Агрохимический анализ почвы. Агрохимия и агропочвоведение - Агрохимическое обследование почв. Методика проведения и использование материалов для почвенной диагностики питания растений и сертификации почв земельных участков Агрохимическое обследование почв
План занятия:
1. Предмет, методы и задачи агрохимического обследования. Значение агрохимического обследования почв.
1. Предмет, методы и задачи агрохимического обследования. Значение агрохимического обследования почв. В последние десятилетия, значительно усилилось антропогенное воздействие на природные объекты, включая почвенный покров гроландшафтов. Деградация земель в отдельных регионах достигла критического уровня, когда восстановление свойств почв и в первую очередь их плодородия практически стало невозможным без целенаправленной природоохранной деятельности.
Планы природоохранных мероприятий и их реализация могут быть осуществлены только на основе полной информации о состоянии окружавшей среды, в том числе почвенного покрова. Важную роль в этом призван сыграть систематический контроль за состоянием почв сельскохозяйственных угодий. Оптимальной Формой организации и осуществления такого контроля является комплексный агрохимический мониторинг, объединяющий различные направления работ по обследованию почв сельскохозяйственных угодий: агрохимическое, токсикологическое, радиологическое, гербологическое. С учетом опыта этих работы агрохимической службе России этот мониторинг может быть реализован как комплексное крупномасштабное обследование почв сельскохозяйственных угодий проектно-изыскательскими центрами (станциями) химизации агрохимической службы. Актуальность такого подхода обусловлена внедрением различных Форм хозяйствования в сельскохозяйственное производство, что приводит к усложнению взаимодействия землепользователя с окружающей средой.
В настоящих указаниях представлена методика проведения комплексного агрохимического обследования почв сельскохозяйственных угодий, результаты которого могут быть использованы для поддержания и повышения их плодородия, снижения и предотвращения негативных антропогенных воздействий на почву, повышения качества урожая.
Применение настоящих указаний не отменяет проведение систематических специальных агрохимических, токсикологических, радиологических и гербологических изысканий.
Комплексное агрохимическое обследование почв сельскохозяйственных угодий проводится с целью контроля и оценки изменения плодородия почв, характера и уровня их загрязнения под воздействием антропогенных факторов создания банков данных полей (рабочих участков, проведения сплошной сертификации земельных (рабочих), участков почв.
Основными задачами агрохимического мониторинга состояния земель являются:
своевременное выявление изменений состояния плодородия сельскохозяйственных угодий;
их оценка, прогноз на перспективу и принятие необходимых мер по сохранению и улучшению плодородия почв;
информационное обеспечение земельного кадастра и государственного контроля почвенного плодородия и охраны земель.
Результаты агрохимического обследования используются при разработке технологий, рекомендаций и проектно-сметной документации по применению средств химизации, а также научно обоснованном определении потребности и распределении минеральных удобрений на всех уровнях управления сельскохозяйственным производством, при сертификации почв земельных участков и грунтов, при кадастровой оценке земель.
Агрохимическое обследование почв проводится экспертами по сертификации почв земельных участков, специалистами отделов почвенно-агрохимических изысканий Государственных, республиканских, краевых, областных центров (станций) агрохимслужбы. При производственной необходимости к проведению этих работ могут привлекаться специалисты других отделов центров (станций) химизации агрохимслужбы, районных (межрайонных), хозяйственных (межхозяйственных) агрохимических лабораторий, которые прошли соответствующие курсы повышения квалификации.
Агрохимическому обследованию подлежат почвы колхозов совхозов, крестьянских (фермерских) хозяйств и других землепользователей.
Агрохимическому обследованию подлежат почва всех типов сельскохозяйственных угодий - пашни, сенокосов,. пастбищ и многочисленных насаждений.
С целью сохранения преемственности информации при агрохимическом обследовании используют сетку элементарных участков предыдущего обследования.
Комплексное агрохимическое обследование проводится на основе одновременного отбора почвенных проб с целью ландшафтно-агрохимической, эколого-токсикологической, гербологической и радиологической оценки и контроля изменения; экологического состояния и плодородия почв сельскохозяйственных угодий:
Ландшафтно-агрохимическая оценка проводится по каждому рабочему участку на основе анализа агрохимических свойств почв, определяемых в объединенных пробах, отобранных с элементарных участков, составляющих единый массив рабочего участка;
Эколого-токсикологическая оценка проводится по результатам анализов почвенных проб на содержание остаточных количеств устойчивых (перспективных) пестицидов и тяжелых металлов и на основании визуального контроля гербицидной фитотоксичности в ходе проведения агрохимического обследования;
Гербологическая оценка проводится путем определений степени засоренности во время отбора почвенных проб; состав и количество семян сорных растений определяется путем выполнения специального анализа;
Радиологическая оценка производится путем замера гамма-фона на каждом элементарном участке в 8 точках во время отбора почвенных образцов(в случае превышения допустимых уровней проводится более детальное обследование).
По результатам комплексного обследования выдается информация на каждый рабочий участок и на все землепользование .
Результаты комплексного агрохимического обследования почв используются для:
составления сертификатов качества на рабочие участки;
Разработки технологии производства экологически чистой растениеводческой продукции и эффективного использования сельскохозяйственных угодий;
составления "экологических паспортов на угодья всех типов сельскохозяйственного землепользования;
Текущего и долгосрочного планирования использования земельного фонда и специализации сельскохозяйственного производства;
выделения микрозаповедников, заказников и территорий биологического земледелия;
выявления потенциальных и реальных источников загрязнения почв агрохимическими токсикантами. и техногенными загрязнителями с целью снижения и предотвращения их негативного воздействия на состояние агроценозов и качество сельскохозяйственной продукции.
Научно-методическое руководство при проведении работ по комплексному агрохимическому обследованию осуществляет Центральный научно-исследовательский институт агрохимического обслуживания сельского хозяйства (ЦИНАО) Минсельхоза России.
Периодичность агрохимического обследования почв устанавли-вается дифференцированно для различных природно-экономических районов и зон РФ.
Сроки повторных обследований:
Для хозяйств, применяющих более 60 кг/га д. в. по каждому виду минеральных удобрений - 5 лет;
Для хозяйств со средним уровнем применения удобрений (30-60 кг/га д. в.) по каждому виду - 5-7 лет;
Для орошаемых сельскохозяйственных угодий - 3 года;
Для осушенных сельскохозяйственных угодий - 3-5 лет;
Для госсортучастков, экспериментальных хозяйств комплексной химизации и при внедрении инновационных проектов (независимо от объемов применяемых удобрений) - 3 года;
По заявкам хозяйств, применяющих высокие дозы удобрений, допускается сокращение сроков между повторными обследованиями.
Агрохимическое обследование почв проводится в соответствии с планами работ, согласованными с региональными органами управления сельскохозяйственным производством, а также с руководителями фермерских (крестьянских) хозяйств, колхозов, кооперативов и других форм собственности.
В плане работ определяются ежегодные объемы площадей почв, подлежащих обследованию по видам угодий, число агрохимических анализов по видам с указанием методов их выполнения. Устанавливается очередность проведения работ по административным районам. Агрохимическое обследование почв административного района должно проводиться за один полевой сезон.
План работ на текущий год составляется руководителем отдела почвенно-агрохимических изысканий.
Площади сельскохозяйственных угодий, подлежащих обследо-ванию, учитываются по состоянию на 1 января предшествующего агрохимическому обследованию года.
Утвержденный план работ по агрохимическому обследованию почв доводится до заказчиков не позднее 15 ноября предшествующего агрохимическому обследованию года.
Заключение договоров с хозяйствами на проведение агрохими-ческого обследования почв проводится не позднее 15 декабря предшест-вующего агрохимическому обследованию года.
План проведения агрохимического обследования по каждому хозяйству доводится до конкретных исполнителей не позднее, чем за один месяц до начала полевого сезона. Ежемесячное планирование работ осуществляется по нарядам-заданиям.
Для проведения агрохимического обследования в отделе почвенно-агрохимических изысканий организуются полевые группы в составе начальника группы, главных, ведущих, старших специалистов и специалистов почвоведов-агрохимиков. Число и состав групп определяются объемом почвенно-агрохимических изысканий.
Руководитель отдела почвенно-агрохимических изысканий несет ответственность за планирование, организацию и качество по агрохимическому обследованию почв и соблюдение договорных обязательств.
Введение
Агрохимия в настоящее время по праву занимает центральное место среди агрономических дисциплин, так как применение удобрений - самое эффективное средство развития и совершенствования растениеводства. Значение агрохимии усиливается в связи с тем, что она изучает в сумме все воздействия на растения и приемы их выращивания./1/
Агрохимия - наука о взаимодействии растений почвы и удобрений в процессе выращивания сельскохозяйственных культур, о круговороте веществ в земледелии и использовании удобрений для увеличения урожая, улучшения его качества и повышения плодородия почвы./3/
Главная задача агрохимии - управление круговоротом и балансом химических элементов в системе почва - растение и выявление тех мер воздействия на химические процессы, протекающие в почве и растении, которые могут повышать урожай или изменять его состав. Цель агрохимии - создание наилучших условий питания растений с учетом знания свойств различных видов и форм удобрений, особенностей их взаимодействия с почвой, определение наиболее эффективных форм, способов, сроков применении удобрений. Изучая биологические, химические, физико-химические свойства почв, агрохимия познает ее плодородие. Этот раздел агрохимии тесно связал с наукой о почве - почвоведением./1/
Целью данной курсовой работы является определение типа почвы по данному почвенному образцу №6, оценка агрохимических показателей почвенного образца №6 и рекомендации по применению агрохимикатов. Диалектическая сущность агрохимии - это исследование процесса взаимного влияния трех систем почва - удобрение - растение, результатом которого является урожай и его качество./3/
Агрохимическое обследование почв и его роль в диагностике питания
Агрохимические обследования проводятся в целях получения информации о содержании в почве элементов питания растений и как следствии уровня ее плодородия. Агрохимическое обследований позволяет более рационально использовать удобрения, и минимизировать их негативное воздействие на окружающую среду. В результате создаются агрохимические картограммы содержания элементов, агрохимические очерки и аппликационные карты внесения удобрений. Кроме того, можно провести почвенно-агрохимическое обследование. Получить и почвенную карту, и карту внесения удобрений. Как правило, при проведении агрохимического анализа почва исследуется на меньшее количество показателей, но в случае определенных условий можно добавить необходимые определения. Гранулометрический состав (механический состав, почвенная текстура)- это относительное содержание в почве твердых частиц разного размера. Этот анализ позволяет классифицировать почвы на глинистые, суглинистые и тд. От этого параметра зависят тепловой, воздушный, водный режимы почв, а также физические, физико-химические и биологические свойства. Реакция почвенного раствора (рН)- зависит от содержания в растворе свободных ионов водорода (Н+) и гидроксила (ОН-). В свою очередь концентрация этих ионов зависит от содержания в растворе органических и минеральных кислот, оснований, кислых и основных солей, а также от степени диссоциации этих соединений. Реакция почвенного раствора очень важный параметр, влияющий на развитие растений и микроорганизмов. Реакция раствора в различных почвах изменяется от сильнокислой (верховые болота, подзолистые почвы) до сильнощелочной (содовые солонцы). Многие почвы (черноземы, каштановые и др.) характеризуются реакцией, близкой к нейтральной. Гумус (перегной)- часть органического вещества почвы, представленная совокупностью специфических и неспецифических органических веществ почвы, за исключением соединений, входящих в состав живых организмов и их остатков. Гумус играет большую роль в создании плодородия, прежде всего как носитель запасов элементов питания. Большая роль принадлежит гумусу и в формировании структуры, определяет он и режимы и свойства почвы. Азот, фосфор, калий- важнейшие биофильные элементы, им принадлежит важнейшая роль в питании растений
Почвенные образцы отбирают весной до посева или осенью сразу после уборки урожая (до внесения удобрений). Если это не удалось сделать до внесения удобрений, то при малых их дозах образцы берут через 2--3 мес. При небольших дозах навоза или компоста образцы следует брать осенью, а при больших - на следующий год.
Образцы почв на пашне отбирают из пахотного слоя, а на орошаемых землях и при сильной пестроте почвенного профиля в других случаях (близкое залегание карбонатов, гипса и т. д.) - и из подпахотных горизонтов (не более 15% количества образцов из пахотного слоя). На лугах и пастбищах образцы берут из слоя наибольшей биологической активности (до глубины 15--16 см) и незначительное количество (10-- 15%) из слоя 20-40 см. Частота взятия смешанных почвенных образцов зависит от почвенных условий. В сельскохозяйственных районах лесной зоны с дерново-подзолпстыми почвами и в других зонах с волнистым сильнорасчлененным рельефом, с разнообразными почвообразующими породами и неоднородным почвенным покровом один смешанный образец берут с площади 1 - 3 га, в лесостепной и степной зонах в условиях расчлененного рельефа 3 - 6 га, в степных районах с равнинным и слаборасчлененным рельефом и однородным почвенным покровом 5 - 10 га. В хозяйствах или севооборотах с очень, интенсивным применением удобрений (посевы ценных технических культур, виноградники, чайные плантации) частоту взятия образцов увеличивают в 1,5 раза. Смешанный почвенный образец составляют из 20 почвенных индивидуальных проб, которые отбирают буром. Удобнее пользоваться для этих целей буром-тростью. Скважины располагают, как правило, по диагонали участка. Почвенные образцы тщательно перемешивают и из смеси берут средний образец массой 300--350г. Смешанные почвенные образцы необходимо отбирать с преобладающей на участке почвенной разности. Если их две, нужно брать два смешанных образца. При значительной комплексности почв, чередовании пятен разных типов и подтипов, образование которых связано с элементами микрорельефа, смешанные образцы (по два-три) составляют из проб, взятых отдельно с этих типов и разностей. Каждый смешанный образец помещают в отдельную коробку или мешочек. Туда же вкладывают этикетку (6 ? 5 см), на которой указывают наименование хозяйства, место взятия образца (поле, севооборот), культуру, номер образца, глубину его взятия, дату и ставят подпись. Одновременно в дневнике указывают особенности почвенного покрова, состояние посевов, микрокомплексность и другие особые условия. Отобранные в поле смешанные образцы немедленно просушивают в затемненном от солнца и проветриваемом помещении. Просушенные образцы вместе с этикеткой отправляют в лабораторию для анализа. /4/
3.3 Значение агрохимического обследования почв
Существующие географические изменения в почвенном покрове и климатических условиях нашей страны предопределяют различия в эффективности применения удобрений по почвенно-климатическим зонам. Действие полного минерального удобрения и навоза на урожай сельскохозяйственных культур уменьшается с северо-запада на юго-восток в европейской части страны и с востока на запад - в азиатской ее части. Это в первую очередь связано с изменениями в уровне потенциального плодородия почв и влагообеспеченности. По характеру увлажнения лугово-лесная зона (дерново-подзолистые почвы) - влажная, лесостепная (серые лесные, оподзоленные, выщелоченные и типичные черноземы) - полувлажная, степная (обыкновенные и южные черноземы) - полузасушливая, сухостепная (темно-каштановые и каштановые почвы) - засушливая, полупустынная и пустынная (светло-каштановые, бурые и сероземные почвы) - очень засушливая. За исключением небольшой зоны влажных субтропиков (желтоземные и красноземные почвы) только лесолуговая и лесостепная зоны страны имеют благоприятные условия обеспеченности теплом и влагой для большинства полевых сельскохозяйственных культур. В остальных регионах проявляется либо дефицит тепла при недостаточной длительности вегетационного периода (северные районы, Сибирь), либо недостаток влаги (южные и юго-восточные районы).
Для повышения эффективности удобрений в засушливых южных и юго-восточных районах страны необходимо принимать все меры для максимального накопления и сохранения влаги в почве: снегозадержание, соответствующие приемы обработки почвы и ухода за растениями и т. д. Здесь особенно важно вносить фосфорно-калийные удобрения с осени под глубокую обработку, чтобы они размещались в более влажном, менее пересыхающем слое почвы. При мелкой заделке эффективность удобрений в засушливых районах (или в засушливые годы в районах с достаточной влагообеспеченностью) снижается особенно резко, а внесение удобрений в подкормку тем более дает незначительный эффект. В районах с большим количеством осадков в осенне-зимний период легкорастворимые азотные (а па легких почвах и калийные) удобрения во избежание вымывания питательных веществ лучше вносить перед посевом весной, а иногда и в подкормки.
При выборе видов и форм удобрений, установлении норм и способов их внесения обязательно учитывают содержание подвижных питательных веществ в почвах, их механический состав, поглотительную способность, реакцию и буферность, смытость и эродированность.
Существенное значение для передвижения питательных веществ удобрений, их поглощения и закрепления в почве имеет механический состав почвы. Легкие почвы отличаются не только меньшим потенциальным плодородием, но и низкой поглотительной и буферной способностью. Это должно учитываться при определении норм и формы удобрений, срока внесения и способа их заделки.
На песчаных и супесчаных подзолистых почвах из калийных удобрений особенно эффективны калийно-магнезиальные соли, из азотных целесообразно применять аммонийные (в нейтрализованной форме) удобрения, азот которых меньше подвергается вымыванию из почвы.
Для правильного дифференцированного применения удобрений важное значение имеет почвенно-агрохимическое обследование с целью определения реакции почвы и содержания в ней подвижных форм питательных веществ, в том числе микроэлементов.
Результаты агрохимического обследования выявили существенные различия в уровне обеспеченности почв нашей страны подвижными формами элементов питания. Значительно различаются по уровню плодородия и содержанию подвижных питательных веществ и почвы отдельных полей хозяйств.
При разработке системы удобрения используются средневзвешенные показатели обеспеченности почв полей севооборота, а различия в содержании подвижных форм элементов питания по каждому обрабатываемому участку учитываются при составлении годовых планов применения удобрений. Важно также учитывать общую окультуренность почвы и степень предшествующей удобренности поля. На достаточно окультуренных и ранее хорошо удобрявшихся почвах нормы органических и минеральных удобрений могут быть снижены.
Проведение комплекса агротехнических, агрохимических, гидромелиоративных, фитосанитарных, противоэрозионных и культуртехнических мероприятий требует объективной и постоянно обновляемой информации о состоянии почвенного плодородия. Для оценки состояния и динамики агрохимических характеристик сельскохозяйственных угодий (пашни, многолетних насаждений, кормовых угодий, залежи) предусматривается проводить систематическое крупномасштабное агрохимическое обследование земель сельскохозяйственного назначения, которое является частью общего мониторинга состояния этих земель.
3.4 Значение фитосанитарного обследования
Фитотоксичность почв. Необходимость определения этого показателя особенно часто возникает при мониторинге химически загрязненных почв или при оценке возможности использования в качестве мелиорантов или удобрений различного рода отходов: осадков сточных вод, различного рода компостов, гидролизного лигнина.
Для выяснения относительной фитотоксичности используют метод рулонной культуры, выращивая проростки тест-растений на рулоне фильтровальной бумаги из семян, замоченных в растворе в различными концентрациями тяжелых металлов.
Фитосанитарный мониторинг культуры имеет ключевое значение в системе интегрированной защиты культур. Мониторинг используют для прогноза сроков появления и численности фитофагов (вредителей), определения оптимальных периодов применения средств защиты растений (биологических, химических), колонизации биологических агентов, определения видового состава фитофагов, а также оценки экономической эффективности проводимых защитных мероприятий.
Приложение к Приказу Минсельхоза России
Порядок проведения карантинного фитосанитарного мониторинга на территории Российской Федерации
1. Порядок проведения карантинного фитосанитарного мониторинга на территории Российской Федерации разработан в соответствии с Федеральным законом от 15 июля 2000 г. N 99-ФЗ "О карантине растений"
2. Настоящий порядок устанавливает правила проведения карантинного фитосанитарного мониторинга на территории Российской Федерации в целях осуществления Россельхознадзором и территориальными органами Россельхознадзора государственного карантинного фитосанитарного контроля, своевременного выявления карантинных объектов, предотвращения проникновения их на территорию Российской Федерации и (или) распространения на территории Российской Федерации.
3. Карантинный фитосанитарный мониторинг (далее - мониторинг) представляет собой систему наблюдений, анализа, оценки и прогноза проникновения на территорию Российской Федерации и (или) распространения на территории Российской Федерации карантинных объектов в целях принятия мер по предотвращению заноса и распространения карантинных объектов, устранению их вредного воздействия на растения или продукцию растительного происхождения
Мониторинг обеспечивает:
Фитосанитарные обследования сельскохозяйственных угодий;
Определение видового состава сорняков, идентификацию вредителей и возбудителей заболеваний сельскохозяйственных культур, степени заселённости и заражённости ими растений с выдачей рекомендаций по способам и срокам защитных мероприятий;
Фитоэкспертизу семян зерновых культур на заражённость их возбудителями болезней с выдачей рекомендаций по мерам борьбы с ними;
Анализ почвы на засоренность её возбудителями корневой гнили;
Анализ партий зерна на наличие вредных примесей и насекомых;
Обеспечение прогнозами о развитии и распространении основных вредителей и болезней сельскохозяйственных культур.
13. Россельхознадзор на основании данных обзора разрабатывает рекомендации по обеспечению карантинной фитосанитарной безопасности Российской Федерации, вносит в Минсельхоз России предложения о разработке необходимых нормативных правовых актов и методических документов по обеспечению карантина растений.
3.5 Значение радиологического обследования
Развитие жизни на Земле всегда происходило в присутствии радиационного фона окружающей среды. Радиоактивное излучение определяется естественным радиационным фоном и искусственным. Естественный радиационный фон – представляет собой ионизирующее излучение от природных источников космического и земного происхождения, действующих на человека на поверхности земли. Космические лучи представляют собой поток частиц (протонов, альфа-частиц, тяжёлых ядер) и жёсткого гамма-излучения (это так называемое первичное космическое излучение). При взаимодействии его с атомами и молекулами атмосферы возникает вторичное космическое излучение, состоящее из мезонов и электронов.
Естественные радиоактивные элементы условно можно разделить на три группы:
1. изотопы радиоактивных семейств урана, тория и актиноурана;
2. не связанные с первой группой радиоактивные элементы – калий - 40, кальций – 48, рубидий – 87 и др.;
3. радиоактивные изотопы, возникающие под действием космического излучения – углерод – 14 и тритии.
Технически изменённый радиационный фон представляет собой ионизирующее излучение от природных источников, претерпевших определённые изменения в результате деятельности человека. Например, поступление радионуклидов в биосферу вместе с извлечёнными на поверхность земли из недр полезными ископаемыми (главным образом минеральными удобрениями), в результате сгорания органического топлива, излучения в помещениях, построенных из материалов, содержащих естественные радионуклиды, а также облучения за счёт полётов на современных самолётах.
Излучение, обусловленное рассеянными в биосфере искусственными радионуклидами, представляет собой искусственный радиационный фон (аварии на АЭС, отходы предприятий ядерной энергетики, использование искусственных ионизирующих излучений в медицине, народном хозяйстве).
Радиоактивное загрязнение природных средств в настоящее время обусловлено следующими источниками:
Глобально распределёнными долгоживущими радиоактивными изотопами – продуктами испытаний ядерного оружия, проводивших в атмосфере и под землёй;
Выбросом радиоактивных веществ из 4-го блока Чернобыльской АЭС в апреле – мае 1986 года;
Плановыми и аварийными выбросами радиоактивных веществ в окружающую среду от предприятий атомной промышленности;
Выбросами в атмосферу и сбросами в водные системы радиоактивных веществ с действующих АЭС в процессе их нормальной эксплуатации;
Привнесенной радиоактивностью (твёрдые радиоактивные отходы и радиоактивные источники).
Атомная энергетика вносит весьма незначительный вклад в изменение радиационного фона окружающей среды при нормальной работе ядерных установок. АЭС является лишь частью ядерного топливного цикла, который начинается с добычи и обогащения урановой руды. Отработанное в АЭС ядерное топливо иногда подвергается вторичной обработке. Заканчивается процесс, как правило, захоронением радиоактивных отходов. (Ипатьев В.А. Лес и Чернобыль)
Большое значение как источника радиации имеют ядерные взрывы. При испытаниях ядерного оружия в атмосфере часть радиоактивного материала выпадает неподалеку от места испытания, какая-то часть задерживается в нижнем слое атмосферы, подхватывается ветром и переносится на большие расстояния. Находясь в воздухе около месяца, радиоактивные вещества во время этих перемещений постепенно выпадают на землю. Однако, большая часть радиоактивного материала выбрасывается в атмосферу (на высоту 10-15 км), где он остаётся многие месяцы, медленно опускаясь и рассеиваясь по всей поверхности земного шара.
Значительная часть радионуклидов находится в почве, как на поверхности, так и в нижних слоях, при этом их миграция во многом зависит от типа почвы, её гранулометрического состава, водно-физических и агрохимических свойств.
Механизм закрепления радиоактивных изотопов в почве, их сорбция имеет большое значение, так как сорбция определяет миграционные качества радиоизотопов, интенсивность поглощения их почвами, а, следовательно, и способность проникать их в корни растений. Сорбция радиоизотопов зависит от многих факторов и одним из основных является механический и минералогический состав почвы тяжёлыми по гранулометрическому составу почвами поглощённые радионуклиды, особенно цезий – 137, закрепляются сильнее, чем лёгкими и с уменьшением размера механических фракций почвы прочность закрепления ими стронция – 90 и цезия – 137 повышается. Наиболее прочно закрепляются радионуклиды илистой фракцией почвы.
Большему удержанию радиоизотопов в почве способствует наличие в ней химических элементов, близких по химическим свойствам к этим изотопам. Так, кальций – химический элемент, близкий по своим свойствам стронцию – 90 и внесение извести, особенно на почвы с высокой кислотностью, ведёт к увеличению поглотительной способности стронция – 90 и к уменьшению его миграции. Калий схож по своим химическим свойствам с цезием – 137. Калий, как неизотопный аналог цезия находится в почве в макроколичествах, в то время как цезий – в ультромикроконцентрациях. Вследствие этого в почвенном растворе происходит сильное разбавление микроколичеств цезия – 137 ионами калия, и при поглощении их корневыми системами растений отмечается конкуренция за место сорбции на поверхности корней. Поэтому при поступлении этих элементов из почвы в растениях наблюдается антагонизм ионов цезия и калия.
Кроме того эффект миграции радионуклидов зависит от метеорологических условий (количество осадков).
Установлено, что стронций – 90 попавший на поверхность почвы, вымывается дождём в самые нижние слои. Следует заметить, что миграция радионуклидов в почвах протекает медленно и их основная часть находится в слое 0 – 5 см.
Накопление (вынос) радионуклидов сельскохозяйственными растениями во многом зависит от свойства почвы и биологической особенности растений. На кислых почвах радионуклиды поступают в растения в значительно больших количествах, чем из почв слабокислых. Снижение кислотности почвы, как правило, способствует уменьшению размеров перехода радионуклидов в растения. Так, в зависимости от свойства почвы содержание стронция – 90 и цезия – 137 в растениях может изменяться в среднем в 10 – 15 раз.
Таким образом, к факторам, лимитирующим почвенное плодородие, можно отнести локальное загрязнение почв радионуклидами и тяжелыми металлами, нефтепродуктами, нарушение почвенного покрова горными выработками и др.
Загрязнение почв нефтепродуктами. При контроле загрязнения почв нефтепродуктами решаются обычно три основные задачи:
1) определяются масштабы (площади загрязнения);
2) оценивается степень загрязнения;
3) выявляется наличие токсичных и канцерогенных соединений.
Первые две задачи могут решаться дистанционными методами, к которым относится аэрокосмическое измерение спектральной отражательной способности почв. По измеренным величинам спектральных коэффициентов яркости (СКЯ) удается обнаружить территории, загрязненные нефтью, а по уровням изменения окраски почв – примерно степень загрязнения.
При мониторинге почв, загрязненных углеводородами, особое внимание уделяется определению полициклических ароматических углеводородов (ПАУ) люминесцентными и газохроматическими методами.
Загрязнение почв тяжелыми металлами. Любые элементы находятся в почве в форме различных соединений, только часть которых доступна растениям. Но эти соединения могут трансформироваться и переходить из одних форм в другие.
Поэтому для целей мониторинга выбирают в известной мере условно две или три важнейших группы. Обычно определяют общее (валовое) содержание элементов, лабильные (подвижные) формы их соединений, иногда отдельно определяют обменные формы и водорастворимые соединения.
Наибольшая эффективность показателей почвенного мониторинга будет достигнута при одновременном контроле за совокупностью параметров, которые учитывают мобильные и стабильные свойства почв и различные виды антропогенного воздействия.
Заключение
В разработке основ почвенно-экологического мониторинга прослеживается несколько этапов. В нашей стране начало им было положено в 1970-е гг. эмпирическими описательными исследованиями. Результами их были сведения об уровнях содержания отдельных химических элементов в почвах и других элементах биосферы на отдельных территориях интенсивного антропогенного действия. Эти исследования давали точечные оценки состояния почв на определенное время обследования, они характеризовали почвы вне связи с пространством и временем (Мотузова Г. В., 1988). По мере роста численности населения Земли и превращения большинства экологических ниш в антропогенно-модифицированные возникала необходимость всё более тщательного контроля за состоянием окружающей среды. Мониторинг стал той системой, которая позволила следить за степенью загрязненности и нарушенности жилища - планеты Земля.
Были разработаны сложные методы слежения за состоянием окружающей среды, частью которой является почвенный покров. Высшим уровнем исследований является создание имитационных моделей загрязнения с помощью мощных суперкомпьютеров. Общая модель экосистемы может служить основой для построения математических моделей, с помощью которых можно получить количественные оценки действия всех выявленных факторов на состояние почв и составлять прогнозные характеристики состояния почв, испытывающих техногенной воздействие.
Работы по научному мониторингу земель, включенные в кадастр научных исследований, пользуются равноправной государственной поддержкой и финансированием наряду с другими видами мониторинга.
Определение и последующая оценка результатов наблюдений, на основе постоянно обновляющихся земельно-мониторинговых данных позволяют решать следующие практические задачи (Черныш А. Ф., 2003):
Выявлять уровень хозяйственных нагрузок на земельные ресурсы в различных территориальных условиях страны, а также объективно устанавливать степень антропогенной преобразованности (нарушенности) почв и почвенного покрова;
С учетом экологического состояния земельного фонда и направлений его изменений разработать территориально дифференцированные концепции, схемы и проекты рационального использования территории, базирующейся на системе определенных экологических ограничений и требований, усовершенствовать технологии производства;
Корректировать и изменять хозяйственное использование земельных ресурсов, на объективной основе устанавливать платежи на землю, в том числе по повышенным ставкам за сверхнормативное загрязнение почв, нерациональное использование земель;
Совершенствовать кадастр земельных ресурсов и экономическую оценку для различных видов природопользования;
Определять эколого-кризисные зоны и зоны с экологически опасной ситуацией и устанавливать для них особые условия хозяйственно-экономического развития с ориентацией на экологически безопасное производство, а в отдельных случаях – прекращение всякой хозяйственной деятельности;
Совершенствовать оценку почв с учетом направлений изменений свойств почв и воспроизводства плодородия земель.
Таким образом, мониторинг любого масштаба, вплоть до глобального, должен стать инструментом управления качеством среды. Если человечество сможет добиться Мира во всём Мире, то благодаря мониторингу сумеет оградить биосферу от разрушения, сохранить чистоту и гармонию для будущих поколений.
Литература
1. Агроэкология / Черников В.А., Алексахин Р. М., Голубев А. В. и др. – М.: Колос, 2000. – 536 с.
2. Глазовская М. А. Геохимия природных и техногенных ландшафтов СССР. – М.: Высш. шк., 1988. – 328 с.
3. Гришина Л.А., Копцик Г. Н., Моргун Л.В. Организация и проведение почвенных исследований для экологического мониторинга. – М.: Изд-во МГУ, 1991. – 82 с.
4. Завилохина О.А. Экологический мониторинг РФ. 2002. http://www.5ballov.ru
5. Законом РФ "Об охране окружающей природной среды". http://ecolife.org.ua/laws/ru/02.php
6. Израэль Ю.А., Гасилина И.К., Ровинский Ф.Я. Мониторинг загрязнения природной среды. Л.: Гидрометеоиздат, 1978. – 560 с.
7. Ландшафтно-геохимические основы фонового мониторинга природной среды / Глазовская М. А., Касимов Н. С., Теплицкая Т. А. и др. – М.: Наука, 1989. - 264 с.
8. Мотузова Г.В. Принципы и методы почвенно-химического мониторинга. – М.: Изд-во МГУ, 1988. – 101 с.
9. Мотузова Г. В. Содержание, задачи и методы почвенно-экологического мониторинга / Почвенно-экологический мониторинг и охрана почв. – М.: Изд-во МГУ, 1994. – С. 80-104.
10. Мотузова Г. В. Соединения микроэлементов в почвах. – М.: Эдиториал УРСС, 1999. – 168 с.
11. Розанов Б.Г. Живой покров Земли.- М.: Наука, 1991. - 98 с.
12. Росновский И.Н., Кулижский С.П. Определение вероятности безотказного функционирования (устойчивости) почв в экосистемах // Сохраним планету Земля: Сборник докладов Международного экологического форума, 1-5 марта 2004 года; СПб: Центральный музей почвоведения им В.В. Докучаева, 2004. – С. 249-252.
13. Садовникова Л.К. Экология и охрана окружающей среды при химическом загрязнении. – М.: Высш. Шк., 2006. – 333 с.
14. Черныш А. Ф. Мониторинг земель. – Минск: БГУ, 2003. – 98 с.
15. http://pravo.levonevsky.org/bazazru/texts18/txt18823.htm
16. http://www.fsvps.ru/fsvps
17. http://www.rsn-omsk.ru/main.php?id=123
18. www.mcx.ru/…/document/show/6813.191.htm
19. http://www.agromage.com/stat_id.php?id=29&k=05
20. Лес и Чернобыль (Лесные экосистемы после аварии на Чернобыльской АЭС, 1986-1994 гг.) / Под ред. Ипатьева В.А. - Мн.: МНПП “СТЭНЕР”. 1994. - 248 с.
Информация о работе «Значение почвенного мониторинга (в т.ч. почвенного, агрохимического, токсико-экологического, фитосанитарного и радиологического обследований) в сохранении почвенного плодородия»
Агрохимический анализ почвы - мероприятие, проводимое для определения степени обеспеченности почвы основными элементами минерального питания, определения механического состава почвы, водородного показателя и степени насыщения органическим веществом, т.е. тех элементов, которые определяют ее плодородие и могут внести значительный вклад в получение качественного и количественного урожая.
Говоря об агрохимическом анализе почвы , в первую очередь мы имеем в виду контроль содержания тех или иных компонентов на землях сельскохозяйственного назначения и землях, предназначенных для выращивания каких - либо культур (фермерские угодья, садовые наделы, дачные участки и многое другое).
Исследования почвы
проводятся на предварительно отобранных образцах. В соответствии с действующими нормативными актами в области анализа почвы и методов отбора проб, образцы могут отбираться методом «конверта», либо методом «сетки».
В зависимости от площади используемой территории и вида анализа, варьируются и размеры закладываемых площадок. Для контроля состояния земель сельскохозяйственных угодий на каждые 0,5 - 20 га территории закладывается не менее одной пробной площадки размером не менее 10мх10м. При этом:
Однородный покров местности предполагает проведение отбора проб на пробных площадках в 1 - 5 Га для определения содержания химических веществ, структуры и свойств почвы; отбора проб на пробных площадках в 0,1 - 0,5 Га для определения содержания патогенных организмов в почве.
Неоднородный покров местности проведение отбора проб на пробных площадках в 0,5 - 1 Га для определения содержания химических веществ, структуры и свойств почвы; отбора проб на пробных площадках в 0,1 Га для определения содержания патогенных организмов в почве.
Схема отбора образцов для агрохимического анализа почвы
выглядит следующим образом: с учетом вышеизложенных рекомендаций, на территории закладывается пробная площадка. Вдоль диагоналей, проходящих от одного угла площадки к другому углу, забирают точечные пробы пахотного слоя почвы, масса которых не должна быть менее 200 гр. Полученные точечные пробы перемешиваем между собой, тем самым получая нужную нам объединенную пробу. Объединенная проба состоит не менее чем из 5 точечных проб, взятых с одной пробной площадки. Масса одной объединенной пробы должна составлять не менее 1 кг.
Агрохимический анализ почвы отражает состояние почвы по следующим основным показателям
- Основные агрохимические показатели (6 показателей):
Рн - кислотность почвы - это свойство почвы, обусловленное наличием водородных ионов в почвенном растворе и обменных ионов водорода и алюминия в почвенном поглощающем комплексе.
Органическое вещество почвы - это совокупность всех органических веществ, находящихся в форме гумуса и остатков животных и растений, т.е. важная составная часть почвы, представляющая сложный химический комплекс органических веществ биогенного происхождения и определяющая потенциал плодородия почвы.
Гранулометрический состав - механическая структура почвы, определяющая относительное содержание различных частиц в независимости от их химического и минерального состава.
Гидролитическая кислотность - кислотность почвы, проявляющаяся в результате воздействия гидролитической щелочной солью (СН 3 СООNa). Определение гидролитической кислотности важно при решении практических задач, связанных с применением удобрений, известкованием, фосфоритованием почв и другими агрохимическими приемами.
Сумма поглощенных оснований - степень насыщенности почв основаниями, показывает, какая доля от общего количества задерживающихся в почве веществ приходится на поглощенные основания.
Нитраты - общее содержание солей азотной кислоты. Данные вещества являются опасными для человека и могут накапливаться в продуктах сельского хозяйства по причине избыточного содержании в почве азотных удобрений.
- Макроэлементы:
Подвижный фосфор - усвояемая растениями форма фосфора (Р 2 О 5). Источник пищи для растений, носитель энергии. Он входит в состав различных нуклеиновых кислот, а его дефицит резко сказывается на продуктивности растений.
Обменный калий - подвижная в почве форма калия, играющая важную роль в питании растений. Играет существенную роль в жизни растений, воздействуя на физико-химические свойства растений.
Азот нитратов - азот, содержащийся в почве в форме нитратов, использующийся растениями для образования аминокислот и белков.
Азот аммонийный - азот аммиачного соединения, которое используется растениями для синтеза аминокислот и белков.
Железо - элемент, участвующий в образовании хлорофилла, являясь составной частью зеленого пигмента. Регулирует процессы окисления и восстановления сложных органических соединений в растениях, играет важную роль в дыхании растений, так как входит в состав дыхательных ферментов. Участвует в фотосинтезе и преобразовании азотсодержащих веществ в растениях.
- Микроэлементы:
Кобальт - микроэлемент, необходимый не только растениям, но и животным. Входит в состав витамина B 12 , при недостатке которого нарушается обмен веществ - ослабляется образование гемоглобина, белков, нуклеиновых кислот, и животные заболевают акобальтозом, сухоткой, авитаминозом.
Марганец - микроэлемент, принимающий участие в окислительно-восстановительных процессах: фотосинтезе, дыхании, в усвоении молекулярного и нитратного азота, а также в образовании хлорофилла. Эти процессы протекают под влиянием различных ферментов, а марганец при этом выступает активатором эти процессов.
Медь - микроэлемент, необходимый для жизни растений в небольших количествах. Однако без меди погибают даже всходы. Валовое содержание меди в почвах колеблется от 1 до 100 мг/кг сухого вещества.
Молибден - микроэлемент, которому принадлежит исключительная роль в питании растений: он участвует в процессах фиксации молекулярного азота и восстанавливает нитраты в растениях. При его недостатке резко тормозится рост растений, вследствие нарушения синтеза хлорофилла они приобретают бледно-зеленую окраску (листовые пластинки деформируются, и листья преждевременно отмирают). Особенно требовательны к наличию молибдена в почве в доступной форме бобовые культуры и овощные растения (капуста, листовые овощи, редис).
Цинк - микроэлемент, участвующий во многих физиолого-биохимических процессах растений, являясь главным образом катализатором и активатором многих процессов. Недостаток цинка приводит к нарушению обмена веществ у растений.
Никель - микроэлемент, принимающий участие в ферментативных реакциях у животных и растений, необходимый для нормального развития живых организмов. Повышенное содержание никеля в почвах приводят к эндемическим заболеваниям — у растений появляются уродливые формы, у животных — заболевания глаз, связанные с накоплением никеля в роговице.
- Токсичные элементы:
Кадмий - один из самых токсичных тяжелых металлов отнесен ко 2-му классу опасности - «высокоопасные вещества». Источником, которого в почве, является промышленность.
Свинец - тяжелый металл, обладающий высокой токсичностью. Присутствие повышенных концентрации свинца в воздухе и продуктах питания представляет угрозу для здоровья человека. Автомобильные выхлопы дают около 50% общего неорганического свинца.
Хром - соединение 1-ого класса опасности; микроэлемент, встречающийся в следовых количествах в живых и растительных организмах. Избыток хрома в почвах вызывает различные заболевания у растений.
Присутствие хрома в почвах (до 50-70 мг/кг сухой почвы) обуславливает его передвижение по пищевой цепочке: почва - растение - животное - человек. Основными источниками хрома и его соединений в атмосферу являются выбросы предприятий, где добывают, получают, перерабатывают и применяют хром и его соединения. Активное рассеяние хрома связано со сжиганием минерального топлива, главным образом, угля. Значительные количества хрома поступают в окружающую среду с промышленными стоками.
Ртуть - высокотоксичный химически стойкий элемент. Относится к рассеянным элементам (редким). Количество ртути, поступившее в окружающую среду в текущем столетии в результате антропогенной деятельности, почти в 10 раз превышает природное поступление и составляет 57000 т.
Мышьяк - микроэлемент. Относят к рассеянным элементам. Мышьяк является необходимым для функционирования живых организмов микроэлементом. В повышенных концентрациях мышьяк оказывает токсическое воздействие на живые организмы. Содержание мышьяка в почве определяет его содержание в природных водах.
Бенз-а-пирен - сложное химическое соединение, относящиеся к так называемым ПАУ (полиароматическим углеводородам). Элемент 1 класса опасности, образующийся при сгорании углеводородов не зависимо от их агрегатного состояния (жидкое, твёрдое, газообразное). Является наиболее типичным химическим канцерогеном окружающей среды, опасным для человека, даже при малой концентрации, поскольку обладает свойством накопления в организме человека. По отношения к окружающей природной среде, а непосредственно к ее факторам, можно сказать, что наибольшие концентрации находятся в воздухе и почве. Учитывая это, бенз-а-пирен очень легко подвергается перемещению по всей пищевой. Каждая последующий уровень пищевой цепи сопровождается в разы повышенными концентрациями канцерогена.
Нефтепродукты - углеводорода, а правильнее сказать их смесь, в составе которой могут входить более 1000 самостоятельных органических веществ. Каждое из этих соединений может рассматриваться как самостоятельное токсичное вещество. На практике, оценка загрязнения того или иного объекта нефтепродуктами проводится по следующим направлениям: содержание легких фракций (считается наиболее токсичной для живых организмов и среды, но в силу своей испаряемости, обеспечивают быстрое самоочищение почвы), содержание парафинов (относительно токсичные вещества, главным образом воздействующие физические свойства почвы), содержание серы (определение степени сероводородного загрязнения почвы).
- Бактериология:
Индекс БГКП - показывает количество бактерий группы кишечная палочка на 1 г почвы. БГКП являются сапрофитами кишечника человека и животных. Обнаружение их во внешней среде указывает на ее фекальное загрязнение, поэтому кишечную палочку относят к санитарно-показательным микроорганизмам.
Индекс энтерококков - санитарно-бактериологический показатель, характеризующий количественное содержание бактерий рода энтерококки (р. Enterococcus) в 1 грамме почвы известных, также, под другим термином - «фекальные стрептококки».
Патогенные бактерии, в т.ч. сальмонеллы - санитарно-бактериологический показатель, характеризующий количественное содержание бактерий в 1 грамме почвы, способных при соответствующих условиях вызывать инфекционные заболевания.
Агрохимического анализа почвы имеет немаловажное значение. Он способствует принятию целесообразных и продуманных решений, способствующих организации мероприятий по повышению эффективности и поднятии плодородия используемых земель. Конкретизация задач под тот или иной вид возделываемых культур не заставит себя долго ждать и позволит получить богатый урожай - так желаемый результат любого агрария.
Комплексное агрохимическое обследование почв сельскохозяйственных угодий проводится с целью контроля направленности и оценки изменения плодородия почв, характера и уровня их загрязнения под воздействием антропогенных факторов, создания банков данных полей (рабочих участков), проведения сплошной сертификации земельных (рабочих) участков почв.
Для оценки состояния и динамики агрохимических характеристик сельскохозяйственных угодий (пашни, многолетних насаждений, кормовых угодий, залежи) предусматривается продолжение проведения систематического крупномасштабного агрохимического обследования земель сельскохозяйственного назначения, которое является важной составной частью общего мониторинга состояния этих земель.
Основными задачами агрохимического мониторинга состояния земель являются:
Своевременное выявление изменений состояния плодородия сельскохозяйственных угодий;
Их оценка, прогноз на перспективу и принятие необходимых мер по сохранению и улучшению плодородия почв;
Информационное обеспечение земельного кадастра государственного контроля почвенного плодородия и охраны земель.
Агрохимическое обследование проводится на всех типах сельскохозяйственных угодий – пашня, в т.ч. орошаемая и осушенная, кормовые угодья, многолетние насаждения и плантации, залежь.
Периодичность агрохимического обследования почв устанавливается дифференцированно для различных природно-экономических и зон РФ.
Сроки повторных обследований:
Для хозяйств, применяющих более 60 кг/га д.в. по каждому виду минеральных удобрений – 5 лет;
Для хозяйств со средним уровнем 30-60 кг/га д.в. применения удобрений по каждому виду – 5-7 лет;
Для орошаемых сельскохозяйственных угодий – 3 года;
Для осушенных угодий – 3-5 лет;
Для экспериментальных хозяйств комплексной химизации и при внедрении инновационных проектов (независимо от объемов применяемых удобрений) – 3 года;
По заявкам хозяйств, применяющих высокие дозы удобрений, допускается сокращение сроков между повторными обследованиями.
На ряду с основными задачами агрохимического обследования почв существуют и другие задачи, такие как: ландшафтно-агрохимическая, эколого-токсикологическая, гербологическая и радиационная оценки и контроль изменения экологического состояния и плодородия почв с/х. угодий.
Составной частью обследования сельхозугодий является проведение визуального контроля за проявлениями фототоксического действия и последствия гербицидов на с/х. культуры.
Под фототоксичностью гербицидов понимается токсическое действие самих гербицидов, их остаточных количеств и метаболитов, содержащихся в почве от ранее проведенных обработок, на с/х. культуры. Фитотоксичность проявляется в виде общего хлороза растений, пожелтении, скручивании кончиков и краев листьев, стеблей и других частей растения, в отставании растений в росте, высыхании, отсутствии всходов и т.д.
Визуальный контроль гербицидной фитотоксичночти осуществляется во время отбора почвенных образцов. В процессе контроля производится оценка интенсивности (характера) и масштабов повреждения растений в баллах.
Отбор проб производится по общепринятой методике на глубину пахотного слоя. Для угодий, на которых установлены случаи проявления гербицидной фитотоксичности, изучают историю путем сбора в хозяйствах информации, которая должна включать сведения о культуре.
Одновременно с отбором почвенных образцов в полевых условиях проводятся радиологические обследования. Радиологическое обследование проводится путем замера гаммафона и отбора почвенных образцов. Для определения мощности экспозиционной дозы гамма-излучения почв рекомендуется использовать дозиметр ДРГ-01Т. В случае отсутствия данного прибора можно использовать дозиметр ДРГ-05М или сцинтилляционный геологоразведочный прибор СРП-88Н. В соответствии с техническим описанием, проводится проверка точности работы прибора в лаборатории или его госпроверка. (А. Н. Есаулко, В. В. Агеев, Л.С. Горбатко и др., 2011)
Планирование и организация работы, камеральная подготовка картографической основы для проведения агрохимического обследования почв.
Агрохимическое обследование почв проводится в соответствии с планами работ, согласованными с региональными органами управления с/х. производством, а также с руководителями фермерских (крестьянских) хозяйств, колхозов, кооперативов и других форм собственности.
В плане работ определяются ежегодные объемы площадей почв, подлежащих обследованию по видам угодий, число агрохимических анализов по видам с указанием методов их выполнения. Устанавливается очередность проведения работ по административным районам. Агрохимическое обследование почв административного района должно проводится за один полевой сезон.
План работ на текущий год составляется руководителем отдела почвенно-агрохимических изысканий.
Площади с/х. угодий, подлежащих обследованию, учитываются по состоянию на 1 января предшествующего агрохимическому обследованию года.
Утвержденный план работ по агрохимическому обследованию почв доводится до заказчиков не позднее 15 ноября предшествующего агрохимическому обследованию года.
Заключение договоров с хозяйствами на проведение агрохимического обследования почв проводится не позднее 15 декабря предшествующего агрохимическому обследованию года.
План проведения агрохимического обследования в отделе почвенно-агрохимических изысканий организуются полевые группы в составе начальника группы, главных, ведущих, старших специалистов и специалистов почвоведов-агрохимиков. Число и состав групп определяются объемом почвенно-агрохимических изысканий.
Руководитель отдела почвенно-агрохимических изысканий несет ответственность за планирование, организацию и качество по агрохимическому обследованию почв и соблюдение договорных обязательств.
Картографической основой проведения агрохимического обследования почв является, как правило, план внутрихозяйственного землеустройства.
Подготовка картографической основы для агрохимического обследования почв осуществляется специалистами групп картографических материалов.
Работа по подготовке картографических материалов состоит из следующих этапов:
Получение от отделов землепользования, землеустройства и охраны почв производственных управлений сельского хозяйства землеустроительных планов, почвенных, кадастровых карт, карт внутрихозяйственной оценки земель;
Перенос на землеустроительные планы границ контуров типов, подтипов почв, земельных участков и их кадастровых номеров;
Составление ведомости сравнения нумерации земельных участков, принятых в практической работе ГЦАС, с единой кадастровой нумерацией, принятой в настоящее время.
Первичным объектом государственной кадастровой оценки являются сельскохозяйственные угодья ассоциаций крестьянских хозяйств, колхозов, с/х. кооперативов, акционерных обществ государственных и муниципальных предприятий, подсобных с/х. предприятий, с/х. научно-исследовательских и учебных заведений, прочих предприятий, организаций и учреждений, КФХ, фонда перераспределения земель района, с/х. угодья.
Объекты кадастровой оценки группируются в границах бывших колхозов и совхозов до их реформирования, по которым оформлялись материалы почвенных обследований, и проводилась внутрихозяйственная оценка земель. Исходная земельно-учетная и результативная земельно-оценочная информация первичных объектов кадастровой оценки обобщается по административным, земельно-оценочным районам (при зональности) и субъекту РФ в целом.
Список объектов кадастровой оценки административных районов в разрезе бывших хозяйств составляется согласно сложившемуся на начало года материалов проведения кадастровой оценки земельного фонда района по форме. В список включаются собственники, землевладельцы и землепользователи.
В списке по каждому объекту кадастровой оценки указываются его наименование, кадастровый номер, общая площадь с/х. угодий, в т.ч. пашни.
Объекты кадастровой оценки именуются согласно названию юридического лица, сельской, городской администрации, фамилии, имени и отчеству фермера. Кадастровый номер включает код субъекта РФ, административного района, бывшего хозяйства и объекта кадастровой оценки.
Информация о площадях с/х. угодий, в т.ч. пашни, собирается по данным кадастрового учета земель по состоянию на 1 января года проведения кадастровой оценки земель. Данные уточняются в районе при согласовании списка объектов кадастровой оценки.
По каждому хозяйству подготавливается не менее 10 экземпляров копий плановой основы. Три экземпляра картографической основы с нанесенными почвенными контурами передают руководителю отдела почвенно-агрохимических изысканий – 1 экземпляр используют для полевых работ; 2 – служит для перенесения элементарных участков и номеров проб; 3 – является запасным; остальные экземпляры плановой основы используют для составления авторских экземпляров агрохимических картограмм. (А. Н. Есаулко, В. В. Агеев, Л.С. Горбатко и др., 2011)
Для обследования эродированных почв используется только та плановая основа, на которой выделены контуры почв различной степени эродированности.
Для агрохимического обследования орошаемых с/х. угодий используется карта (план) орошаемых земель.
В нечерноземной, лесостепной и степной зонах, горных областях полевое агрохимическое обследование проводится в масштабе 1:100000 и 1:25000; в полупустынной и пустынной зонах – в масштабе 1:25000. Допускается уменьшение масштаба ДО 1:50000 при условии четкого выделения на картографической основе всех земельных участков с/х. угодий. На орошаемых землях обследование проводится в масштабе 1:5000 – 1:10000.
При выезде на полевые работы специалистам, проводящим агрохимическое обследование, выдаются сопроводительные письма, подписанные начальником районного управления сельского хозяйства., необходимое снаряжение, наряд-отчет на проведение работ. Полевые работы проводятся при температуре не ниже +5 0 С.
По приезде в хозяйство почвовед-агрохимик собирает сведения о применении удобрений, проведении мелиорации, урожайности с/х. культур за последние 3-5 лет и заносит их в журнал агрохимического обследования почв хозяйства.
Совместно с агрономом хозяйства почвовед-агрохимик объезжает и осматривает земельные угодья, уточняет и наносит на план землепользования визуальные изменения в ситуации (новые дороги, границы полей, лесопосадки и т.д.). На орошаемых участках отмечаются отложение солей на поверхности. Уточняется размещение посевов с/х. культур, их состояние, степень засоренности, соответствие конфигурации площади кадастровому номеру земельного участка, отмечаются земельные участки, систематически удобрявшиеся высокими дозами удобрений, отмечается эродированность, заустаренность и завалуненность полей. Все эти данные заносят в «Журнал агрохимического обследования почв…» и отмечают на плане землепользования.
Для составления сертификатов почв земельных участков и уточнения суммарных площадей различных типов с/х. угодий почвовед-агрохимик проверяет соответствие общей площади каждого из с/х. угодий с информацией кадастровой карты.
Сертифицируемые земельные участки выделяют почвовед-агроном и главный агроном хозяйства по кадастровой карте перед проведением агрохимического обследования почв. При этом учитываются сложившиеся в хозяйстве система землепользования и нумерация кадастровой карты. Схема земельных участков обязательно должна соответствовать кадастровой карте.