В помощь монтажникам. Установка сильфонных компенсаторов

КСО (ОПН) - сильфонный компенсатор осевого типа является самым базовым во всей линейке компенсаторов нашего производства. Простая и надежная конструкция представляет собой сильфон и два патрубка под приварку. Предназначен осевой компенсатор для компенсации осевых смещений на трубопроводе .

Наши компенсаторы уникальны - даже однослойный сильфон выдерживает нагрузки до Ру 10,3 (103 кгс/см).

Надёжность гарантируем! (Акт испытаний на сайте, нашего постоянного клиента!)

КСО.Ф - к омпенсатор сильфонный осевой фланцевый , который оснащен приварными фланцами с обоих сторон, либо приварным с одной стороны и поворотным фланцам с другой стороны. Как и стандартный КСО, этот компенсатор предназначен для компенсации осевых смещений трубопроводной системы. Главная рабочая часть этого устройства сильфон, который способен растягиваться и сжиматься под воздействием нагрузок. Именно гибкость сильфона позволяет устройству эффективно работать.

Наши компенсаторы уникальны - даже однослойный сильфон выдерживает нагрузки до Ру 13.0 мПА (130 кгс/см 2)! (Акт гидравлических испытаний на сайте)

Продукция нашего производства, отличная альтернатива других производителей вписанных в проект!

Отличная возможность заменить Резиновые или Линзовые или Сальниковые компенсаторы!

КСО.ВД - сильфонные компенсаторы высокого давления , которые устанавливаются на трубопроводные системы с высоким давлением. Как и у всех компенсаторов, основная задача КСО.ВД компенсировать температурные расширения трубопровода и деформации, возникающие от внешних факторов. Устройство так же помогает бороться с вибрациями в трубопроводной системе, восполняет небольшие несоосности, которые были допущены при монтаже магистрали.

Наши сильфонныекомпенсаторы уникальны - даже обычный двухслойный сильфон выдерживает нагрузки до 170 атмосфер!

Изготавливаем компенсаторы на высокое давление, свыше 300 атмосфер.

СКУ.М, 2 СКУ.М - сильфонный компенсатор с тепловой изоляцией из минеральной ваты. Такие компенсаторы применяются на тепловых магистралях, причем как подземного, так и надземного типа. Давление в таких системах обычно составляет от 1,0 мПА (10 кгс/см 2 ) до 2 ,5 мПА (25 кгс/см 2 ) , а в роли теплоносителя может выступать вода, пар, и другие рабочие среды! Чтобы компенсировать температурные расширения, которые неминуемо возникнут при транспортировке теплоносителя, используются компенсаторы СКУ.М.

Наши компенсаторы уникальны, их используют на предприятиях с повышенным входным контролем качества!

Акт о проведении приёмочного гидравлического испытания на прочность и герметичность, на сайте!

Отзывы о наших компенсаторах установленных в Росссии и РБ. Казахстан.

ОПКР,2ОПКР - осевые сильфонные компенсаторы , оборудованные усиленным двойным (телескопическим) кожухом, в базовой версии изготавливаются с патрубками под приварку. Компенсаторы ОПКР применяются в трубопроводных системах для компенсации деформаций, возникающих в следствие температурных изменений в трубе, а так же внешних факторов, влияющих на систему.

СКУ.ППУ - в пенополиуретановой изоляции применяются на трубопроводах для компенсации температурных деформаций системы. Компенсатор типа СКУ, строятся на базе осевых компенсаторов СКУ с одним или двумя сильфонами (2СКУ.ППУ ). Однако помимо сильфона и патрубков имеют пенополиуретановую изоляцию, позволяющею обеспечить защиту сильфона и уменьшить теплопотери трубопроводной системы.

Наши компенсаторы уникальны - даже обычный двухслойный сильфон выдерживает нагрузки до (17,0 мПА) 170 кгс/см 2 .

Срок службы наших компенсаторов 30 лет. Гарантия от 5 лет!

СКУ.ППМ, 2СКУ.ППМ - сильфонное компенсационное устройство с пенополиминеральной тепловой изоляцией. Как и аналоги с изоляцией из пенополиуретана (СКУ.ППУ) эти компенсаторы применяются на магистральных трубопроводах в системах промышленного и коммунального отопления, снабжения горячей и холодной водой.

Наши компенсаторы уникальны - все изделия выдерживают испытания избыточным давлением 17,0 мПА (170 кгс/см 2).

Продукция нашего производства, отличная альтернатива других производителей вписанных в проект!

ССК - стартовый сильфонный компенсатор с патрубками под приварку. Стартовые компенсаторы применяются единожды, во время пуско-наладочных работ на трубопроводе, когда в него подается рабочая среда. Стартовый компенсатор своим осевым смещением компенсирует деформацию системы из-за нагрева на начальном этапе, помогая наладить работу магистрали, после чего его кожухи заваривают и он остается элементом системы, обычной трубой.

Компнсаторы нашего производства, отличная альтернатива других производителей вписанных в проект!

1.1. Изделия допускается применять в районах строительства с расчетной наружной температурой для проектирования систем отопления не ниже минус 40°С. Сейсмичность районов строительствам не более девяти баллов по шкале Рихтера.

1.2. Изделия допускается применять при содержании хлоридов в сетевой воде не более 250 мг/кг.

1.3. Изделия должны устанавливаться на прямолинейных участках трубопроводов, ограниченных неподвижными опорами. Между неподвижными опорами допускается размещать только одно изделие.

Допускается отклонение от прямолинейности в плане и профиле с обязательной установкой направляющих опор в тех же местах не менее двух перед каждым компенсирующим устройством.

1.4. Способ присоединения к трубопроводу - сварка.

1.5. При любых способах прокладки трубопроводов, кроме подземного бесканального, установку компенсирующих устройств следует предусматривать, как правило, у одной из неподвижных опор.

1.6. На бесканальных подземных тепловых сетях размещение изделия должно осуществляться в середине участка трубопровода, ограниченного неподвижными опорами.

1.7. До и после компенсирующего устройства необходимо устанавливать направляющие опоры, исключающие перемещение трубопроводов в радиальном направлении.

При бесканальной прокладке трубопровода установка направляющих опор не требуется.

Примеры схем размещения сильфонного компенсирующего устройства, направляющих и неподвижных опор приведены на рисунке:

6.8. На участках трубопроводов с сильфонными компенсирующими устройствами не допускается применение подвесных опор.

6.9. При выборе неподвижных опор должны учитываться следующие факторы:

Распорное усилие компенсатора;

Усилие жесткости компенсатора;

Трение в направляющих и скользящих опорах;

Величина центробежной силы, возникающей при перегибе трубопровода.

Расчет нагрузок на концевые и промежуточные неподвижные опоры при различных способах установки сильфонных компенсирующих устройств выполняется на этапе проектирования тепловой сети и приводится в специальной литературе.

6.10. Максимальное расстояние между неподвижными опорами трубопровода определяется по формуле:

где 0,9- коэффициент запаса, учитывающий неточности расчета и погреш-

ности монтажа;

Компенсирующая способность компенсатора, мм

a - средний коэффициент линейного расширения трубной стали при на

греве от 0°С до t°С, мм/м°С;

t - расчетная температура сетевой воды в подающем трубопроводе, °С;

t РО -расчетная температура наружного воздуха для проектирования систем

отопления, принимаемая равной средней температуре воздуха наибо-

лее холодной пятидневки по главе СНиП «Строительная климатология

и геофизика», °С.

1.8. Изделия не требуют обслуживания в процессе эксплуатации и относятся к классу неремонтируемых изделий, для них не требуется сооружения специальных камер, а при наземной прокладке - площадок для обслуживания.

Указания по монтажу.

2.1. Монтаж изделий производится в соответствии с проектом трубопровода, выполненным проектной организацией.

2.2. Перед монтажом изделия должны быть проверены на соответствие их технических характеристик проекту тепловой сети, а также на отсутствие механических повреждений.

2.3. При перемещении компенсирующих устройств в период монтажа должны быть приняты меры, предохраняющие изделие от толчков, ударов и исключающие загрязнение или затопление грунтовыми водами его внутренней полости.

2.4. При выполнении сварочных работе торцы изоляции компенсирующего устройства следует защищать жестяными разъемными экранами толщиной 0,8…1 мм для предупреждения ее возгорания.

Монтаж изделий разрешается производить при температуре воздуха не ниже минус 30°С.

2.5. Перед приваркой изделия к трубопроводу проверяются отклонения соединений изделия с трубопроводом, которые не должны превышать следующих значений: допуск соосности патрубков - 2 мм;

допуск параллельности торцов присоединительных патрубков и присоединяемых труб - 3 мм.

Максимальный сварочный зазор между патрубком и трубопроводом - 2 мм.

2.6. Изделие следует устанавливать на теплопроводах так, чтобы направление стрелки (при ее наличии) на корпусе компенсирующего устройства совпадало с направлением движения теплоносителя.

2.7. Изделия монтируются на трубопроводе с предварительной растяжкой.

Длина компенсатора при монтаже Lмонт., мм определяется по формуле:

L строит. - строительная длина компенсатора в состоянии поставки, мм;

Компенсирующая способность компенсатора, мм;

A - коэффициент линейного расширения трубной стали, приме-

няемый 0,012 мм/м °С;

t наим . - наименьшая температура воздуха при эксплуатации, °С;

L - длина участка компенсатора между неподвижными опорами,

на котором монтируется компенсатор, м.

Установку монтажной длины компенсирующего устройства производит монтажная организация.

Участки трубопровода до и после компенсирующего устройства должны быть смонтированы и закреплены в неподвижных опорах таким образом, чтобы расстояние между концами труб в месте установки изделия соответствовало монтажной длине L монт. при температуре окружающего воздуха момента закрепления трубопровода во второй неподвижной опоре; температура окружающего воздуха и расстояние между концами закрепленных труб должны быть зафиксированы актом;

Компенсирующее устройство приваривается к одному из участков трубопровода;

На свободный присоединительный патрубок изделия и свободный конец трубопровода устанавливается универсальное монтажное приспособление, с помощью которого компенсатор изделия растягивают до стыка с трубопроводом, и стык заваривают;

С изделия снимают монтажное приспособление.

При растяжении компенсатора необходимо обеспечить одинаковые перемещения присоединительных патрубков относительно торцов изделия.

При невозможности установки изделия в середине прямолинейного участка теплопровода между неподвижными опорами допускается его установка в любом месте прямолинейного участка теплопровода. Для этого при растяжении компенсатора необходимо обеспечить перемещения присоединительных патрубков относительно торцов компенсирующего устройства обратно пропорциональными длинами участков теплопровода между изделием и неподвижными опорами.

2.9. Соединение проводников-индикаторов изделия с общей сигнальной системой необходимо производить после окончания сварочных работ перед изоляцией стыков присоединительных патрубков с теплопроводом. Проводники-индикаторы нигде не должны касаться металла труб.

сильфонное компенсирующее устройство
концевая неподвижная опора

Сильфонные компенсаторы применяют в самых разных сферах, они установлены на промышленных объектах и трубопроводах коммунальных систем. Сильфонные компенсаторы для тепловых сетей позволяют подать в наши дома горячую воду, подвести отопление. В настоящее время для подобных трубопроводов применяются как простые осевые компенсаторы (КСО, 2КСО), так и специальные сильфонные компенсирующие устройства (СКУ, 2 СКУ). Сильфонные компенсаторы пришли на смену морально устаревшим линзовым и сальниковым устройствам.

Трубопроводы тепловых сетей работают с горячим теплоносителем, они разработаны таким образом, что во время подачи горячей среды трубы нагреваются и удлиняются, а после остывают и укорачиваются. Важным звеном такого трубопровода являются компенсаторы, которые нивелируют эту деформацию, не давая системе оказывать нагрузку на другие узлы.

Осевые компенсаторы

Для компенсации деформаций трубопроводов коммунальных и промышленных тепловых сетей, для уменьшения потерь температуры теплоносителя и его энергии при транспортировке, для продления срока службы системы используются сильфонные компенсаторы. Их применение обусловлено целым рядом положительных факторов, среди которых:

  • Максимально простая и понятная конструкция.
  • Возможность работы с различным давлением.
  • Широкий диапазон рабочей температуры, которое выдерживает устройство, причем как внутри системы, так и снаружи.
  • Применение компенсаторов сильфонного типа позволяет добиться отличной герметичности.
  • Компенсатор кроме теплового расширения борется с несоосностью трубопровода и возникающей вибрацией.
  • Сильфонные компенсаторы, в отличие от своих сальниковых и линзовых предшественников, имеют скромные габаритные размеры.
  • В большинстве случаев на тепловых сетях используются компенсаторы с патрубковым соединением, очень простым.
  • Срок работы устройство составляет пару десятков лет (большой запас хода сильфона), при этом обслуживание компенсатору не нужно, это очень надежные устройства.
  • Стоимость сильфонных компенсаторов доступная, при этом рынок наполнен качественными отечественными и импортными вариантами.

В основном в тепловых сетях применяются самые простые , состоящие из сильфона и патрубков под приварку. Сильфон изготавливается из нержавейки, а патрубки из обычных сплавов. Такие устройства могут быть вмонтированы в любую теплосеть, место ее прокладки значения не имеет, достаточно соблюсти технические требования к установке изделий.

Если вам необходимо смонтировать сильфонный компенсатор в подземный канальный теплопровод, то достаточно выбрать прямой участок системы и установить его между двух, неподвижных опор. Следующий компенсатор, если необходимо, можно разместить уже за следующими опорами.

Опоры предотвращают деформации других видов и помогают компенсатору работать правильно и системно. Обычно, при проектировании тепловой сети, уже закладываются специальные места для опор, компенсаторов и прочей трубопроводной арматуры. Все что нужно сделать, правильно установить изделие на трубопровод. Нарушения и эксплуатации изделия, могут привести к его быстрому выходу из строя.

Выход из строя сильфонного компенсатора раньше окончания его срока эксплуатации, достаточно редкое явление, обычно ставшее следствием нарушений норм и правил работы с ним.

Некоторые примеры таких ошибок:

  • Неправильное хранение сильфонных компенсаторов приводит к порче внешнего вида и утрате важных технических свойств.
  • Неправильный монтаж компенсатора приводит к его поломке непосредственно в процессе установке или при первой же подаче носителя в сеть.
  • Неправильное расположение или отсутствие опор ведет к такой же ситуации. Про разрушение камер и опор от нагрузок, мы даже не упоминаем.
  • Неправильно выбранные материалы, в процессе изготовления изделия, ведут к коррозии самого сильфона в грунтовых водах, в которых находится тепловая сеть.

Как видите, факторов риска очень много, поэтому любые действия с сильфонными компенсаторами для тепловых сетей, да и другими изделиями трубопроводной арматуры, нужно согласовывать с техническими службами.

Компенсирующие устройства

В настоящее время все большую популярность набирают сильфонные компенсационные устройства с теплоизоляцией (минеральной ППМ, пенополиуретановой ППУ), скрывающиеся за аббревиатурой СКУ. Эти компенсаторы не так требовательные к опорам трубопровода, поскольку в их конструкцию уже предусмотрена защита сильфонов от ненужных деформаций, они просты и удобны в монтаже и эксплуатации.


Современная конструкция позволяет использовать компенсаторы СКУ.ППУ, СКУ.ППМ на тепловых сетях и трубопроводах. При этом они становятся частью всей трубопроводной системы, выполняя свою работу и не давая теплоносителю потерять энергию и тепло.


Другие компенсаторы

Одной из разновидностей сильфонных компенсаторов, которые применяются на теплотрассах, являются стартовые устройства, которые используются при запуске трубопроводной системы. Стартовый компенсатор позволяет тепловой сети выйти на нормальный режим работы. Во время подачи теплоносителя в систему, трубы начинают удлиняться, а компенсатор при этом сужается. Он срабатывает всего один раз, после чего его заваривают и он становится обычным участком трубы.

Кроме стартовых, на определенных участках трубопровода могут применяться и другие виды сильфонных компенсаторов. Например, на изогнутых трубах ставят поворотные или угловые компенсаторы, на длинных участках прямого трубопровода монтируют сдвиговые компенсаторы.

Более подробную информацию о работе сильфонных компенсаторов на трубопроводах тепловых сетей, можно узнать у непосредственных производителей трубопроводной арматуры во время заказа соответствующей продукции.

, Тепловые сети, в т.ч. системы ГВС .

Эффект от внедрения:
- для объекта уменьшение потребления холодной воды и топлива, а также электроэнергии, снижение затрат, связанных с техническим обслуживанием и ремонтом компенсаторов;
- для муниципального образования снижение потребления топлива и тарифов для населения, повышение надежности теплоснабжения.

Применение сильфонных компенсаторов для компенсации температурных деформаций, снятия вибрационных нагрузок, герметизации трубопроводов, предотвращения разрушения и деформации трубопроводов теплопроводов позволяет снизить потери тепловой энергии, затраты при строительстве и эксплуатации тепловых сетей и повысить их надежность.

Прямолинейный участок трубопровода между неподвижными опорами при изменении температурного режима тепловой сети получает некоторое приращение своей длины за счет температурного расширения материалы трубопровода. Возникающие при этом напряжения, растяжения или сжатия могут привести к изгибу труб или их разрушению. Гофры сильфонного компенсатора установленного на этом участке компенсатора, упруго деформируясь, воспринимают в пределах компенсирующей способности изменения длины участка трубопровода, вызванное температурным расширением.

Для компенсации температурных деформаций трубопроводов в тепловых сетях г. Санкт-Петербурга до начала 1980-х гг. применялись сальниковые, П-, S- и Г-образные компенсаторы, а во многих регионах России они применяются до сих пор. Каждому из этих компенсаторов свойственны отдельные серьезные недостатки.

Наиболее сложными в эксплуатации и монтаже являются сальниковые компенсаторы. Они требуют постоянного обслуживания, связанного с периодической подтяжкой уплотнения и заменой уплотнительного материала. При подземной прокладке теплопроводов установка сальниковых компенсаторов требует строительства дорогостоящих камер.

Длительная практика эксплуатации сальниковых компенсаторов показала, что даже при наличии регулярного их обслуживания имеют место протечки теплоносителя. При большой протяженности тепловых сетей суммарная величина затрат на пополнение и нагрев теплоносителя может достигать достаточно больших значений.

Для П-образных компенсаторов характерны большие габариты, увеличение зон отчуждения дорогостоящей городской земли, необходимость строительства дополнительных направляющих опор, а при подземной прокладке - специальных камер (что довольно затруднительно в городских условиях). Да и стоимость П-образных компенсаторов, особенно больших диаметров, достаточно высока.

В целях повышения надежности теплоснабжения, снижения капитальных вложений, потерь, связанных с утечками, и эксплуатационных расходов в начале 1980-х гг. специалисты ведущих Ленинградских проектных институтов рассмотрели возможность применения сильфонных компенсаторов в тепловых сетях вместо П-образных и сальниковых компенсаторов и с 1981 г. в ГУП «ТЭК СПб» при проведении капитального ремонта и строительства тепловых сетей началась установка осевых сильфонных компенсаторов. Годовой экономический эффект, проявляющийся в снижении сметной стоимости строительства, экономии материалов, в сокращении трудозатрат при строительстве и тепловых потерь при эксплуатации теплопровода, при замене 1 шт. П-образного компенсатора на осевой сильфонный составил: для DN 500 - 6,65 тыс. руб., для DN 700 - 12,07 тыс. руб. (в ценах 1986 года).

Удельная годовая экономическая эффективность от замены сальникового компенсатора на сильфонный в процессе эксплуатации составила (в ценах 2006 г.) [источник: www.kompensator.ru]:

Диаметр компенсатора, мм Холодная вода Топливо Электроэнергия Обслуживание и ремонт, тыс. руб. Итого, тыс.руб.
м3 тыс. руб. тут тыс. руб. кВт-ч тыс. руб.
до 300 77,5 1,05 0,7 0,90 105,9 0,10 2,71 4,76
от 300 до 600 186,8 2,52 1,6 2,17 255,4 0,24 6,30 11,23
от 600 до 1200 355,7 4,80 3,0 4,12 486,1 0,45 9,90 19,27

Компенсаторы сильфонные в зависимости от вида выполняют роль неподвижных опор, позволяют устанавливать компенсатор без дополнительных крепежных элементов или применяются в трубопроводах для компенсации температурного расширения, предотвращения разрушения трубопровода при деформации, герметизации трубопроводов, компенсации несоосностей, возникших вследствие монтажных работ.

Конструкция сильфонных компенсаторов

Сильфонные компенсаторы имеют малые габариты, могут устанавливаться в любом месте трубопровода при любом способе его прокладки, не требуют строительства специальных камер и обслуживания в течение всего срока эксплуатации. Срок их службы, как правило, соответствует сроку службы трубопроводов. Применение сильфонных компенсаторов обеспечивает надежную и эффективную защиту трубопроводов от статических и динамических нагрузок, возникающих при деформациях, вибрации и гидроударе. Благодаря использованию при изготовлении сильфонов высококачественных нержавеющих сталей, сильфонные компенсаторы способны работать в самых жестких условиях с температурами рабочих сред от «абсолютного нуля» до 1000°С и воспринимать рабочие давления от вакуума до 100 атм., в зависимости от конструкции и условий работы.

В зависимости от назначения и условий применения используются различные конструктивные исполнения компенсаторов, представляющие собой различные комбинации сильфонов, присоединительной и ограничительной арматуры, направляющих патрубков и защитных кожухов.

Основной частью сильфонного компенсатора является сильфон - упругая гофрированная металлическая оболочка, обладающая способностью растягиваться, изгибаться либо сдвигаться под действием перепада температур, давления и другого рода изменений. Между собой они различаются по таким параметрам как размеры, давление и типы смещений в трубе (осевые, сдвиговые и угловые). На основании данного критерия компенсаторы выделяют осевые, сдвиговые, угловые (поворотные) и универсальные.

Сильфоны современных компенсаторов состоят из нескольких тонких слоев нержавеющей стали, которые формируются при помощи гидравлической или обычной прессовки. Многослойные компенсаторы нейтрализуют воздействие высокого давления и различного рода вибраций, не вызывая при этом реакционных сил, которые в свою очередь провоцируются деформацией).

СКУ (СКФ) предназначены для компенсации температурных изменений длины трубопровода, снятия вибрационных нагрузок, герметизации трубопроводов, предотвращения разрушения и деформациитрубопроводов. Для сильфонных узлов возможна подземная безканальная укладка, изоляция сильфонных устройств СКУ (СКФ). Основным элементом компенсационного устройства является осевой сильфонный компенсатор, установленный в защитный кожух, который обеспечивает защиту сильфона от поперечных усилий, изгибающих и крутящих моментов, а также от механических повреждений и попадания грунта между гофрами. Компенсационные сильфонные устройства имеют малые габариты, могут устанавливаться в любом месте трубопровода при любом способе его прокладки, не требуют строительства специальных камер и обслуживания в течении всего срока эксплуатации. Срок их службы, как правило, соответствует сроку службы трубопроводов. Применение СКУ (СКФ) обеспечивает надежную и эффективную защиту трубопроводов от статических и динамических нагрузок, возникающих при деформациях, вибрации и гидроударах. Благодаря использованию при изготовлении сильфонных узлов из высококачественной нержавеющей стали, СКУ (СКФ) способны работать в самых жестких условиях.

Компенсация температурных деформаций для труб в ППУ-изоляции

В последние годы в России для бесканальной прокладки теплопроводов стали широко применяться стальные трубы с тепловой изоляцией из пенополиуретана в полиэтиленовой оболочке по ГОСТ 30732.

В Западной Европе и в некоторых регионах России для компенсации температурных деформаций теплопроводов при бесканальной прокладке не применяют осевые сильфонные компенсаторы. В этих случаях используется способ частичной разгрузки температурных деформаций теплопровода с помощью стартовых компенсаторов за счет предварительного нагрева теплопровода во время его монтажа до температуры, равной 50% от максимальной.

Суть этого способа заключается в следующем. Между двумя неподвижными опорами теплопровода устанавливается стартовый сильфонный компенсатор, после чего теплопровод заполняется теплоносителем и нагревается до температуры, равной 50% от максимальной рабочей. При этом стартовый компенсатор должен сжаться на полную величину рабочего хода. После выдержки при указанной температуре (как правило, в течение суток) кожухи стартового компенсатора завариваются между собой. После этого соединяются проводники СОДК и на стартовые компенсаторы наносится тепло-гидроизоляция. И так на всем теплопроводе между каждой парой неподвижных опор.

При этом сильфон стартового компенсатора исключается из дальнейшей работы теплопровода, и теплопровод остается в эксплуатации в напряженном состоянии.

Кроме того, использование предварительно нагретых во время монтажа теплопроводов имеет еще несколько неудобств:

  • окончательный монтаж теплопровода (заварку кожухов всех стартовых компенсаторов и их последующую тепло-гидроизоляцию) приходится производить во время отопительного сезона;
  • при выполнении ремонта теплопровода необходимо на данном участке теплотрассы заменять и стартовый сильфонный компенсатор и выполнить в дальнейшем вышеизложенные требования по его монтажу и изоляции.

Применение при бесканальной прокладке предварительно нагретых во время монтажа теплопроводов с использованием стартовых компенсаторов возможно в регионах с мягкими климатическими условиями, когда перепады температур теплоносителя относительно средней температуры незначительны и стабильны.

В пиковые же режимы отопления, а также при остывании теплоносителя и его сливе, что довольно часто происходит во многих регионах России, температурные напряжения на трубопровод и неподвижные опоры резко возрастают.

Учитывая проблемы применения стартовых компенсаторов, а также особенности климатических условий регионов и соответствующие режимы отопления, при бесканальной прокладке предварительно изолированных труб уже более 15 лет применяются предварительно изолированные осевые сильфонные компенсационные устройства различных конструкций.


Для того чтобы добавить описание энергосберегающей технологии в Каталог, заполните опросник и вышлите его на c пометкой «в Каталог» .

Под понятие «теплотрасса» подпадают инженерные коммуникации, по которым перемещается носитель тепловой энергии (в том числе, и ГВС), причем не обязательно вода – это может быть и пар (для отопления). По известному физическому закону все металлы в той или иной степени подвержены температурным изменениям линейных параметров.

Для специалистов, занимающихся проектированием, монтажом и эксплуатацией теплосетей, деформация трубных магистралей при колебаниях температуры является довольно существенной проблемой, если не основной.

Ее решают несколькими способами. С одним из них – при помощи различных дополнительных изгибов «ниток» – мы сталкиваемся постоянно. Термокомпенсаторы (ТК) часто можно наблюдать в районе дорог, вблизи которых проложены открытым способом трассы. Эти элементы чаще всего представляют собой букву «П», хотя могут иметь и другую конфигурацию – «Г» или «S»-образную. Их пространственная ориентация – вертикальная или горизонтальная.

Второй способ – использование компенсаторов сальникового типа. Однако у всех подобных методик есть и существенные недостатки. У одной – большие габариты и высокая стоимость материалов, у другой – необходимость систематического обслуживания мест соединений, постоянного их уплотнения.

Использование компенсаторов сильфонных (КС) помогло решить сразу множество задач. Существенно снизились затраты на эксплуатацию магистралей, уровень теплопотерь из-за отсутствия протечек, повысилась надежность систем, упростилось их обслуживание.


Примеры установки на трубопровод показаны на рисунке. Поз. 1 обозначена опора, КС – поз. 2.

  • Небольшие габариты, что позволяет устанавливать приборы на любом участке тепловой магистрали.
  • Монтаж может вестись автоматической сваркой.
  • Устойчивость к внешним воздействиям (давление, влажность, температура).

В случае невозможности использования КС они заменяются более совершенными приборами – компенсационными сильфонными устройствами. Например, в условиях прямого контакта с агрессивными средами.

Разновидности КС

Приборы подразделяются на группы в зависимости от вида действующей на них механической деформации.

  • Сжатие/растяжение – осевые.
  • Смещение: линейное – сдвиговые, круговое – поворотные.
  • Универсальные (например, поворот + сдвиг и ряд других).
  • Пространственные или одноплоскостные.

Составные части

  • Сильфон (стальной). Их может быть и 2 шт.
  • Гильза (внутренняя).
  • Кольца и патрубки.
  • Кожух.

В зависимости от линейных параметров вес сильфонного компенсатора лежит в пределах от 4 до 95 кг.

Маркировка

Она содержит информацию о таких параметрах:

  • Pр – рабочее давление;
  • DN (Ду) – диаметр условного прохода;
  • направление потока .

Цена

Она целиком определяется габаритами и характеристиками изделия. К примеру, сильфон с Ду = 20 на 16 атм стоит 1 155 рублей, его аналог с Ду = 40 (но без кожуха) – в пределах 1 790 рублей.