Оптико электронный пассивный поверхностный извещатель. Принцип действия оптико-электронного извещателя, область использования пассивных и активных устройств. Другие элементы защиты ИК-извещателей
Наиболее распространенными детекторами движения, которые используются в охранно-пожарной сигнализации, являются оптико-электронные извещатели.
По принципу выявления движения они разделяются на две группы: пассивные улавливающие объекта и активные – они продуцируют собственное излучение и по его изменению определяют наличие движущегося объекта.
Кроме того, такие детекторы классифицируют конфигурации сканируемой зоны, они бывают:
- Объемными;
- Поверхностными (штора);
- Линейными (луч).
Устройства используется для организации охраны внутри помещения, то есть в качестве второго рубежа защиты. Однако устройство с линейным и поверхностным способом обнаружения также могут применяться и для контроля пересечения периметра.
Основным недостатком пассивных поверхностных оптико-электронных извещателей является то, что они срабатывают когда нарушитель уже проник внутрь помещения. То есть они не могут осуществить раннее обнаружение проникновения.
Для пассивных устройств как объемных, так и линейных характерно небольшое расстояние контролируемой зоны, в зависимости от мощности модели 10-25 м. Поэтому они обычно используются для охраны небольших и средних помещений в комплекте по несколько штук на один шлейф. Для организации охраны строений, имеющих значительные площади, рекомендуется использовать активные оптико-электронные устройства.
Чувствительность сенсором оптико-электронного извещателя является пироприемник. Это устройство воспринимающие инфракрасное излучение. В зависимости от его интенсивности пироприемник вырабатывает различное количество электрических импульсов, которые обрабатываются электронным логическим блоком. Большинство современных моделей комплектуются двумя чувствительными сенсорами, что значительно снизило количество ложных срабатываний.
Активные оптико-электронные охранные извещатели
Область применения этих устройств довольно разнообразна. Они могут использоваться для контроля окон и дверных проемов, витрин или внешних периметров. Зависимости от типа конструкции различают два типа активных извещателей:
- Однопозиционный — в корпусе одного устройства размещается как излучатель таки приемник отраженного излучения. Срабатывание происходит в случае изменения интенсивности или частоты отраженного потока излучения.
- Двухпозиционные — состоят из двух модулей, один из которых является излучателем, второй приемником излучения. Срабатывание осуществляется из-за прерывания приема изучаемого потока.
Как правило, зона обнаружения имеет внешний вид барьера — «шторы», который образуется одним или несколькими лучами, расположенными в вертикальной или горизонтальной плоскости. Различные модели могут иметь разное количество детей лучей, их размеры и конфигурацию. При этом взаимное расположение лучей необязательно может быть параллельным. Однако настройка приемника и излучателя каждого конкретного луча должна осуществляться так чтобы они не пересекались.
Для обеспечения высокоэффективной бесперебойной работы активных оптико-электронных извещателей необходимо придерживаться определённых правил при их установке и эксплуатации:
- Устройства как однопозиционные, так и двухмодульные, должны быть установлены на недеформируемые, прочные строительные конструкции исключающее возможность чрезмерных вибраций;
- Приемник двухпозиционных устройств необходимо размещать так, чтобы исключить возможность влияния интенсивного искусственного и естественного освещения на фотоэлементы. Постоянное воздействие света видимого спектра на объектив приемника может привести к преждевременному выгоранию светодиодов или фотодиодов и как следствие, колонки устройства. Частично такую проблему можно решить путем применения специальных светофильтров, не пропускающих излучение в видимом и ультрафиолетовом спектре. Однако, кроме высокой стоимости данных устройств, они несколько снижают чувствительность прибора.
- При установке как источников, так и приемников ИК излучения необходимо исключить возможность прохождение различных посторонних предметов менее чем в 0,5м от проходящего луча.
Устройства на основе пассивного восприятия ИК излучения получили более широкое распространение, так как они являются более дешевыми устройствами, а благодаря широкому выбору (систем из линз Френеля) пользователь быстро получает различные формы зон сканирования, что облегчает возможность создания надежных систем охраны в здания со сложной планировкой внутренних помещений. Пассивные ИК детекторы движения используются в системах тревожной сигнализации и СКУД для охраны:
- Производственных и общественных строений, квартир и частных домовладений;
- Отдельных элементов сооружений наиболее уязвимых к проникновению: оконных проемов и внешних дверей, а также стен, витрин, потолков и пола;
- Периметров земельных участков и ограждений;
- Отдельных материальных ценностей — дорогостоящих предметов искусства или уникальных приборов.
Пассивный оптико-электронный извещатель формирует область сканирования, состоящую из узких чередующихся чувствительных и неактивных зон в форме веера разнонаправленных в одной плоскости. Взаимное расположение лучей в пространстве может быть различным: горизонтальным, вертикальными, в несколько рядов или собранным в один узкий луч. Форма зон сканирования условно разделяется на 5 основных типов:
- Широкоугольная поверхность в один ярус лучей, исходящая из одного источника — «веер»;
- Широкоугольная поверхность с узкими лучами, ориентированными в одной плоскости — «Штора»;
- Узконаправленный луч — «лучевой барьер»;
- Одноярусная поверхностная панорама;
- Многоярусная объемная.
При установке пассивных оптико-электронных извещателей необходимо соблюдать следующие рекомендации:
- Не устанавливать ИК детектор над конвекционными источниками тепла;
- Не направлять чувствительную зону прибора на прожекторы, тепловентиляторы, мощные лампы накаливания и иные устройства которые могут вызвать быстрое возрастание локального температурного фона;
- Предохранять устройство от чрезмерного влияния солнечного излучения;
- Воздержаться от нахождения в ответственной зоне обнаружения шкафов, штор и других типов перегородок которые могут создать «мертвую» контролируемую зону.
Краткий обзор популярных моделей
Извещатель охранный поверхностный оптико-электронный фотон-ш
— формирует зона обнаружения типа занавес. Используется для контроля проникновения в помещение через оконные и дверные проемы. Дальность обнаружения 5м, ширина занавеса 6,8м, угол обзора 70°.
Извещатель охранный оптико-электронный пирон 4 Б — укомплектован двухсенсорным пироприемником. Тип зоны обнаружения «штора», дальность 10м, угол обзора 70°. Имеет тонкую регулировку чувствительности, устойчив к радиопомехам и внешним засветкам.
AX-100TF активный двухлучевой извещатель — используется для контроля протяженных участков внешнего периметра. Обычно используется парами, приборы устанавливается друг на друга образуя барьер из четырех ограничительных лучей. Есть возможность выбора из четырех каналов несущих частот генерируемых лучей.
В настоящее время пассивные оптико-электронные инфракрасные (ИК) извещатели занимают лидирующие позиции при выборе защиты помещений от несанкционированного вторжения на объектах охраны. Эстетичный внешний вид, простота монтажа, настройки и обслуживания зачастую обеспечивают им приоритет по сравнению с другими средствами обнаружения.
Пассивные оптико-электронные инфракрасные (ИК) извещатели (их часто называют датчиками движения) обнаруживают факт проникновения человека в защищаемую (контролируемую) часть пространства, формируют сигнал тревожного извещения и путем размыкания контактов исполнительного реле (реле ПЦН) передают сигнал “тревога” на средства оповещения. В качестве средств оповещения могут использоваться устройства оконечные (УО) систем передачи извещений (СПИ) или прибор приемно-контрольный охранно-пожарный (ППКОП). В свою очередь, вышеназванные устройства (УО или ППКОП) по различным каналам передачи данных транслируют полученное тревожное извещение на пульт централизованного наблюдения (ПЦН) или местный пульт охраны.
Принцип работы пассивных оптико-электронных ИК-извещателей основан на восприятии изменения уровня инфракрасного излучения температурного фона, источниками которого являются тело человека или мелких животных, а также всевозможных предметов, находящихся в поле их зрения.
Инфракрасное излучение - это тепло, которое излучается всеми нагретыми телами. В пассивных оптико-электронных ИК-извещателях инфракрасное излучение попадает на линзу Френеля, после чего фокусируется на чувствительном пироэлементе, расположенном на оптической оси линзы (рис. 1).
Пассивные ИК-извещатели принимают потоки инфракрасной энергии от объектов и преобразуются пироприемником в электрический сигнал, который поступает через усилитель и схему обработки сигнала на вход формирователя тревожного извещения (рис. 1)1.
Для того чтобы нарушитель был обнаружен ИК-пассивным датчиком, необходимо выполнение следующих условий:
- . нарушитель должен пересечь в поперечном направлении луч зоны чувствительности датчика;
. движение нарушителя должно происходить в определенном интервале скоростей;
. чувствительность датчика должна быть достаточной для регистрации разницы температур поверхности тела нарушителя (с учетом влияния его одежды) и фона (стены, пол).
ИК-пассивные датчики состоят из трех основных элементов:
- . оптической системы, формирующей диаграмму направленности датчика и определяющей форму и вид пространственной зоны чувствительности;
. пироприемника, регистрирующего тепловое излучение человека;
. блока обработки сигналов пироприемника, выделяющего сигналы, обусловленные движущимся человеком, на фоне помех естественного и искусственного происхождения.
В зависимости от исполнения линзы Френеля пассивные оптико-электронные ИК-извещатели обладают различными геометрическими размерами контролируемого пространства и могут быть как с объемной зоной обнаружения, так и с поверхностной или линейной. Дальность действия таких извещателей лежит в диапазоне от 5 до 20 м. Внешний вид этих извещателей представлен на рис. 2.
Современные ИК-датчики характеризуются большим разнообразием возможных форм диаграмм направленности. Зона чувствительности ИК-датчиков представляет собой набор лучей различной конфигурации, расходящихся от датчика по радиальным направлениям в одной или нескольких плоскостях. В связи с тем, что в ИК-детекторах используются сдвоенные пироприемники, каждый луч в горизонтальной плоскости расщепляется на два:
Зона чувствительности детектора может иметь вид:
- . одного или нескольких, сосредоточенных в малом угле, узких лучей;
. нескольких узких лучей в вертикальной плоскости (лучевой барьер);
. одного широкого в вертикальной плоскости луча (сплошной занавес) или в виде многовеерного занавеса;
. нескольких узких лучей в горизонтальной или наклонной плоскости (поверхностная одноярусная зона);
. нескольких узких лучей в нескольких наклонных плоскостях (объемная многоярусная зона).
. При этом возможно изменение в широком диапазоне протяженности зоны чувствительности (от 1 м до 50 м), угла обзора (от 30° до 180°, для потолочных датчиков 360°), угла наклона каждого луча (от 0° до 90°), количества лучей (от 1 до нескольких десятков).
Многообразие и сложная конфигурация форм зоны чувствительности обусловлены в первую очередь следующими факторами:
- . стремлением разработчиков обеспечить универсальность при оборудовании различных по конфигурации помещений - небольшие комнаты, длинные коридоры, формирование зоны чувствительности специальной формы, например с зоной нечувствительности (аллеей) для домашних животных вблизи пола и т.п.;
. необходимостью обеспечения равномерной по охраняемому объему чувствительности ИК детектора.
На требовании равномерной чувствительности целесообразно остановиться подробнее. Сигнал на выходе пироприемника при прочих равных условиях тем больше, чем больше степень перекрытия нарушителем зоны чувствительности детектора и чем меньше ширина луча и расстояние до детектора. Для обнаружения нарушителя на большом (10…20 м) расстоянии желательно, чтобы в вертикальной плоскости ширина луча не превышала 5°…10°, в этом случае человек практически полностью перекрывает луч, что обеспечивает максимальную чувствительность. На меньших расстояниях чувствительность детектора в этом луче существенно возрастает, что может привести к ложным срабатываниям, например, от мелких животных. Для уменьшения неравномерной чувствительности используются оптические системы, формирующие несколько наклонных лучей, ИК детектор при этом устанавливается на высоте выше человеческого роста. Общая длина зоны чувствительности тем самым разделяется на несколько зон, причем “ближние” к детектору лучи для снижения чувствительности делаются обычно более широкими. За счет этого обеспечивается практически постоянная чувствительность по расстоянию, что с одной стороны способствует уменьшению ложных срабатываний, а с другой стороны повышает обнаружительную способность за счет устранения мертвых зон вблизи детектора.
При построении оптических систем ИК-датчиков могут использоваться:
- . линзы Френеля - фасеточные (сегментированные) линзы, представляющие собой пластиковую пластину с отштампованными на ней несколькими призматическими линзами-сегментами;
. зеркальная оптика - в датчике устанавливается несколько зеркал специальной формы, фокусирующих тепловое излучение на пироприемник;
. комбинированная оптика, использующая и зеркала, и линзы Френеля.
. В большинстве ИК-пассивных датчиков используются линзы Френеля. К достоинствам линз Френеля относятся:
. простота конструкции детектора на их основе;
. низкая цена;
. возможность использования одного датчика в различных приложениях при использовании сменных линз.
Обычно каждый сегмент линзы Френеля формирует свой луч диаграммы направленности. Использование современных технологий изготовления линз позволяет обеспечить практически постоянную чувствительность детектора по всем лучам за счет подбора и оптимизации параметров каждой линзы-сегмента: площади сегмента, угла наклона и расстояния до пироприемника, прозрачности, отражающей способности, степени дефокусировки. В последнее время освоена технология изготовления линз Френеля со сложной точной геометрией, что дает 30% увеличение собираемой энергии по сравнению со стандартными линзами и соответственно увеличение уровня полезного сигнала от человека на больших расстояниях. Материал, из которого изготавливаются современные линзы, обеспечивает защиту пироприемника от белого света. К неудовлетворительной работе ИК-датчика могут привести такие эффекты, как тепловые потоки, являющиеся результатом нагревания электрических компонентов датчика, попадание насекомых на чувствительные пироприемники, возможные переотражения инфракрасного излучения от внутренних частей детектора. Для устранения этих эффектов в ИК-датчиках последнего поколения применяется специальная герметичная камера между линзой и пироприемником (герметичная оптика), например в новых ИК-датчиках фирм PYRONIX и C&K. По оценкам специалистов, современные высокотехнологичные линзы Френеля по своим оптическим характеристикам практически не уступают зеркальной оптике.
Зеркальная оптика как единственный элемент оптической системы применяется достаточно редко. ИК-датчики с зеркальной оптикой выпускаются, например, фирмами SENTROL и ARITECH. Преимуществами зеркальной оптики являются возможность более точной фокусировки и, как следствие, увеличение чувствительности, что позволяет обнаруживать нарушителя на больших расстояниях. Использование нескольких зеркал специальной формы, в том числе многосегментных, позволяет обеспечить практически постоянную чувствительность по расстоянию, причем эта чувствительность на дальних расстояниях приблизительно на 60% выше, чем для простых линз Френеля. С помощью зеркальной оптики проще обеспечивается защита ближней зоны, расположенной непосредственно под местом установки датчика (так называемая антисаботажная зона). По аналогии со сменными линзами Френеля, ИК-датчики с зеркальной оптикой комплектуются сменными отстегивающимися зеркальными масками, применение которых позволяет выбирать требуемую форму зоны чувствительности и дает возможность адаптировать датчик к различным конфигурациям защищаемого помещения.
В современных высококачественных ИК-детекторах используется комбинация линз Френеля и зеркальной оптики. При этом линзы Френеля используются для формирования зоны чувствительности на средних расстояниях, а зеркальная оптика - для формирования антисаботажной зоны под датчиком и для обеспечения очень большого расстояния обнаружения.
Пироприемник:
Оптическая система фокусирует ИК излучение на пироприемнике, в качестве которого в ИК-датчиках используется сверхчувствительный полупроводниковый пироэлектрический преобразователь, способный зарегистрировать разницу в несколько десятых градуса между температурой тела человека и фона. Изменение температуры преобразуется в электрический сигнал, который после соответствующей обработки вызывает сигнал тревоги. В ИК-датчиках обычно используются сдвоенные (дифференциальные, DUAL) пироэлементы. Это связано с тем, что одиночный пироэлемент одинаковым образом реагирует на любое изменение температуры независимо от того, чем оно вызвано - человеческим телом или, например, обогревом помещения, что приводит к повышению частоты ложных срабатываний. В дифференциальной схеме производится вычитание сигнала одного пироэлемента из другого, что позволяет существенно подавить помехи, связанные с изменением температуры фона, а также заметно снизить влияние световых и электромагнитных помех. Сигнал от движущегося человека возникает на выходе сдвоенного пироэлемента только при пересечении человеком луча зоны чувствительности и представляет собой почти симметричный двухполярный сигнал, близкий по форме к периоду синусоиды. Сам луч для сдвоенного пироэлемента по этой причине расщепляется в горизонтальной плоскости на два. В последних моделях ИК-датчиков с целью дополнительного снижения частоты ложных срабатываний используются счетверенные пироэлементы (QUAD или DOUBLE DUAL) - это два сдвоенных пироприемника, расположенные в одном датчике (обычно размещаются один над другим). Радиусы наблюдения этих пироприемников делаются различными, и поэтому локальный тепловой источник ложных срабатываний не будет наблюдаться в обоих пироприемниках одновременно. При этом геометрия размещения пироприемников и схема их включения выбирается таким образом, чтобы сигналы от человека были противоположной полярности, а электромагнитные помехи вызывали сигналы в двух каналах одинаковой полярности, что приводит к подавлению и этого типа помех. Для счетверенных пироэлементов каждый луч расщепляется на четыре (см. рис.2), в связи с чем максимальное расстояние обнаружения при использовании одинаковой оптики уменьшается приблизительно вдвое, так как для надежного обнаружения человек должен своим ростом перекрывать оба луча от двух пироприемников. Повысить расстояние обнаружения для счетверенных пироэлементов позволяет использование прецизионной оптики, формирующей более узкий луч. Другой путь, позволяющий в некоторой степени исправить это положение - применение пироэлементов со сложной переплетенной геометрией, что использует в своих датчиках фирма PARADOX.
Блок обработки сигналов
Блок обработки сигналов пироприемника должен обеспечивать надежное распознавание полезного сигнала от движущегося человека на фоне помех. Для ИК-датчиков основными видами и источниками помех, могущими вызвать ложное срабатывание, являются:
- . источники тепла, климатизационные и холодильные установки;
. конвенционное движение воздуха;
. солнечная радиация и искусственные источники света;
. электромагнитные и радиопомехи (транспорт с электродвигателями, электросварка, линии электропередачи, мощные радиопередатчики, электростатические разряды);
. сотрясения и вибрации;
. термическое напряжение линз;
. насекомые и мелкие животные.
Выделение блоком обработки полезного сигнала на фоне помех основано на анализе параметров сигнала на выходе пироприемника. Такими параметрами являются величина сигнала, его форма и длительность. Сигнал от человека, пересекающего луч зоны чувствительности ИК-датчика, представляет собой почти симметричный двухполярный сигнал, длительность которого зависит от скорости перемещения нарушителя, расстояния до датчика, ширины луча, и может составлять приблизительно 0,02…10 с при регистрируемом диапазоне скоростей перемещения 0,1…7 м/с. Помеховые сигналы в большинстве своем являются несимметричными или имеющими отличную от полезных сигналов длительность (см. рис. 3). Изображенные на рисунке сигналы носят очень приблизительный характер, в реальности все значительно сложнее.
Основным параметром, анализируемым всеми датчиками, является величина сигнала. В простейших датчиках этот регистрируемый параметр является единственным, и его анализ производится путем сравнения сигнала с некоторым порогом, который определяет чувствительность датчика и влияет на частоту ложных тревог. С целью повышения устойчивости к ложным тревогам в простых датчиках используется метод счета импульсов, когда подсчитывается, сколько раз сигнал превысил порог (то есть, по сути, сколько раз нарушитель пересек луч или сколько лучей он пересек). При этом тревога выдается не при первом превышении порога, а только если в течение определенного времени количество превышений становится больше заданной величины (обычно 2…4). Недостатком метода счета импульсов является ухудшение чувствительности, особенное заметное для датчиков с зоной чувствительности типа одиночного занавеса и ей подобной, когда нарушитель может пересечь только один луч. С другой стороны, при счете импульсов возможны ложные срабатывания от повторяющихся помех (например, электромагнитных или вибраций).
В более сложных датчиках блок обработки анализирует двухполярность и симметрию формы сигналов с выхода дифференциального пироприемника. Конкретная реализация такой обработки и используемая для ее обозначения терминология1 у разных фирм-производителей может быть различной. Суть обработки состоит в сравнении сигнала с двумя порогами (положительным и отрицательным) и, в ряде случаев, сравнении величины и длительности сигналов разной полярности. Возможна также комбинация этого метода с раздельным подсчетом превышений положительного и отрицательного порогов.
Анализ длительности сигналов может проводиться как прямым методом измерения времени, в течение которого сигнал превышает некоторый порог, так и в частотной области путем фильтрации сигнала с выхода пироприемника, в том числе с использованием “плавающего” порога, зависящего от диапазона частотного анализа.
Еще одним видом обработки, предназначенным для улучшения характеристик ИК-датчиков, является автоматическая термокомпенсация. В диапазоне температур окружающей среды 25°С…35°С чувствительность пироприемника снижается за счет уменьшения теплового контраста между телом человека и фоном, при дальнейшем повышении температуры чувствительность снова повышается, но “с противоположным знаком”. В так называемых “обычных” схемах термокомпенсации осуществляется измерение температуры, и при ее повышении производится автоматическое увеличение усиления. При “настоящей” или “двухсторонней” компенсации учитывается повышение теплового контраста для температур выше 25°С…35°С. Использование автоматической термокомпенсации обеспечивает почти постоянную чувствительность ИК-датчика в широком диапазоне температур.
Перечисленные виды обработки могут проводиться аналоговыми, цифровыми или комбинированными средствами. В современных ИК-датчиках все шире начинают использоваться методы цифровой обработки с использованием специализированных микроконтроллеров с АЦП и сигнальных процессоров, что позволяет проводить детальную обработку тонкой структуры сигнала для лучшего выделения его на фоне помех. В последнее время появились сообщения о разработке полностью цифровых ИК-датчиков, вообще не использующих аналоговых элементов.
Как известно, вследствие случайного характера полезных и помеховых сигналов наилучшими являются алгоритмы обработки, основанные на теории статистических решений.
Другие элементы защиты ИК-извещателей
В ИК-датчиках, предназначенных для профессионального использования, применяются так называемые схемы антимаскинга. Суть проблемы состоит в том, что обычные ИК-датчик могут быть выведены нарушителем из строя путем предварительного (когда система не поставлена на охрану) заклеивания или закрашивания входного окна датчика. Для борьбы с этим способом обхода ИК-датчиков и используются схемы антимаскинга. Метод основывается на использовании специального канала ИК-излучения, срабатывающего при появлении маски или отражающей преграды на небольшом расстоянии от датчика (от 3 до 30 см). Схема антимаскинга работает непрерывно, пока система снята с охраны. Когда факт маскирования обнаруживается специальным детектором, сигнал об этом подается с датчика на контрольную панель, которая, однако, не выдает сигнала тревоги до тех пор, пока не придет время постановки системы на охрану. Именно в этот момент оператору и будет выдана информация о маскировании. Причем, если это маскирование было случайным (крупное насекомое, появление крупного объекта на некоторое время вблизи датчика и т.п.) и к моменту постановки на сигнализацию самоустранилось, сигнал тревоги не выдается.
Еще одним защитным элементом, которым оборудованы практически все современные ИК-детекторы, является контактный датчик вскрытия, сигнализирующий о попытке открывания или взлома корпуса датчика. Реле датчиков вскрытия и маскирования подключаются к отдельному шлейфу охраны.
Для устранения срабатываний ИК-датчика от мелких животных используются либо специальные линзы с зоной нечувствительности (Pet Alley) от уровня пола до высоты порядка 1 м, либо специальные методы обработки сигналов. Следует учитывать, что специальная обработка сигналов позволяет игнорировать животных только в том случае, если их общий вес не превышает 7…15 кг, и они могут приблизиться к датчику не ближе 2 м. Так что если в охраняемом помещении прыгучая кошка, то такая защита не поможет.
Для защиты от электромагнитных и радиопомех используется плотный поверхностный монтаж и металлическое экранирование.
Монтаж извещателей
Пассивные оптико-электронные ИК-извещатели имеют одно замечательное преимущество по сравнению с другими типами средств обнаружения. Это простота монтажа, настройки и технического обслуживания. Извещатели данного типа могут устанавливаться как на плоской поверхности несущей стены, так и в углу помещения. Существуют извещатели, которые размещаются на потолке.
Грамотный выбор и тактически верное применение таких извещателей являются залогом надежной работы устройства, да и всей системы охраны в целом!
При выборе типов и количества датчиков для обеспечения охраны конкретного объекта следует учитывать возможные пути и способы проникновения нарушителя, требуемый уровень надежности обнаружения; расходы на приобретение, монтаж и эксплуатацию датчиков; особенности объекта; тактико-технические характеристики датчиков. Особенностью ИК-пассивных датчиков является их универсальность - с их использованием возможно блокирование от подхода и проникновения самых разнообразных помещений, конструкций и предметов: окон, витрин, прилавков, дверей, стен, перекрытий, перегородок, сейфов и отдельных предметов, коридоров, объемов помещений. При этом в ряде случаев не потребуется большого количества датчиков для защиты каждой конструкции - может оказаться достаточным применения одного или нескольких датчиков с нужной конфигурацией зоны чувствительности. Остановимся на рассмотрении некоторых особенностей применения ИК-датчиков.
Общий принцип использования ИК-датчиков - лучи зоны чувствительности должны быть перпендикулярны предполагаемому направлению движения нарушителя. Место установки датчика следует выбирать так, чтобы минимизировать мертвые зоны, вызванные наличием в охраняемом помещении крупных предметов, перекрывающих лучи (например, мебель, комнатные растения). Если в помещении двери открываются внутрь, следует учитывать возможность маскировки нарушителя открытыми дверьми. При невозможности устранить мертвые зоны следует использовать несколько датчиков. При блокировке отдельных предметов датчик или датчики нужно устанавливать так, чтобы лучи зоны чувствительности блокировали все возможные подходы к защищаемым предметам.
Должен соблюдаться задаваемый в документации диапазон допустимых высот подвески (минимальная и максимальная высоты). В особенности это относится к диаграммам направленности с наклонными лучами: если высота подвески будет превышать максимально допустимую, то это приведет к уменьшению сигнала из дальней зоны и увеличению мертвой зоны перед датчиком, если же высота подвески будет меньше минимально допустимой, то это приведет к уменьшению дальности обнаружения с одновременным уменьшением мертвой зоны под датчиком.
1. Извещатели с объемной зоной обнаружения (рис. 3, а,б), как правило, устанавливаются в углу помещения на высоте 2,2-2,5 м. В этом случае они равномерно охватывают объем защищаемого помещения.
2. Размещение извещателей на потолке предпочтительнее в помещениях с высокими потолками от 2,4 до 3,6 м. Данные извещатели имеют более плотную зону обнаружения (рис. 3, в), а на их работу в меньшей степени влияют имеющиеся предметы мебели.
3. Извещатели с поверхностной зоной обнаружения (рис. 4) применяются для охраны периметра, например некапитальных стен, дверных или оконных проемов, а также могут использоваться для ограничения подхода к каким-либо ценностям. Зона обнаружения таких устройств должна быть направлена, как вариант, вдоль стены с проемами. Некоторые извещатели могут устанавливаться непосредственно над проемом.
4. Извещатели с линейной зоной обнаружения (рис. 5) применяются для охраны длинных и узких коридоров.
Помехи и ложные срабатывания
При использовании пассивных оптико-электронных ИК-извещателей необходимо иметь в виду возможность ложных срабатываний, которые происходят из-за помех различного типа.
К ложным срабатываниям ИК-датчиков могут привести помехи теплового, светового, электромагнитного, вибрационного характера. Несмотря на то, что современные ИК-датчики имеют высокую степень защиты от указанных воздействий, все же целесообразно придерживаться следующих рекомендаций:
- . для защиты от потоков воздуха и пыли не рекомендуется размещать датчик в непосредственной близости от источников воздушных потоков (вентиляция, открытое окно);
. следует избегать прямого попадания на датчик солнечных лучей и яркого света; при выборе места установки должна учитывается возможность засветки в течение непродолжительного времени рано утром или на закате, когда солнце низко над горизонтом, или засветки фарами проезжающего снаружи транспорта;
. на время постановки на охрану целесообразно отключать возможные источники мощных электромагнитных помех, в частности источники света не на основе ламп накаливания: люминесцентные, неоновые, ртутные, натриевые лампы;
. для снижения влияния вибраций целесообразно устанавливать датчик на капитальных или несущих конструкциях;
. не рекомендуется направлять датчик на источники тепла (радиатор, печь) и колеблющиеся предметы (растения, шторы), в сторону нахождения домашних животных.
Тепловые помехи - обусловлены нагреванием температурного фона при воздействии на него солнечного излучения, конвективных потоков воздуха от работы радиаторов систем отопления, кондиционеров, сквозняков.
Электромагнитные помехи - вызываются наводками от источников электро- и радиоизлучений на отдельные элементы электронной части извещателя.
Посторонние помехи - связаны с перемещением в зоне обнаружения извещателя мелких животных (собаки, кошки, птицы). Рассмотрим более детально все факторы, влияющие на нормальную работоспособность пассивных оптико-электронных ИК-извещателей.
Тепловые помехи
Это наиболее опасный фактор, который характеризуется изменением температурного фона окружающей среды. Воздействие солнечного излучения вызывает локальное повышение температуры отдельных участков стен помещения.
Конвективные помехи обусловлены воздействием перемещающихся потоков воздуха, например от сквозняков при открытой форточке, щелей в оконных проемах, а также при работе бытовых отопительных приборов - радиаторов и кондиционеров.
Электромагнитные помехи
Возникают при включении любых источников электро- и радиоизлучения, таких как измерительная и бытовая аппаратура, освещение, электродвигатели, радиопередающие устройства. Сильные помехи могут создаваться и от разрядов молний.
Посторонние помехи
Своеобразным источником помех в пассивных оптико-электронных ИК-извещателях могут являться мелкие насекомые, такие как тараканы, мухи, осы. В случае их перемещения непосредственно по линзе Френеля может возникнуть ложное срабатывание извещателя данного типа. Опасность представляют и так называемые домашние муравьи, которые могут попасть внутрь извещателя и ползать непосредственно по пироэлементу.
Ошибки монтажа
Особое место в некорректной или неправильной работе пассивных оптико-электронных ИК-извещателей занимают ошибки монтажа при выполнении работ по установке данных типов устройств. Обратим внимание на яркие примеры неправильного размещения ИК-извещателей, чтобы избежать подобного на практике.
На рис. 6 а; 7 а и 8 а отображена правильная, корректная установка извещателей. Устанавливать их нужно только так и никак иначе!
На рисунках 6 б, в; 7 б, в и 8 б, в представлены варианты неправильной установки пассивных оптико-электронных ИК-извещателей. При такой установке возможны пропуски реальных вторжений в охраняемые помещения без выдачи сигнала “Тревога”.
Не устанавливать пассивные оптико-электронные извещатели таким образом, чтобы на них попадали прямые или отраженные лучи солнечного света, а также свет фар проезжающих автотранспортных средств.
Не направлять зону обнаружения извещателя на нагревательные элементы систем отопления и кондиционирования помещения, на шторы и гардины, которые могут колебаться от сквозняков.
Не располагать пассивные оптико-электронные извещатели вблизи источников электромагнитного излучения.
Уплотнять все отверстия пассивного оптико-электронного ИК-извещателя герметиком из комплекта изделия.
Уничтожать насекомых, которые присутствуют в охраняемом помещении.
В настоящее время имеется огромное разнообразие средств обнаружения, отличающихся принципом действия, областью применения, конструкцией и эксплуатационными характеристиками.
Правильный выбор пассивного оптико-электронного ИК-извещателя и места его установки - залог надежной работы системы охранной сигнализации.
При написании статьи использованы в том числе материалы из журнала “Системы безопасности” №4, 2013
Для контроля объема помещений чаще всего применяют инфракрасные извещатели. Это одни из самых распространенных типов технических средств безопасности, которые зарекомендовали себя как надежные устройства с доступной ценой. Пассивный инфракрасный извещатель предназначен для обнаружения движения злоумышленника в контролируемом объеме. Пассивными они называются потому, что реагируют на изменение параметров окружающей среды. Принцип их работы основан на измерении потока теплового излучения, т. е. с помощью пироэлемента устройство регистрирует изменение инфракрасного излучения, преобразует в электрический сигнал и производит анализ измеренных данных с помощью цифрового процессора. В результате вычислений процессор выдает решение о наличии или отсутствии в зоне обнаружения движения. Для этого на плате имеется реле с нормально-замкнутыми или нормально-разомкнутыми контактами.
Зона обнаружения, формируемая линзой Френеля, является важнейшим критерием при выборе извещателей для решения различного рода задач в зависимости от конфигурации защищаемого помещения - длины, ширины, высоты потолка, наличия помех и т. д. В большинстве случаев оптимальным решением является датчик с объемной зоной обнаружения; такие изделия оснащаются стандартной линзой, обеспечивающей максимальную дальность обнаружения около 12-15 метров и угол области обнаружения в горизонтальной плоскости 90° (например, или ). Для контроля просторных помещений идеальным вариантом будут потолочные объемные датчики, позволяющие защищать объем помещений на 360° вокруг собственной оси. При установке на высоте 5 метров диаметр зоны обнаружения может достигать 15 метров (). В помещениях, где установка ИК-извещателей с объемной зоной может повлечь некорректную работу с генерацией частых ошибочных срабатываний, целесообразно применять изделия с урезанной зоной обнаружения типа "штора", имеющей угол в горизонтальной плоскости 7°-10°. Таким образом, данные изделия генерируют обнаруживающую плоскость, "перекрывающую" охраняемый проем окна или двери. Отдельные устройства, например, могут регулировать угол в пределах 2°-16°. В частных домах и квартирах с постоянным нахождением в них домашних животных особенно целесообразно использовать подобные датчики типа "занавес" или "луч", линзы которых отсекают часть детектирующих лучей, позволяя, таким образом, игнорировать движение питомцев весом до 25 кг и размерами около 30х100 см. Для обеспечения требуемой зоны обнаружения требуется строго придерживаться правил монтажа с соблюдением необходимой высоты.
Условия эксплуатации также влияют на корректную работу пассивных оптико-электронных извещателей. Производители не рекомендуют монтировать инфракрасные датчики в непосредственной близости от отверстий вентканалов, окон и дверей, у которых могут создаваться конвекционные воздушные потоки, а также рядом с отопительными приборами. Несмотря на устойчивость к засветам освещенностью до 6500 люкс, крайне нежелательно прямое попадание излучения источников естественного и искусственного освещения. Для уменьшения влияния высоких значений температуры окружающей среды на стабильную работу в инфракрасных детекторах применяются термокомпенсационные схемы. В одном помещении возможно применение нескольких пассивных ИК-извещателей без риска возникновения ложных срабатываний. Многие модели поддерживают дискретную регулировку чувствительности.
Все представленные в данном разделе изделия имеют внешнюю световую индикацию активности и состояния питания датчика, которую можно отключить с помощью перемычки. От несанкционированного вскрытия корпуса защищает микропереключатель, установленный на плате. В линейке имеются устройства, рассчитанные на работу на улице и во взрывоопасных помещениях с соответствующей степенью защиты.
В системах охранной сигнализации извещатели, имеющие оптико электронный принцип действия используются инсталляторами широко и охотно. Давайте разберемся как они работают, а также рассмотрим достоинства, недостатки и область применения этих устройств.
Ключевым в названии таких приборов является слово "оптико" - то есть оптический. Правда диапазон, в котором они работают для человеческого глаза невидим, поскольку смещен в инфракрасную (ИК) область. Все приборы рассматриваемого принципа действия подразделяются на две группы:
- пассивные,
- активные.
Первые встречаются чаще за счет простоты установки и настройки. Они состоят из приемника, специальной линзы и электронного блока обработки сигнала (вот и вторая часть названия). Среди них тоже существует подразделение на:
- поверхностные,
- линейные.
Эти названия происходят от типа зоны обнаружения - то есть конфигурации части пространства в котором оптико электронный извещатель способен обнаружить тревожное событие. Этим событием является перемещение тела определенной массы с определенной скоростью. Эти параметры определяются его техническими характеристиками.
Диапазон обнаруживаемых скоростей начинается, как правило, со значения 0,3 м/сек. Что касается массы, то здесь многое зависит от дальности до объекта, высоты установки извещателя. В любом случае, человек обнаруживается без проблем, домашние животные, в большинстве случаев, тоже. Поэтому, существуют объемные инфракрасные извещатели с "защитой" от домашних животных, массой, скажем до 10 или 20 кг (прописывается в паспорте).
Общим недостатком всех пассивных оптико электронных датчиков является чувствительность к конвекционным воздушным потокам, будь то теплый воздух от отопительного прибора или тривиальный сквозняк. Поэтому при определении мест установки этих извещателей подобные моменты учитываются в обязательном порядке. Также критичным является жесткость несущей конструкции (отсутствие вибраций в процессе эксплуатации) и защита от посторонних засветок.
ОБЛАСТЬ ПРИМЕНЕНИЯ ОХРАННЫХ ИК ИЗВЕЩАТЕЛЕЙ
В системах охранной сигнализации инфракрасные датчики используются,. как правило, для организации второго рубежа защиты, то есть контроля внутреннего объема помещений за счет обнаружения в них движения потенциального нарушителя. Однако, поверхностные и линейные устройства могут использоваться для охраны периметра.
Пассивные поверхностные извещатели используются для обнаружения проникновения через двери, окна, всевозможные люки и перекрытия. Недостаток этого способа их применения только один - они сработают когда нарушитель будет уже внутри помещения. То есть речи о раннем обнаружении попытки проникновения не идет.
Все пассивные устройства имеют сравнительно небольшое расстояние обнаружения 10-20 метров. Объемные - поменьше, линейные побольше. Это свойство определяет их установку внутри небольших помещений. Если требуется оборудовать охранной сигнализацией большие площади, то можно:
- установить несколько пассивных датчиков,
- использовать активные инфракрасные извещатели.
Кстати, последние предназначены, как правило, для охраны протяженных периметров открытых площадок, поэтому имеют линейную зону обнаружения. Кроме того, другие типы зон для активных устройств реализовать технически невозможно. Для увеличения вертикальной площади контроля используют многолучевые извещатели.
Инфракрасные датчики критичны к оптической плотности среды (дождь, снег, туман), поэтому это следует учитывать при их уличной установке.
В заключение можно привести несколько наиболее популярных линеек моделей оптико электронных извещателей отечественных производителей. Это извещатели типа:
- Астра,
- Фотон,
- Икар.
Все они выпускаются различных исполнений как по способу установки так и по параметрам зоны обнаружения. Например, Астра 5А - объемный извещатель, 5Б - поверхностный, 5В -линейный.
© 2010-2019 г.г.. Все права защищены.
Материалы, представленные на сайте, имеют ознакомительно-информационный характер и не могут использоваться в качестве руководящих документов
Для обеспечения охраны жилого дома, административного здания или прочего имущества используются специальные приборы – , охранные. В данной статье речь пойдет об оптико-электронных извещателях, их характеристиках и разновидностях.
Дымовые пожарные датчики
Дымовые извещатели – самые распространенные датчики пожарной сигнализации. Они отличаются быстрой восприимчивостью к продуктам горения и высокой скоростью срабатывания. Дымовые приборы пожарной безопасности подразделяются на ионизационные и оптические.
Ионизационные датчики выделяют безопасное радиоактивное излучение для анализа пробных воздушных масс на наличие дыма.
Дымовые оптико-электронные излучатели – приборы, фиксирующие дым в начальной стадии, посредством просвечивания воздуха в инфракрасном или ультрафиолетовом свете.
Устройство и принцип действия оптических извещателей
Оптико-электронные датчики представляют собой пластиковый корпус, где располагаются светоизлучатель, дымовая камера, фотоприемник и перегородка, служащая для защиты фотоэлемента от прямых инфракрасных или ультрафиолетовых лучей. Также устройство имеет защиту от внешнего света и пыли.
Извещатель пожарный дымовой оптико-электронный точечный испускает излучение в инфракрасном спектре в дымовую камеру и регистрирует его отражение фотодиодом. В «чистой» среде лучи не достигают фотоэлемента, так светоизлучатель и приемный блок находятся под углом друг к другу.
Но как только в камеру попадают дымовые частички, плотность среды увеличивается, инфракрасное излучение рассеивается и попадает на фотоприемник. Так происходит включение сигнализации – самостоятельно активируется тревожный сигнал или с одновременной передачей на пульт слежения.
Оптико-электронные излучатели – это не автономные приборы, они подключаются к шлейфу, ведущему к пульту управления.Имеют низкое энергопотребление.
Виды и область применения
Оптические дымовые пожарные извещатели подразделяются на несколько видов:
- точечные – имеют небольшой радиус действия. Производят контроль помещения в конкретной зоне, где велика вероятность возгорания;
- линейные – используются в помещениях больших объемов с высокими потолками. Представляют собой приемник и излучатель, которые монтируются на противоположных стенах помещения;
- аспирационные — принудительно берут воздушные пробы на анализ посредством лазерного просвечивания;
- автономные – это те же точечные приборы, работающие на собственном источнике питания, то есть не подключенные к пульту управления.
Оптико-электронные извещатели устанавливаются в жилых, офисных помещениях, на складах, в торговых центрах, производственных помещениях и везде, где находится много электроприборов и оборудования.
Не рекомендуется использование подобных приборов в запыленных, загазованных и загрязненных зонах, так как такая среда может спровоцировать ложные срабатывания. Также дымовые датчики не используются на пожаро- и взрывоопасных объектах. В подобных зонах используются извещатели взрывозащищенные.
Оптический датчик пожарной безопасности ИП 212-45
Ниже представлено описание основных характеристик дымовых оптических извещателей на примере ИП 212-45 (Марко).
Датчик используется для раннего обнаружения возгорания в помещении, сопровождающегося выделение дыма и продуктов горения.
Электропитание и передача тревожного сигнала на пульт управления осуществляется по двухпроводному кабелю. Имеет несколько режимов работы: дежурный, «Пожар», «Тревога».
Прибор не реагирует на открытый огонь, высокую температуру воздуха и влажность. Условия эксплуатации: влажность 95% при температуре +35 градусов; диапазон температуры воздуха от -44 до +55 градусов. Чувствительность 0,05- 0,2 дБ/м. Время срабатывания – 9 сек.
Устройство состоит из датчика дыма и розетки, к которой крепится прибор. Внутри датчика находятся камера анализа воздушных проб, а также электронная система обработки информации.
Оптико-электронные охранные извещатели
Помимо пожарных датчиков безопасности существуют и охранные оптико-электронные извещатели. Они имеют широкую популярность и распространение.
Оптико-электронные охранные извещатели – приборы, обеспечивающие защиту закрытого помещения, территории, посредством контроля и обнаружения в них посторонних лиц и животных. Для охраны уличной огражденной территории используются линейные оптико-электронные датчики.
Действие подобных приборов основывается на оптическом принципе работы, то есть с использование инфракрасных лучей и отражающих линз.
Извещатели охранные оптико-электронные делятся на: активные и пассивные.
Пассивные датчики
Пассивные приборы охранной сигнализации фиксируют перемещение нежелательного объекта на подконтрольной территории с определенной массой и скоростью, отличной от заданного значения.
Применяются для выявления лиц, проникших в помещение через двери, окна, люки. Подобные приборы не реагируют на неподвижные предметы, даже при их высоких температурных показателях.
Пассивные извещатели включают в себя приемник, линзы, электронный блок анализа сигналов. Датчики регистрируют инфракрасное излучение от теплого объекта, которое попадает на линзу Френеля и преобразуется пироприемником в специальный электрический сигнал.
Затем сигнал поступает на усилитель и электронную систему обработки информации. При установлении прибором значений инфракрасного излучения выше заданного, включается тревожный сигнал, который передается на пульт управления.
Пассивные охранные приборы имеют невысокую дальность обнаружения – 10-20 метров. Диапазон обнаруживаемых скоростей начинается с показателя 0,3 м/сек.
Для исключения ложных срабатываний от разнообразных источников излучения, внутри прибора располагаются фильтрационные конструкции («белый» фильтр, «черное» зеркало), блокирующие проникание на пироэлектрический элемент датчика иных оптических излучений.
По типу области обнаружения пассивные датчики подразделяются на: объемные оптико-электронные, поверхностные и линейные.
Достоинствами пассивных датчиков являются фиксирование посторонних объектов даже малого размера (мелких животных); эстетичный внешний вид; простота установки и настройки; высокая чувствительность и скорость обнаружения нарушителя.
Минусами пассивных извещателей является факт обнаружения нарушителя уже после его проникновения внутрь здания; чувствительность к теплым воздушным потокам от сквозняка или обогревателя.
Активные датчики
Активные оптико-электронные извещатели осуществляют линейную зону защиты. Конструкция прибора представляет собой два блока: излучатель и фотоприемника, между которых образуется оптическая область защиты.
Инфракрасный световой датчик посылает сигналы на приемник с заданными параметрами.
Если в рабочей области прибора появляется преграда, то ИК лучи прерываются и не поступают на фотоприемник.
Анализируя длительность прерывания лучей, извещатель формирует сигнал тревоги. Существуют одноблочные приборы, где светоизлучатель с фотоприемником заключены в один корпус.
Приборы не реагируют на тепловое излучение, поэтому применяются на территориях под открытым воздухом. Рабочими особенностями активных охранных датчиков являются.