0 .

  • « h» - коэффициент, учитывающий тип помещения, расположенного сверху.

Нагретый системой отопления воздух всегда поднимается вверх, и если потолок в помещении холодный, то неизбежны повышенные теплопотери, которые потребуют увеличения необходимой тепловой мощности. Введём коэффициент «h», учитывающий и эту особенность рассчитываемого помещения:

— сверху расположен «холодный» чердак: h = 1,0 ;

— сверху расположен утепленный чердак или иное утепленное помещение: h = 0,9 ;

— сверху расположено любое отапливаемое помещение: h = 0,8 .

  • « i» - коэффициент, учитывающий особенности конструкции окон

Окна – один из «магистральных маршрутов» течек тепла. Естественно, многое в этом вопросе зависит от качества самой оконной конструкции. Старые деревянные рамы, которые раньше повсеместно устанавливались во всех домах, по степени своей термоизоляции существенно уступают современным многокамерным системам со стеклопакетами.

Без слов понятно, что термоизоляционные качества этих окон — существенно различаются

Но и между ПВЗХ-окнами нет полного единообразия. Например, двухкамерный стеклопакет (с тремя стеклами) будет намного более «теплым» чем однокамерный.

Значит, необходимо ввести определенный коэффициент «i», учитывающий тип установленных в комнате окон:

— стандартные деревянные окна с обычным двойным остеклением: i = 1,27 ;

— современные оконные системы с однокамерным стеклопакетом: i = 1,0 ;

— современные оконные системы с двухкамерным или трехкамерным стеклопакетом, в том числе и с аргоновым заполнением: i = 0,85 .

  • « j» - поправочный коэффициент на общую площадь остекления помещения

Какими бы качественными окна ни были, полностью избежать теплопотерь через них все равно не удастся. Но вполне понятно, что никак нельзя сравнивать маленькое окошко с панорамным остеклением чуть ли ни на всю стену.

Потребуется для начала найти соотношение площадей всех окон в комнате и самого помещения:

х = ? S ок / S п

? S ок – суммарная площадь окон в помещении;

S п – площадь помещения.

В зависимости от полученного значения и определяется поправочный коэффициент «j»:

— х = 0 ? 0,1 -> j = 0,8 ;

— х = 0,11 ? 0,2 -> j = 0,9 ;

— х = 0,21 ? 0,3 -> j = 1,0 ;

— х = 0,31 ? 0,4 -> j = 1,1 ;

— х = 0,41 ? 0,5 -> j = 1,2 ;

  • « k» - коэффициент, дающий поправку на наличие входной двери

Дверь на улицу или на неотапливаемый балкон — это всегда дополнительная «лазейка» для холода

Дверь на улицу или на открытый балкон способна внести свои коррективы в тепловой баланс помещения – каждое ее открытие сопровождается проникновением в помещение немалого объема холодного воздуха. Поэтому имеет смысл учесть и ее наличие – для этого введем коэффициент «k», который примем равным:

— двери нет: k = 1,0 ;

— одна дверь на улицу или на балкон: k = 1,3 ;

— две двери на улицу или на балкон: k = 1,7 .

  • « l» - возможные поправки на схему подключения радиаторов отопления

Возможно, кому-то это покажется несущественной мелочью, но все же – почему бы сразу не учесть планируемую схему подключения радиаторов отопления. Дело в том, что их теплоотдача, а значит, и участие в поддержании определенного температурного баланса в помещении, достаточно заметно меняется при разных типах врезки труб подачи и «обратки».

Иллюстрация Тип врезки радиатора Значение коэффициента «l»
Подключение по диагонали: подача сверху, «обратка» снизу l = 1.0
Подключение с одной стороны: подача сверху, «обратка» снизу l = 1.03
Двухстороннее подключение: и подача, и «обратка» снизу l = 1.13
Подключение по диагонали: подача снизу, «обратка» сверху l = 1.25
Подключение с одной стороны: подача снизу, «обратка» сверху l = 1.28
Одностороннее подключение, и подача, и «обратка» снизу l = 1.28
  • « m» - поправочный коэффициент на особенности места установки радиаторов отопления

И, наконец, последний коэффициент, который также связан с особенностями подключения радиаторов отопления. Наверное, понятно, что если батарея установлена открыто, ничем не загораживается сверху и с фасадной части, то она будет давать максимальную теплоотдачу. Однако, такая установка возможна далеко не всегда – чаще радиаторы частично скрываются подоконниками. Возможны и другие варианты. Кроме того, некоторые хозяева, стараясь вписать приоры отопления в создаваемый интерьерный ансамбль, скрывают их полностью или частично декоративными экранами – это тоже существенно отражается на тепловой отдаче.

Если есть определенные «наметки», как и где будут монтироваться радиаторы, это также можно учесть при проведении расчетов, введя специальный коэффициент «m»:

Иллюстрация Особенности установки радиаторов Значение коэффициента "m"
Радиатор расположен на стене открыто или не перекрывается сверху подоконником m = 0,9
Радиатор сверху перекрыт подоконником или полкой m = 1,0
Радиатор сверху перекрыт выступающей стеновой нишей m = 1,07
Радиатор сверху прикрыт подоконником (нишей), а с лицевой части - декоративным экраном m = 1,12
Радиатор полностью заключен в декоративный кожух m = 1,2

Итак, с формулой расчета ясность есть. Наверняка, кто-то из читателей сразу возьмется за голову – мол, слишком сложно и громоздко. Однако, если к делу подойти системно, упорядочено, то никакой сложности нет и в помине.

У любого хорошего хозяина жилья обязательно есть подробный графический план своих «владений» с проставленными размерами, и обычно – сориентированный по сторонам света. Климатические особенности региона уточнить несложно. Останется лишь пройтись по всем помещениям с рулеткой, уточнить некоторые нюансы по каждой комнате. Особенности жилья - «соседство по вертикали» сверху и снизу, расположение входных дверей, предполагаемую или уже имеющуюся схему установки радиаторов отопления – никто, кроме хозяев, лучше не знает.

Рекомендуется сразу составить рабочую таблицу, куда занести все необходимые данные по каждому помещению. В нее же будет заноситься и результат вычислений. Ну а сами вычисления поможет провести встроенный калькулятор, в котором уже «заложены» все упомянутые выше коэффициенты и соотношения.

Если какие-то данные получить не удалось, то можно их, конечно, в расчет не принимать, но в этом случае калькулятор «по умолчанию» подсчитает результат с учетом наименее благоприятных условий.

Можно рассмотреть на примере. Имеем план дома (взят совершенно произвольный).

Регион с уровнем минимальных температур в пределах -20 ? 25 °С. Преобладание зимних ветров = северо-восточные. Дом одноэтажный, с утепленным чердаком. Утепленные полы по грунту. Выбрана оптимальное диагональное подключение радиаторов, которые будут устанавливаться под подоконниками.

Составляем таблицу примерно такого типа:

Помещение, его площадь, высота потолка. Утепленность пола и "соседство" сверху и снизу Количество внешних стен и их основное расположение относительно сторон света и "розы ветров". Степень утепления стен Количество, тип и размер окон Наличие входных дверей (на улицу или на балкон) Требуемая тепловая мощность (с учетом 10% резерва)
Площадь 78,5 м? 10,87 кВт ? 11 кВт
1. Прихожая. 3,18 м?. Потолок 2.8 м. Утеленный пол по грунту. Сверху - утепленный чердак. Одна, Юг, средняя степень утепления. Подветренная сторона Нет Одна 0,52 кВт
2. Холл. 6,2 м?. Потолок 2.9 м. Утепленный пол по грунту. Сверху - утепленный чердак Нет Нет Нет 0,62 кВт
3. Кухня-столовая. 14,9 м?. Потолок 2.9 м. Хорошо утепленный пол по грунту. Свеху - утепленный чердак Две. Юг-Запад. Средняя степень утепления. Подветренная сторона Два, однокамерный стеклопакет, 1200 x 900 мм Нет 2.22 кВт
4. Детская комната. 18,3 м?. Потолок 2.8 м. Хорошо утепленный пол по грунту. Сверху - утепленный чердак Две, Север - Запад. Высокая степень утепления. Наветренная Два, двухкамерный стеклопакет, 1400 x 1000 мм Нет 2,6 кВт
5. Спальная. 13,8 м?. Потолок 2.8 м. Хорошо утепленный пол по грунту. Сверху - утепленный чердак Две, Север, Восток. Высокая степень утепления. Наветренная сторона Одно, двухкамерный стеклопакет, 1400 x 1000 мм Нет 1,73 кВт
6. Гостиная. 18,0 м?. Потолок 2.8 м. Хорошо утепленный пол. Сверху -утепленный чердак Две, Восток, юг. Высокая степень утепления. Параллельно направлению ветра Четыре, двухкамерный стеклопакет, 1500 x 1200 мм Нет 2,59 кВт
7. Санузел совмещенный. 4,12 м?. Потолок 2.8 м. Хорошо утепленный пол. Сверху -утепленный чердак. Одна, Север. Высокая степень утепления. Наветренная сторона Одно. Деревянная рама с двойным остеклением. 400 x 500 мм Нет 0,59 кВт
ИТОГО:

Затем, пользуясь размешенным ниже калькулятором производим расчет для каждого помещения (уже с учетом 10% резерва). С использованием рекомендуемого приложения это не займет много времени. После этого останется просуммировать полученные значения по каждой комнате – это и будет необходимая суммарная мощность системы отопления.

Результат по каждой комнате, кстати, поможет правильно выбрать требуемое количество радиаторов отопления – останется только разделить на удельную тепловую мощность одной секции и округлить в большую сторону.

Система отопления для выполнения возложенной на неё задачи должна обладать определённой тепловой мощностью. Расчётная тепловая мощность системы выявляется в результате составления теплового баланса в обогреваемых помещениях при температуре наружного воздуха tн.р, называемой расчётной , равной средней температуре наиболее холодной пятидневки с обеспеченностью 0,92 tн.5 и определяемой для конкретного района строительства по нормам . Расчётная тепловая мощность в течение отопительного сезона используется частично в зависимости от изменения теплопотерь помещений при текущем значении температуры наружного воздуха tн и только при tн.р - полностью.

Изменение текущей теплопотребности на отопление имеет место в течение всего отопительного сезона, поэтому теплоперенос к отопительным приборам должен изменяться в широких пределах. Этого можно достичь путём изменения температуры и (или) количества перемещающегося в системе отопления теплоносителя. Этот процесс называют эксплуатационным регулированием .

Система отопления предназначена для создания в помещениях здания температурной обстановки, соответствующей комфортной для человека или отвечающей требованиям технологического процесса.

Выделяемая человеческим организмом теплота должна быть отдана окружающей среде так и в таком количестве, чтобы человек, находящийся в процессе выполнения какого-либо вида деятельности, не испытывал при этом ощущения холода или перегрева. Наряду с затратами на испарение с поверхности кожи и легких, теплота отдаётся с поверхности тела посредством конвекции и излучения. Интенсивность теплоотдачи конвекцией в основном определяется температурой и подвижностью окружающего воздуха, а посредством лучеиспускания (радиации) - температурой поверхностей ограждений, обращённых внутрь помещения.


Температурная обстановка в помещении зависит от тепловой мощности системы отопления, а также от расположения обогревающих устройств, теплофизических свойств наружных и внутренних ограждений, интенсивности других источников поступления и потерь теплоты. В холодное время года помещение в основном теряет теплоту через наружные ограждения и, в какой-то мере, через внутренние ограждения, отделяющие данное помещение от смежных, имеющих более низкую температуру воздуха. Кроме того, теплота расходуется на нагревание наружного воздуха, который проникает в помещение через неплотности ограждений естественным путем или в процессе работы системы вентиляции, а также материалов, транспортных средств, изделий, одежды, которые холодными попадают в помещение снаружи.

В установившемся (стационарном) режиме потери равны поступлениям теплоты. Теплота поступает в помещение от людей, технологического и бытового оборудования, источников искусственного освещения, от нагретых материалов, изделий, в результате воздействия на здание солнечной радиации. В производственных помещениях могут осуществляться технологические процессы, связанные с выделением теплоты (конденсация влаги, химические реакции и пр.).

Учёт всех перечисленных составляющих потерь и поступления теплоты необходим при сведении теплового баланса помещений здания и определении дефицита или избытка теплоты. Наличие дефицита теплоты dQ указывает на необходимость устройства в помещении отопления. Избыток теплоты обычно ассимилируется системой вентиляции. Для определения расчётной тепловой мощности системы отопления Qот составляет баланс расходов теплоты для расчётных условий холодного периода года в виде

Qот = dQ = Qогр + Qи(вент) ± Qт(быт) (4.2.1)
где Qогр - потери теплоты через наружные ограждения; Qи(вент) - расход теплоты на нагревание поступающего в помещение наружного воздуха; Qт(быт) - технологические или бытовые выделения или расход теплоты.

Методики расчета отдельных составляющих теплового баланса, входящих в формулу (4.2.1), нормируются СНиП .

Основные теплопотери через ограждения помещения Qогр определяют в зависимости от его площади, приведенного сопротивления теплопередаче ограждения и расчетной разности температуры помещения и снаружи ограждения.

Площадь отдельных ограждений при подсчете потерь теплоты через них должна вычисляться с соблюдением определённых нормами правил обмера.

Приведенное сопротивление теплопередаче ограждения или обратная ему величена - коэффициент теплопередачи - принимаются по теплотехническому расчету в соответствии с требованиями СНиП или (например, для окон, дверей) по данным организации-изготовителя.

Расчётная температура помещения обычно задаётся равной расчётной температуре воздуха в помещении tв, принимаемой в зависимости от назначения помещения по СНиП, соответствующим назначению отапливаемого здания.

Под расчётной температурой снаружи ограждения подразумевается температура наружного воздуха tн.р или температура воздуха более холодного помещения при расчёте потерь теплоты через внутренние ограждения.

Основные теплопотери через ограждения часто оказываются меньше действительных их значений, так как при этом не учитывается влияние на процесс теплопередачи некоторых допонительных факторов (фильтрации воздуха через ограждения, воздействия облучения солнцем и излучения поверхности ограждений в сторону небосвода, возможного изменения температуры воздуха внутри помещения по высоте, врывание наружного воздуха через открываемые проёмы и пр). Определение связанных с этим дополнительных теплопотерь также нормируется СНиП в виде добавок к основным теплопотерям.

Расход теплоты на нагревание холодного воздуха Qи(вент), поступающего в помещения зданий в результате инфильтрации через массив стен, притворы окон, фонарей, дверей, ворот, может составлять 30…40% и более от основных теплопотерь. Количество наружного воздуха зависит от конструктивно-планировочного решения здания, направления и скорости ветра, температуры наружного и внутреннего воздуха, герметичности конструкций, длины и вида притворов открывающихся проёмов. Методика расчёта величины Qи(вент), также нормируемая СНиП , сводится, прежде всего, к расчёту суммарного расхода инфильтрующегося воздуха через отдельные ограждающие конструкции помещения, который зависит от вида и характера неплотностей в наружных ограждениях, определяющие значения их сопротивления воздухопроницанию. Их фактические значения принимаются согласно СНиП или по данным организации-изготовителя конструкции ограждения.

Кроме рассмотренных выше теплопотерь в общественных и административно-бытовых зданиях зимой, когда работает система отопления, возможны как теплопоступления, так и дополнительные затраты теплоты Qт. Эта составляющая теплового баланса обычно учитывается при проектировании систем вентиляции и кондиционирования воздуха. Если в помещении не предусмотрены подобные системы, то указанные дополнительные источники должны быть учтены при определении расчётной мощности системы отопления. При проектировании системы отопления жилого здания согласно СНиП учет дополнительных (бытовых) теплопоступлений в комнатах и кухне нормируется величиной не менее Qбыт=10 Вт на 1 м 2 площади квартиры, которая вычитается из расчётных теплопотерь этих помещений.

При окончательном определении расчётной тепловой мощности системы отопления согласно СНиП учитываются также ряд факторов, связанных с тепловой эффективностью применяемых в системе отопительных приборов. Показателем, оценивающим это свойство, является отопительный эффект прибора , который показывает отношение количества фактически затрачиваемой прибором теплоты для создания в помещении заданных условий теплового комфорта к расчётным потерям теплоты помещением. Согласно СНиП суммарная величина дополнительных теплопотерь должна быть не более 7% расчётной тепловой мощности системы отопления.

Для теплотехнической оценки объёмно-планировочных и конструктивных решений, а также для ориентировочного расчёта теплопотерь здания пользуются показателем - удельная тепловая характеристика здания q, Вт/(м 3 · °С), которая при известных теплопотерях здания равна

q = Qзд / (V(tв - tн.р)), (4.2.2)
где Qзд - расчётные теплопотери всеми помещениями здания, Вт; V - объём отапливаемого здания по внешнему обмеру, м 3 ; (tв - tн.р) - расчётная разность температуры для основных (наиболее представительных) помещений здания,°C.

Величина q определяет средние теплопотери 1 м 3 здания, отнесённые к разности температуры 1°C. Ей удобно пользоваться для теплотехнической оценки возможных конструктивно-планировочных решений здания. Величину q обычно приводят в перечне основных характеристик проекта его отопления.

Иногда значение удельной тепловой характеристики используют для приблизительного подсчёта теплопотерь здания. Однако необходимо отметить, что применение величины q для определения расчётной отопительной нагрузки приводит к значительным погрешностям в расчёте. Объясняется это тем, что значения удельной тепловой характеристики, приводимые в справочной литературе, учитывают только основные теплопотери здания, между тем как отопительная нагрузка имеет более сложную структуру, описанную выше.

Расчёт тепловых нагрузок на системы отопления по укрупнённым показателям используют только для ориентировочных подсчётов и при определении потребности в теплоте района, города, т. е. при проектировании централизованного теплоснабжения.

Причина нагревания проводника кроется в том, что энергия движущихся в нем электронов (иными словами, энергия тока) при последовательном столкновении частиц с ионами молекулярной элемента преобразуется в тёплый тип энергии, или Q, так образуется понятие «тепловая мощность».

Работу тока измеряют с помощью международной системы единиц СИ, применяя к ней джоули (Дж), определяют как «ватт» (Вт). Отступая от системы на практике, могут применять в том числе и внесистемные единицы, измеряющие работу тока. Среди них ватт-час (Вт x ч), киловатт-час (сокращённо кВт x ч). Например, 1 Вт x ч обозначает работу тока с удельной мощностью 1 ватт и длительностью времени на один час.

Если электроны движутся по неподвижному проводнику из металла, в этом случае вся полезная работа вырабатываемого тока распределяется на нагревание металлической конструкции, и, исходя из положений закона сохранения энергии, это можно описать формулой Q=A=IUt=I 2 Rt=(U 2 /R)*t. Такие соотношения с точностью выражают известный закон Джоуля-Ленца. Исторически он впервые был определён опытным путём учёным Д. Джоулем в середине 19-го века, и в то же время независимо от него ещё одним учёным - Э.Ленцем. Практическое применение тепловая мощность нашла в техническом исполнении с изобретения в 1873 году русским инженером А. Ладыгиным обыкновенной лампы накаливании.

Тепловая мощность тока задействуется в целом ряде электрических приборов и промышленных установок, а именно, в тепловых нагревательного типа электрических печках, электросварочной и инвенторной аппаратуре, очень распространены бытовые приборы на электрическом нагревательном эффекте - кипятильники, паяльники, чайники, утюги.

Находит себя тепловой эффект и в пищевой промышленности. С высокой долей использования применяется возможность электроконтактного нагрева, что гарантирует тепловая мощность. Он обуславливается тем, что ток и его тепловая мощность, оказывая влияние на пищевой продукт, который обладает определённой степенью сопротивления, вызывает в нем равномерное разогревание. Можно привести в пример то, как производятся колбасные изделия: через специальный дозатор мясной фарш поступает в металлические формы, стенки которых одновременно служат электродами. Здесь обеспечивается постоянная равномерность нагрева по всей площади и объёму продукта, поддерживается заданная температура, сохраняется оптимальная биологическая ценность пищевого продукта, вместе с этими факторами длительность технологических работ и расход энергии остаются наименьшими.

Удельная тепловая тока (o), иными словами - что выделяется в единице объёма за определённую единицу времени, рассчитывается следующим образом. Элементарный цилиндрический объём проводника (dV), с поперечным проводниковым сечением dS, длиной dl, параллельной и сопротивлением составляют уравнения R=p(dl/dS), dV=dSdl.

Согласно определениям закона Джоуля-Ленца, за отведённое время (dt) во взятом нами объёме выделится уровень теплоты, равный dQ=I 2 Rdt=p(dl/dS)(jdS) 2 dt=pj 2 dVdt. В таком случае o=(dQ)/(dVdt)=pj 2 и, применяя здесь закон Ома для установления плотности тока j=gE и соотношение p=1/g, мы сразу получаем выражение o=jE= gE 2. Оно в дифференциальной форме даёт понятие о законе Джоуля-Ленца.

Уравнение теплопроводности.

Теплопроводность возникает при наличии разности температур, вызванной какими-либо внешними причинами. При этом в разных местах вещества молекулы имеют разные средние кинетические энергии теплового движения. Хаотическое тепловое движение молекул приводит к направленному переносу внутренней энергии от более нагретых частей тела к более холодным.

Уравнение теплопроводности. Рассмотрим одномерный случай. Т = Т(х). При этом перенос энергии осуществляется только вдоль одной оси ОХ и описывается законом Фурье:

где - плотность теплового потока,

Количество теплоты, которое передается за время dt через площадку , расположенную перпендикулярно направлению переноса внутренней энергии; - коэффициент теплопроводности. Знак (-) в формуле (1) указывает, что перенос энергии происходит в направлении убывания температуры.

Мощность тепловых потерь однослойной конструкции.

Рассмотрим зависимость тепловых потерь зданий от вида материа-

ла и его толщины.

Расчитывать теплопотери для различных материалов будем по формуле:

,

Р- мощность тепловых потерь, Вт;

Теплопроводность твердого тела (стены), Вт/(м·К);

Толщина стены или теплопроводящего тела, м;

S - площадь поверхности, через которую совершается теплопередача, м 2 ;

Разность температур двух сред, °С.

Исходные данные :

Таблица 1. - Теплопроводность строительных материалов l, Вт/(м·К).

При рассмотрении нашей задачи толщина однослойной конструкции меняться не будет. Будет меняется теплопроводность материала, из которого она изготовлена. Учитывая это, расчитаем теплопотери, то есть тепловую энергию, бесцельно уходящую за пределы здания.

Кирпич:

Стекло:

Бетон:

Кварцевое стекло:

Мрамор:

Древесина:

Стекловата:

Пенопласт:

Исходя из данных вычислений, в каждом случае выбирается нужный материал, учитывая требования экономичности, прочности, долговечности. Два последних материала используются в качестве основных элементов каркасно-сборных конструкций на основе фанеры и утеплителя.

Краевые условия.

Дифференциальное уравнение теплопроводности является математической моделью целого класса явлений теплопроводности и само по себе ничего не говорит о развитии процесса теплопереноса в рассматриваемом теле. При интегрировании дифференциального уравнения в частных производных получаем бесчисленное множество различных решений. Чтобы получить из этого множества одно частное решение, соответствующее определенной конкретной задаче, необходимо иметь дополнительные данные, не содержащиеся в исходном дифференциальном уравнении теплопроводности. Этими дополнительными условиями, которые в совокупности с дифференциальным уравнением (или его решением) однозначно определяют конкретную задачу теплопроводности, являются распределение температуры внутри тела (начальные или временные условия), геометрическая форма тела и закон взаимодействия между окружающей средой и поверхностью тела (граничные условия).

Для тела определенной геометрической формы с определенными (известными) физическими свойствами совокупность граничных и начальных условий называется краевыми условиями. Итак, начальное условие является временным краевым условием, а граничные условия – пространственным краевым условием. Дифференциальное уравнение теплопроводности вместе с краевыми условиями составляет краевую задачу уравнения теплопроводности (или короче – тепловую задачу).

Начальное условие определяется заданием закона распределения температуры внутри тела в начальный момент времени, то есть

Т (х, у, z, 0) = f (х, у, z),

где f (х, у, z) - известная функция.

Во многих задачах принимают равномерное распределение температуры в начальный момент времени; тогда

Т (х, у, z, 0) = Т о = const.

Граничное условие может быть задано различными способами.

1. Граничное условие первого рода состоит в задании распределения температуры по поверхности тела в любой момент времени,

Т s (t) = f (t),

где Т s (t) – температура на поверхности тела.

Изотермическое граничное условие представляет частный случай условия 1-го рода. При изотермической границе температуру поверхности тела принимают постоянной T s = const, как, например, при интенсивном омывании поверхности жидкостью с определенной температурой.

2. Граничное условие второго рода состоит в задании плотности теплового потока для каждой точки поверхности тела как функции времени, то есть

q s (t) = f (t).

Условие второго рода задает величину теплового потока на границе, то есть кривая температуры может иметь любую ординату, но обязательно заданный градиент. Простейший случай граничного условия второго рода состоит в постоянстве плотности теплового потока:

q s (t) = q c = const.

Адиабатическая граница представляет частный случай условия второго рода. При адиабатическом условии тепловой поток через границы равен нулю. Если теплообмен тела с окружающей средой незначителен в сравнении с тепловыми потоками внутри тела, поверхность тела можно считать практически не пропускающей тепла. Очевидно, что в любой точке адиабатической границы s удельный тепловой поток и пропорциональный ему градиент по нормали к поверхности равны нулю.

3. Обычно граничное условие третьего рода характеризует закон конвективного теплообмена между поверхностью тела и окружающей средой при постоянном потоке тепла (стационарное температурное поле). В этом случае количество тепла, передаваемого в единицу времени с единицы площади поверхности тела в окружающую среду с температурой Т с в процессе охлаждения (Т s > Т с), прямо пропорционально разности температур между поверхностью тела и окружающей средой, то есть

q s = a (Т s - Т с ), (2)

где a- коэффициент пропорциональности, называемый коэффициентом теплообмена (вm/м 2 ·град).

Коэффициент теплообмена численно равен количеству тепла, отдаваемого (или получаемого) единицей площади поверхности тела в единицу времени при разности температур между поверхностью и окружающей средой в 1°.

Соотношение (2) можно получить из закона теплопроводности Фурье, полагая, что при обтекании поверхности тела газом или жидкостью передача тепла от газа к телу вблизи его поверхности происходит по закону Фурье:

q s =-l г ·(?Т г /?n) s ·1 n = l г ·(T s -T c)·1 n /? =a·(T s -T c)·1 n ,

где l г - коэффициент теплопроводности газа, ? - условная толщина пограничного слоя, a = l г /?.

Следовательно, вектор теплового потока q s направлен по нормали п к изотермической поверхности, его скалярная величина равна q s .

Условная толщина пограничного слоя ? зависит от скорости движения газа (или жидкости) и его физических свойств. Поэтому коэффициент теплообмена зависит от скорости движения газа, его температуры и изменяется вдоль поверхности тела в направлении движения. В качестве приближения можно считать коэффициент теплообмена постоянным, не зависящим от температуры, и одинаковым для всей поверхности тела.

Граничные условия третьего рода могут быть использованы и при рассмотрении нагревания или охлаждения тел лучеиспусканием. По закону Стефана-Больцмана лучистый поток тепла между двумя поверхностями равен

q s (t) = s*,

где s* - приведенный коэффициент лучеиспускания, Т a - абсолютная температура поверхности тепловоспринимающего тела.

Коэффициент пропорциональности s* зависит от состояния поверхности тела. Для абсолютно черного тела, т. е. тела, обладающего способностью поглощать все падающее на него излучение, s* = 5,67·10 -12 вт/см 2 · °К 4 . Для серых тел s* = e·s, где e - коэффициент черноты, изменяющийся в пределах от 0 до 1. Для полированных металлических поверхностей коэффициенты черноты составляют при нормальной температуре от 0,2 до 0,4, а для окисленных и шероховатых поверхностей железа и стали - от 0,6 до 0,95. С повышением температуры коэффициенты e увеличиваются и при высоких температурах, близких к температуре плавления, достигают значений от 0,9 до 0,95.

При малой разности температур (Т п - Т а) соотношение можно приближенно написать так:

q s (t) = s*{·}·[ T s (t) –T a ] = a(T)· [ T s (t) –T a ] (3)

где a (Т) - коэффициент лучистого теплообмена, имеющий ту же размерность, что и коэффициент конвективного теплообмена, и равный

a (Т)= s*·= s*·n(T)

Это соотношение является выражением закона Ньютона охлаждения или нагревания тела, при этом T а обозначает температуру поверхности тела, воспринимающего тепло. Если температура Т s (t) изменяется незначительно, то коэффициент a (Т) приближенно можно принять постоянным.

Если температура окружающей среды (воздуха) Т с и температура тепловоспринимающего тела Т а одинаковы, а коэффициент лучепоглощения среды очень мал, то в соотношении закона Ньютона вместо Т а можно написать Т с. При этом небольшая доля потока тепла, отдаваемого телом путем конвекции, может быть положена равной a к ·?Т, где а к - коэффициент конвективного теплообмена.

Коэффициент конвективной теплоотдачи a к зависит:

1) от формы и размеров поверхности, отдающей тепло (шар, цилиндр, пластина) и от ее положения в пространстве (вертикального, горизонтального, наклонного);

2) от физических свойств теплоотдающей поверхности;

3) от свойств окружающей среды (ее плотности, теплопроводности
и вязкости, в свою очередь зависящих от температуры), а также

4) от разности температур Т s - Т с .

В этом случае в соотношении

q s = a·[Т s (t) - Т с ], (4)

коэффициент aбудет суммарным коэффициентом теплообмена:

a = a к + a(Т) (5)

В дальнейшем нестационарный теплообмен тела, механизм которого описывается соотношением (5), будем называть теплообменом по закону Ньютона.

По закону сохранения энергии количество тепла q s (t), отданного поверхностью тела, равно количеству тепла, которое подводится изнутри к поверхности тела в единицу времени к единице площади поверхности путем теплопроводности, то есть

q s (t) = a·[Т s (t) - Т с (t)] = -l(?T/?n) s , (6)

где для общности постановки задачи температура Т с считается переменной, а коэффициент теплообмена a(Т) приближенно принят постоянным [a(Т) = a= const].

Обычно граничное условие пишут так:

l(?T/?n) s + a·[Т s (t) - Т с (t)] = 0. (7)

Из граничного условия третьего рода, как частный случай, можно получить граничное условие первого рода. Если отношение a/l стремится к бесконечности [коэффициент теплообмена имеет большое значение (a->?) или коэффициент теплопроводности мал (l-> 0)], то

Т s (t) - Т с (t) = lim = 0, откуда Т s (t) = Т с (t),

a / l ->?

то есть температура поверхности теплоотдающего тела равна температуре окружающей среды.

Аналогично при a->0 из (6) получаем частный случай граничного условия второго рода - адиабатическое условие (равенство нулю потока тепла через поверхность тела). Адиабатическое условие представляет другой предельный случай условия теплообмена на границе, когда при весьма малом коэффициенте теплоотдачи и значительном коэффициенте теплопроводности поток тепла через граничную поверхность приближается к нулю. Поверхность металлического изделия, соприкасающегося со спокойным воздухом, при недолгом процессе может приниматься адиабатической, так как действительный поток теплообмена через поверхность незначителен. При длительном процессе поверхностный теплообмен успевает отнять у металла значительное количество тепла, и пренебрегать им уже нельзя.

4. Граничное условие четвертого рода соответствует теплообмену поверхности тела с окружающей средой [конвективный теплообмен тела с жидкостью) или теплообмену соприкасающихся твердых тел, когда температура соприкасающихся поверхностей одинакова. При обтекании твердого тела потоком жидкости (или газа) передача тепла от жидкости (газа) к поверхности тела в непосредственной близости к поверхности тела (ламинарный пограничный слой или ламинарный подслой) происходит по закону теплопроводности (молекулярный перенос тепла), т. е. имеет место теплообмен, соответствующий граничному условию четвертого рода

Т s (t) = [Т с (t)] s . (8)

Помимо равенства температур, имеет место также равенство потоков тепла:

-l c (?T c /?n) s = -l(?T/?n) s . (9)

Дадим графическую интерпретацию четырех видов граничных условий (рисунок 1).

Скалярная величина вектора теплового потока пропорциональна абсолютной величине градиента температуры, который численно равен тангенсу угла наклона касательной к кривой распределения температуры вдоль нормали к изотермической поверхности, то есть

(?T/?n) s = tg f s

На рисунке 1 изображены на поверхности тела четыре элемента поверхности ?S с нормалью к ней n (нормаль считается положительной, если она направлена наружу). По оси ординат отложена температура.

Рисунок 1. - Различные способы задания условий на поверхности.

Граничное условие первого рода состоит в том, что задана Т s (t); в простейшем случае Т s (t) = const. Отыскивается наклон касательной к температурной кривой у поверхности тела, а тем самым и количество тепла, отдаваемое поверхностью (см. рисунок 1, а).

Задачи с граничными условиями второго рода имеют обратный характер; задается тангенс угла наклона касательной к температурной кривой у поверхности тела (см. рисунок 1, б); находится температура поверхности тела.

В задачах с граничными условиями третьего рода температура поверхности тела и тангенс угла наклона касательной к температурной кривой-величины переменные, но задается на внешней нормали точка С, через которую должны проходить все касательные к температурной кривой (см. рисунок 1, в). Из граничного условия (6) следует

tg f s = (?T/?n) s = (Т s (t) - Т с )/(l/a). (10)

Тангенс угла наклона касательной к температурной кривой у поверхности тела равен отношению противолежащего катета [Т s (t)-Т c ]

к прилежащему катету l/a соответствующего прямоугольного треугольника. Прилежащий катет l/a является величиной постоянной, а противолежащий катет [Т s (t) - Т с ]непрерывно изменяется в процессе теплообмена прямо пропорционально tg f s . Отсюда следует, что направляющая точка С остается неизменной.

В задачах с граничными условиями четвертого рода задается отношение тангенсов угла наклона касательных к температурным кривым в теле и в среде на границах их раздела (см. рисунок 1, г):

tg f s /tg f c = l c /l = const. (11)

С учетом совершенного теплового контакта (касательные у поверхности раздела проходят через одну и ту же точку).

Выбирая для расчета тип того или иного простейшего граничного условия, следует помнить, что в действительности поверхность твердого тела всегда обменивается теплом с жидкой или газообразной средой. Можно приближенно считать границу тела изотермической в тех случаях, когда интенсивность поверхностного теплообмена заведомо велика, и адиабатической – если эта интенсивность заведомо мала.


Похожая информация.


Для создания комфорта в жилых и производственных помещениях выполняют составление теплового баланса и определяют коэффициент полезного действия (КПД) отопителей. Во всех расчётах применяется энергетическая характеристика, позволяющая связывать нагрузки источников обогрева с расходными показателями потребителей - тепловая мощность. Вычисление физической величины производится по формулам.

Для вычисления тепловой мощности используются специальные формулы

Эффективность нагревателей

Мощность - это физическое определение скорости передачи или потребления энергии. Она равна отношению количества работы за определённый промежуток времени к этому периоду. Нагревательные устройства характеризуются по расходу электричества в киловаттах.

Для сопоставления энергий различного рода введена формула тепловой мощности : N = Q / D t, где:

  1. Q - количество теплоты в джоулях;
  2. D t - интервал времени выделения энергии в секундах;
  3. размерность полученной величины Дж / с = Вт.

Для оценки эффективности работы нагревателей используют коэффициент, указывающий на количество израсходованного по назначению тепла - КПД. Определяется показатель делением полезной энергии на затраченную, является безразмерной единицей и выражается в процентах. По отношению к разным частям, составляющим окружающую среду, КПД нагревателя имеет неравные значения. Если оценивать чайник как нагреватель воды, его эффективность составит 90%, а при использовании его в качестве отопителя комнаты коэффициент возрастает до 99%.

Объяснение этому простое : из-за теплообмена с окружением часть температуры рассеивается и теряется. Количество утраченной энергии зависит от проводимости материалов и других факторов. Можно рассчитать теоретически мощность тепловых потерь по формуле P = l x S D T / h. Здесь l – коэффициент теплопроводности, Вт/(м x К); S - площадь участка теплообмена, м?; D T - перепад температур на контролируемой поверхности, град. С; h - толщина изолирующего слоя, м.

Из формулы понятно, что для повышения мощности надо увеличить количество радиаторов отопления и площадь теплоотдачи. Уменьшив же поверхность контакта с внешней средой, минимизируют потери температуры в помещении. Чем массивнее стена здания, тем меньше будет утечка тепла.

Баланс отопления помещений

Подготовка проекта любого объекта начинается с теплотехнического расчёта, призванного решить задачу обеспечения сооружения отоплением с учётом потерь из каждого помещения. Сведение баланса помогает узнать, какая часть тепла сохраняется в стенах здания, сколько уходит наружу, объём потребной выработки энергии для обеспечения комфортного климата в комнатах.

Определение тепловой мощности необходимо для решения следующих вопросов:

  1. высчитать нагрузку отопительного котла , которая обеспечит обогрев, горячее водоснабжение, кондиционирование воздуха и функционирование системы проветривания;
  2. согласовать газификацию здания и получить технические условия на подключение к распределительной сети. Для этого потребуются объёмы годового расхода горючего и потребность в мощности (Гкал/час) тепловых источников;
  3. выбрать оборудование, необходимое для отопления помещений.

Не забываем про соответствующую формулу

Из закона сохранения энергии следует, что в ограниченном пространстве с постоянным температурным режимом должен соблюдаться тепловой баланс: Q поступлений - Q потерь = 0 или Q избыточное = 0, или S Q = 0. Постоянный микроклимат поддерживается на одном уровне в течение отопительного периода в зданиях социально значимых объектов: жилых, детских и лечебных учреждениях, а также на производствах с непрерывным режимом работы. Если потери тепла превышают поступление, требуется отапливать помещения.

Технический расчёт помогает оптимизировать расход материалов при строительстве, снизить затраты на возведение зданий. Определяется суммарная тепловая мощность котла сложением энергии на отопление квартир, нагрев горячей воды, компенсацию потерь вентиляции и кондиционирования, резерв на пиковые холода.

Расчет тепловой мощности

Выполнить точные вычисления по системе отопления затруднительно для неспециалиста, но упрощённые способы позволяют рассчитать показатели неподготовленному человеку. Если производить расчеты «на глаз», может получиться, что мощности котла или нагревателя не хватает. Или, наоборот, из-за избытка вырабатываемой энергии придётся пускать тепло «на ветер».

Способы самостоятельной оценки характеристик отопления:

  1. Использование норматива из проектной документации. Для Московской области применяется величина 100-150 Ватт на 1 м?. Площадь, подлежащая обогреву, умножается на ставку - это и будет искомый параметр.
  2. Применение формулы расчета тепловой мощности: N = V x D T x K, ккал/час. Обозначения символов: V - объём комнаты, D T - разница температур внутри и снаружи помещения, K - коэффициент пропускания тепла или рассеивания.
  3. Опора на укрупнённые показатели. Метод похож на предыдущий способ, но используется для определения тепловой нагрузки многоквартирных зданий.

Значения коэффициента рассеивания берут из таблиц, пределы изменения характеристики от 0,6 до 4. Примерные величины для упрощённого расчёта:

Пример расчета тепловой мощности котла для помещения 80 м? с потолком 2,5 м. Объём 80 x 2,5 = 200 м?. Коэффициент рассеивания для дома типовой постройки 1,5. Разница между комнатной (22°С) и наружной (минус 40°С) температурами составляет 62°С. Применяем формулу: N = 200 x 62 x 1,5 = 18600 ккал/час. Перевод в киловатты осуществляется делением на 860. Результат = 21,6 кВт.

Полученную величину мощности повышают на 10%, если существует вероятность морозов ниже 40°С / 21,6 x 1,1 = 23,8. Для дальнейших вычислений результат округляется до 24 кВт.