Корень. Виды корней растений и их функции. Урок онлайн. Корневые системы

Филогенетически корень возник позже стебля и листа - в связи с переходом растений к жизни на суше и вероятно, произошёл от корнеподобных подземных веточек. У корня нет ни листьев, ни в определённом порядке расположенных почек. Для него характерен верхушечный рост в длину, боковые разветвления его возникают из внутренних тканей, точка роста покрыта корневым чехликом. Корневая система формируется на протяжении всей жизни растительного организма. Иногда корень может служить местом отложения в запас питательных веществ. В таком случае он видоизменяется.

Виды корней

Главный корень образуется из зародышевого корешка при прорастании семени. От него отходят боковые корни.

Придаточные корни развиваются на стеблях и листьях.

Боковые корни представляют собой ответвления любых корней.

Каждый корень (главный, боковые, придаточные) обладает способностью к ветвлению, что значительно увеличивает поверхность корневой системы, а это способствует лучшему укреплению растения в почве и улучшению его питания.

Типы корневых систем

Различают два основных типа корневых систем: стержневая, имеющая хорошо развитый главный корень, и мочковатая. Мочковатая корневая система состоит из большого числа придаточных корней, одинаковых по величине. Вся масса корней состоит из боковых или придаточных корешков и имеет вид мочки.

Сильно разветвлённая корневая система образует огромную поглощающую поверхность. Например,

  • общая длина корней озимой ржи достигает 600 км;
  • длина корневых волосков — 10 000 км;
  • общая поверхность корней — 200 м 2 .

Это во много раз превышает площадь надземной массы.

Если у растения хорошо выражен главный корень и развиваются придаточные корни, то формируется корневая система смешанного типа (капуста, помидор).

Внешнее строение корня. Внутреннее строение корня

Зоны корня

Корневой чехлик

Корень растёт в длину своей верхушкой, где находятся молодые клетки образовательной ткани. Растущая часть покрыта корневым чехликом, защищающим кончик корня от повреждений, и облегчает продвижение корня в почве во время роста. Последняя функция осуществляется благодаря свойству внешних стенок корневого чехлика покрываться слизью, что уменьшает трение между корнем и частичками почвы. Могут даже раздвигать частички почвы. Клетки корневого чехлика живые, часто содержат зёрна крахмала. Клетки чехлика постоянно обновляются за счёт деления. Участвует в положительных геотропических реакциях (направление роста корня к центру Земли).

Клетки зоны деления активно делятся, протяженность этой зоны у разных видов и у разных корней одного и того же растения неодинакова.

За зоной деления расположена зона растяжения (зона роста). Протяжённость этой зоны не превышает нескольких миллиметров.

По мере завершения линейного роста наступает третий этап формирования корня — его дифференциация, образуется зона дифференциации и специализации клеток (или зона корневых волосков и всасывания). В этой зоне уже различают наружный слой эпиблемы (ризодермы) с корневыми волосками, слой первичной коры и центральный цилиндр.

Строение корневого волоска

Корневые волоски — это сильно удлинённые выросты наружных клеток, покрывающих корень. Количество корневых волосков очень велико (на 1 мм 2 от 200 до 300 волосков). Их длина достигает 10 мм. Формируются волоски очень быстро (у молодых сеянцев яблони за 30-40 часов). Корневые волоски недолговечны. Они отмирают через 10-20 дней, а на молодой части корня отрастают новые. Это обеспечивает освоение корнем новых почвенных горизонтов. Корень непрерывно растёт, образуя всё новые и новые участки корневых волосков. Волоски могут не только поглощать готовые растворы веществ, но и способствовать растворению некоторых веществ почвы, а затем всасывать их. Участок корня, где корневые волоски отмерли, некоторое время способен всасывать воду, но затем покрывается пробкой и теряет эту способность.

Оболочка волоска очень тонкая, что облегчает поглощение питательных веществ. Почти всю клетку волоска занимает вакуоль, окружённая тонким слоем цитоплазмы. Ядро находится в верхней части клетки. Вокруг клетки образуется слизистый чехол, который содействует склеиванию корневых волосков с частицами почвы, что улучшает их контакт и повышает гидрофильность системы. Поглощению способствует выделение корневыми волосками кислот (угольной, яблочной, лимонной), которые растворяют минеральные соли.

Корневые волоски играют и механическую роль — они служат опорой верхушке корня, которая проходит между частичками почвы.

Под микроскопом на поперечном срезе корня в зоне всасывания видно его строение на клеточном и тканевом уровнях. На поверхности корня — ризодерма, под ней — кора. Наружный слой коры — экзодерма, вовнутрь от неё — основная паренхима. Её тонкостенные живые клетки выполняют запасающую функцию, проводят растворы питательных веществ в радиальном направлении — от всасывающей ткани к сосудам древесины. В них же происходит синтез ряда жизненно важных для растения органических веществ. Внутренний слой коры — эндодерма. Растворы питательных веществ, поступающие из коры в центральный цилиндр через клетки эндодермы, проходят только через протопласт клеток.

Кора окружает центральный цилиндр корня. Она граничит со слоем клеток, долго сохраняющих способность к делению. Это перицикл. Клетки перицикла дают начало боковым корням, придаточным почкам и вторичным образовательным тканям. Вовнутрь от перицикла, в центре корня, находятся проводящие ткани: луб и древесина. Вместе они образуют радиальный проводящий пучок.

Проводящая система корня проводит воду и минеральные вещества из корня в стебель (восходящий ток) и органические вещества из стебля в корень (нисходящий ток). Состоит она из сосудисто-волокнистых пучков. Основными слагаемыми частями пучка являются участки флоэмы (по ним вещества передвигаются к корню) и ксилемы (по которым вещества передвигаются от корня). Основные проводящие элементы флоэмы — ситовидные трубки, ксилемы — трахеи (сосуды) и трахеиды.

Процессы жизнедеятельности корня

Транспорт воды в корне

Всасывание воды корневыми волосками из почвенного питательного раствора и проведение её в радиальном направлении по клеткам первичной коры через пропускные клетки в эндодерме к ксилеме радиального проводящего пучка. Интенсивность поглощения воды корневыми волосками называется сосущей силой (S), она равна разнице между осмотическим (P) и тургорным (T) давлением: S=P-T.

Когда осмотическое давление равно тургорному (P=T), то S=0, вода перестаёт поступать в клетку корневого волоска. Если концентрация веществ почвенного питательного раствора будет выше, чем внутри клетки, то вода будет выходить из клеток и наступит плазмолиз — растения завянут. Такое явление наблюдается в условиях сухости почвы, а также при неумеренном внесении минеральных удобрений. Внутри клеток корня сосущая сила корня возрастает от ризодермы по направлению к центральному цилиндру, поэтому вода движется по градиенту концентрации (т. е. из места с большей её концентрацией в место с меньшей концентрацией) и создаёт корневое давление, которое поднимает столбик воды по сосудам ксилемы, образуя восходящий ток. Это можно обнаружить на весенних безлистных стволах, когда собирают «сок», или на срезанных пнях. Истекание воды из древесины, свежих пней, листьев, называется «плачем» растений. Когда распускаются листья, то они тоже создают сосущую силу и притягивают воду к себе — образуется непрерывный столбик воды в каждом сосуде — капиллярное натяжение. Корневое давление является нижним двигателем водного тока, а сосущая сила листьев — верхним. Подтвердить это можно с помощью несложных опытов.

Всасывание воды корнями

Цель: выяснить основную функцию корня.

Что делаем: растение, выращенное на влажных опилках, отряхнём его корневую систему и опустим в стакан с водой его корни. Поверх воды для защиты её от испарения нальём тонкий слой растительного масла и отметим уровень.

Что наблюдаем: через день-два вода в ёмкости опустилась ниже отметки.

Результат: следовательно, корни всосали воду и подали её наверх к листьям.

Можно ещё проделать один опыт, доказывающий всасывание питательных веществ корнем.

Что делаем: срежем у растения стебель оставив пенёк высотой 2-3 см. На пенёк наденем резиновую трубку длиной 3 см, а на верхний конец наденем изогнутую стеклянную трубку высотой 20-25 см.

Что наблюдаем: вода в стеклянной трубке поднимается, и вытекает наружу.

Результат: это доказывает, что воду из почвы корень всасывает в стебель.

А влияет ли температура воды на интенсивность всасывания корнем воды?

Цель: выяснить, как температура влияет на работу корня.

Что делаем: один стакан должен быть с тёплой водой (+17-18?С), а другой с холодной (+1-2?С).

Что наблюдаем: в первом случае вода выделяется обильно, во втором — мало, или совсем приостанавливается.

Результат: это является доказательством того, что температура сильно влияет на работу корня.

Тёплая вода активно поглощается корнями. Корневое давление повышается.

Холодная вода плохо поглощается корнями. В этом случае корневое давление падает.

Минеральное питание

Физиологическая роль минеральных веществ очень велика. Они являются основой для синтеза органических соединений, а также факторами, которые изменяют физическое состояние коллоидов, т.е. непосредственно влияют на обмен веществ и строение протопласта; выполняют функцию катализаторов биохимических реакций; воздействуют на тургор клетки и проницаемость протоплазмы; являются центрами электрических и радиоактивных явлений в растительных организмах.

Установлено, что нормальное развитие растений возможно только при наличии в питательном растворе трёх неметаллов — азота, фосфора и серы и — и четырёх металлов — калия, магния, кальция и железа. Каждый из этих элементов имеет индивидуальное значение и не может быть заменён другим. Это макроэлементы, их концентрация в растении составляет 10 -2 –10%. Для нормального развития растений нужны микроэлементы, концентрация которых в клетке составляет 10 -5 –10 -3 %. Это бор, кобальт, медь, цинк, марганец, молибден др. Все эти элементы есть в почве, но иногда в недостаточном количестве. Поэтому в почву вносят минеральные и органические удобрения.

Растение нормально растёт и развивается в том случае, если в окружающей корни среде будут содержаться все необходимые питательные вещества. Такой средой для большинства растений является почва.

Дыхание корней

Для нормального роста и развития растения необходимо чтобы к корню поступал свежий воздух. Проверим, так ли это?

Цель: нужен ли воздух корню?

Что делаем: возьмём два одинаковых сосуда с водой. В каждый сосуд поместим развивающие проростки. Воду в одном из сосудов каждый день насыщаем воздухом с помощью пульверизатора. На поверхность воды во втором сосуде нальём тонкий слой растительного масла, так как оно задерживает поступление воздуха в воду.

Что наблюдаем: через некоторое время растение во втором сосуде перестанет расти, зачахнет, и в конце концов погибнет.

Результат: гибель растения наступает из-за недостатка воздуха, необходимого для дыхания корня.

Видоизменения корней

У некоторых растений в корнях откладываются запасные питательные вещества. В них накапливаются углеводы, минеральные соли, витамины и другие вещества. Такие корни сильно разрастаются в толщину и приобретают необычный внешний вид. В формировании корнеплодов участвуют и корень, и стебель.

Корнеплоды

Если запасные вещества накапливаются в главном корне и в основании стебля главного побега, образуются корнеплоды (морковь). Растения, образующие корнеплоды, в основном двулетники. В первый год жизни они не цветут и накапливают в корнеплодах много питательных веществ. На второй — они быстро зацветают, используя накопленные питательные вещества и образуют плоды и семена.

Корневые клубни

У георгина запасные вещества накапливаются в придаточных корнях, образуя корневые клубни.

Бактериальные клубеньки

Своеобразно изменены боковые корни у клевера, люпина, люцерны. В молодых боковых корешках поселяются бактерии, что способствует усвоению газообразного азота почвенного воздуха. Такие корни приобретают вид клубеньков. Благодаря этим бактериям эти растения способны жить на бедных азотом почвах и делать их более плодородными.

Ходульные

У пандуса, произрастающего в приливно-отливной зоне, развиваются ходульные корни. Они высоко над водой удерживают на зыбком илистом грунте крупные облиственные побеги.

Воздушные

У тропических растений, живущих на ветвях деревьев, развиваются воздушные корни. Они часто встречаются у орхидей, бромелиевых, у некоторых папоротников. Воздушные корни свободно висят в воздухе, не достигая земли и поглощая попадающую на них влагу от дождя или росы.

Втягивающие

У луковичных и клубнелуковичных растений, например у крокусов, среди многочисленных нитевидных корней имеется несколько более толстых, так называемых втягивающих, корней. Сокращаясь, такие корни втягивают клубнелуковицу глубже в почву.

Столбовидные

У фикуса развиваются столбовидные надземные корни, или корни-подпорки.

Почва как среда обитания корней

Почва для растений является средой, из которой оно получает воду и элементы питания. Количество минеральных веществ в почве зависит от специфических особенностей материнской горной породы, деятельности организмов, от жизнедеятельности самих растений, от типа почвы.

Почвенные частицы конкурируют с корнями за влагу, удерживая её своей поверхностью. Это так называемая связанная вода, которая подразделяется на гигроскопическую и плёночную. Удерживается она силами молекулярного притяжения. Доступная растению влага представлена капиллярной водой, которая сосредоточена в мелких порах почвы.

Между влагой и воздушной фазой почвы складываются антагонистические отношения. Чем больше в почве крупных пор, тем лучше газовый режим этих почв, тем меньше влаги удерживает почва. Наиболее благоприятный водно-воздушный режим поддерживается в структурных почвах, где вода и воздух находятся одновременно и не мешают друг другу — вода заполняет капилляры внутри структурных агрегатов, а воздух — крупные поры между ними.

Характер взаимодействия растения и почвы в значительной степени связан с поглотительной способностью почвы — способностью удерживать или связывать химические соединения.

Микрофлора почвы разлагает органические вещества до более простых соединений, участвует в формировании структуры почвы. Характер этих процессов зависит от типа почвы, химического состава растительных остатков, физиологических свойств микроорганизмов и других факторов. В формировании структуры почвы принимают участие почвенные животные: кольчатые черви, личинки насекомых и др.

В результате совокупности биологических и химических процессов в почве образуется сложный комплекс органических веществ, который объединяют термином «гумус».

Метод водных культур

В каких солях нуждается растение, и какое влияние оказывают они на рост и развитие его, было установлено на опыте с водными культурами. Метод водных культур — это выращивание растений не в почве, а в водном растворе минеральных солей. В зависимости от поставленной цели в опыте можно исключить отдельную соль из раствора, уменьшить или увеличить ее содержание. Было выяснено, что удобрения, содержащие азот, способствуют росту растений, содержащие фосфор — скорейшему созреванию плодов, а содержащие калий — быстрейшему оттоку органических веществ от листьев к корням. В связи с этим содержащие азот удобрения рекомендуется вносить перед посевом или в первой половине лета, содержащие фосфор и калий — во второй половине лета.

С помощью метода водных культур удалось установить не только потребность растения в макроэлементах, но и выяснить роль различных микроэлементов.

В настоящее время известны случаи, когда выращивают растения методами гидропоники и аэропоники.

Гидропоника — выращивание растений в сосудах, заполненных гравием. Питательный раствор, содержащий необходимые элементы, подаётся в сосуды снизу.

Аэропоника — это воздушная культура растений. При этом способе корневая система находится в воздухе и автоматически (несколько раз в течение часа) опрыскивается слабым раствором питательных солей.

Корень. Функции. Виды корней и корневых систем. Анатомическое строения корня. Механизм поступления почвенного раствора в корень и его передвижение в стебель. Видоизменения корней. Роль минеральных солей. Понятие о гидропонике и аэропонике.

Высшие растения в отличие от низших характеризуются расчленением тела на органы, выполняющие различные функции. Различают вегетативные и генеративные органы высших растений.

Вегетативные органы – части тела растений, выполняющие функции питания и обмена веществ. Эволюционно они возникли в результате усложнения тела растений при выходе их на сушу и освоения воздушной и почвенной сред. К вегетативным органам относят корень, стебель и лист.

1. Корень и корневые системы

Корень – осевой орган растений с радиальной симметрией, нарастающий за счет апикальной меристемы и не несущий листьев. Конус нарастания корня защищен корневым чехликом.

Корневая система – совокупность корней одного растения. Форма и характер корневой системы определяются соотношением роста и развития главного, боковых и придаточных корней. Главный корень развивается из зародышевого корешка и обладает положительным геотропизмом. Боковые корни возникают на главном или придаточных корнях как ответвления. Они характеризуются трансверсальным геотропизмом (диагеотропизмом). Придаточные корни возникают на стеблях, корнях и редко на листьях. В том случае, когда у растения хорошо развит главный и боковые корни, формируется стержневая корневая система, которая может содержать и придаточные корни. Если же у растения преобладающее развитие получают придаточные корни, а главный корень незаметный или отсутствует, то формируется мочковатая корневая система.

Функции корня:

    Всасывание из почвы воды с растворенными в ней минеральными солями, Функцию всасывания выполняют корневые волоски (или микоризы), расположенные в зоне всасывания.

    Закрепление растения в почве.

    Синтез продуктов первичного и вторичного метаболизма.

    Осуществляется биосинтез вторичных метаболитов (алкалоиды, гормоны и другие БАВ).

    Корневое давление и транспирация обеспечивают транспорт водных растворов минеральных веществ по сосудам ксилемы корня (восходящий ток), к листьям и репродуктивным органам.

    В корнях откладываются запасные питательные вещества (крахмал, инулин).

    Синтезируют в меристематических зонах ростовые вещества, необходимые для роста и развития надземных частей растения.

    Осуществляют симбиоз с почвенными микроорганизмами – бактериями и грибами.

    Обеспечивают вегетативное размножение.

    У некоторых растений (монстера, филодендрон) выполняют функцию дыхательного органа.

Видоизменения корней. Очень часто корни выполняют особые функции, и в связи с этим они претерпевают изменения или метаморфозы. Метаморфозы корней закрепляются наследственно.

Втягивающие (контрактильные) корни у луковичных растений служат для погружения луковицы в почву.

Запасающие корни утолщены и сильно паренхиматизированы. В связи с накоплением запасных веществ они приобретают репчатую, конусовидную, клубневидную и др. формы. К запасающим корням относят 1)корнеплоды у двулетних растений. В их формировании принимает участие не только корень, но и стебель (морковь, репа, свекла). 2)корнеклубни - утолщения придаточных корней. Их также называюткорневыми шишками (георгин, батат, чистяк). Необходимы для раннего появления больших цветков.

Корни – прицепки имеют лазающие растения (плющ).

Воздушные корни характерны для эпифитов (орхидеи). Они обеспечивают растению всасывание из влажного воздуха воды и минеральных веществ.

Дыхательные корни имеют растения, растущие на заболоченных почвах. Эти корни приподнимаются над поверхностью почвы и снабжают подземные части растения воздухом.

Ходульные корни образуются у деревьев, произрастающих на литорали тропических морей (мангра). Укрепляют растения в зыбком грунте.

Микориза – симбиоз корней высших растений с почвенными грибами.

Клубеньки - опухолевидные разрастания коры корня в результате симбиоза с клубеньковыми бактериями.

Столбовидные корни (корни – подпорки) закладываются как придаточные на горизонтальных ветвях дерева, достигнув почвы, разрастаются, поддерживая крону. Индийский баньян.

У некоторых многолетних растений в тканях корня закладываются придаточные почки, развивающиеся в дальнейшем в наземные побеги. Эти побеги называют корневыми отпрысками, а растения –корнеотпрысковыми (осина –Populustremula, малина –Rubusidaeus, осот –Sonchusarvensisи др.).

Анатомическое строение корня.

У молодого корня в продольном направлении обычно различают 4 зоны:

Зона деления 1 – 2 мм. Представлена верхушкой конуса нарастания, где происходит активное деление клеток. Состоит из клеток апикальной меристемы, и прикрыта корневым чехликом. Он выполняет защитную функцию. При соприкосновении с почвой клетки корневого чехлика разрушаются с образованием слизистого чехла. Восстанавливается он (корневой чехлик) за счет первичной меристемы, а у злаков – за счет особой меристемы – калиптрогена.

Зона растяжения составляет несколько мм. Клеточные деления практически отсутствуют. Клетки максимально растягиваются за счет образования вакуолей.

Зона всасывания составляет несколько сантиметров. В ней происходит дифференциация и специализация клеток. Различают покровную ткань – эпиблему с корневыми волосками. Клетки эпиблемы (ризодермы) живые, с тонкой целлюлозной стенкой. Из некоторых клеток формируются длинные выросты - корневые волоски. Их функция - поглощение водных растворов всей поверхностью наружных стенок. Поэтому длина волоска 0,15 – 8 мм. В среднем на 1 мм 2 поверхности корня образуется от 100 до 300 корневых волосков. Они отмирают через 10 – 20 дней. играют механическую (опорную) роль – служат опорой кончику корня.

Зона проведения тянется вплоть до корневой шейки и составляет большую часть протяженности корня. В этой зоне идет интенсивное ветвление главного корня и появление боковых корней.

Поперечное строение корня.

На поперечном срезе в зоне всасывания у двудольных растений, а у однодольных – и в зоне проведения выделяют три основные части: покровно-всасывательная ткань, первичная кора и центральный осевой цилиндр.

Покровно-всасывательная ткань – ризодерма выполняет покровную, всасывательную, а также, частично, опорную функции. Представлена одним слоем клеток эпиблемы.

Первичная кора корня наиболее мощно развита. Состоит из экзодермы, мезодермы = паренхимы первичной коры и эндодермы. Клетки экзодермы многоугольные, плотно прилегающие друг к другу, располагаются в несколько рядов. Их клеточные стенки пропитаны суберином (опробковение) и лигнином (одревеснение). Суберин обеспечивает непроницаемость клеток для воды и газов. Лигнин придает ей прочность. Поглощенные ризодермой вода и минеральные соли проходят через тонкостенные клетки экзодермы = пропускные клетки. Они расположены под корневыми волосками. По мере отмирания клеток ризодермы эктодерма может выполнять и покровную функцию.

Мезодерма располагается под эктодермой и состоит из живых паренхимных клеток. Они выполняют запасающую функцию, а также функцию проведения воды и растворенных в ней солей от корневых волосков в центральный осевой цилиндр.

Внутренний однорядный слой первичной коры представлен эндодермой. Выделяют эндодерму с поясками Каспари и эндодерму с подковообразными утолщениями.

Эндодерма с поясками Каспари – начальный этап формирования эндодермы, при котором утолщены только радиальные стенки ее клеток за счет пропитывания их лигнином и суберином.

У однодольных растений в клетках эндодермы происходит дальнейшее пропитывание суберином клеточных стенок. В результате неутолщенной остается только наружная клеточная стенка. Среди этих клеток наблюдаются клетки с тонкими целлюлозными оболочками. Это пропускные клетки. Они обычно располагаются напротив лучей ксилемы пучка радиального типа.

Считают, что эндодерма является гидравлическим барьером, способствуя продвижению минеральных веществ и воды из первичной коры в центральный осевой цилиндр, и препятствуя их обратному току.

Центральный осевой цилиндр состоит из однорядного перицикла и радиального сосудисто-волокнистого пучка. Перицикл способен к меристематической активности. Он образует боковые корни. Сосудисто-волокнистый пучок является проводящей системой корня. В корне двудольных растений радиальный пучок состоит из 1 – 5 лучей ксилемы. У однодольных – от 6 и более лучей ксилемы. Сердцевины корни не имеют.

У однодольных растений строение корня в течение жизни растения не претерпевает значительных изменений.

Для двудольных растений на границе зоны всасывания и зоны укрепления (проведения) происходит переход от первичного ко вторичному строению корня. Процесс вторичных изменений начинается с появления прослоек камбия под участками первичной флоэмы, внутрь от нее. Камбий возникает из слабо дифференцированной паренхимы центрального цилиндра (стелы).

Между лучами первичной ксилемы из клеток прокамбия (боковая меристема) образуются дуги камбия, замыкающиеся на перицикле. Перицикл частично формирует камбий и феллоген. Камбиальные участки, возникшие из перицикла, образуют только паренхимные клетки сердцевинных лучей. Клетки камбия к центру откладывают вторичную ксилему, а кнаружи – вторичную флоэму. В результате деятельности камбия между лучами первичной ксилемы формируются открытые коллатеральные сосудисто-волокнистые пучки, число которых равно числу лучей первичной ксилемы.

На месте перицикла закладывается пробковый камбий (феллоген), дающий начало перидерме – вторичной покровной ткани. Пробка изолирует первичную кору от центрального осевого цилиндра. Кора отмирает и сбрасывается. Покровной тканью становится перидерма. И корень фактически представлен центральным осевым цилиндром. В самом центре осевого цилиндра сохранены лучи первичной ксилемы, между ними располагаются сосудисто-волокнистые пучки. Комплекс тканей снаружи от камбия получил название вторичной коры. Т.о. корень вторичного строения состоит из ксилемы, камбия, вторичной коры и пробки.

Поглощение и транспорт корнем воды и минеральных веществ.

Поглощение из почвы воды и доставка к наземным органам – одна из важнейших функций корня, возникшая в связи с выходом на сушу.

Вода попадает в растения через ризодерму, в зоне поглощения, поверхность которой увеличена благодаря наличию корневых волосков. В этой зоне корня формируется ксилема, обеспечивающая восходящий ток воды и минеральных веществ.

Растение поглощает воду и минеральные вещества независимо друг от друга, т.к. эти процессы основаны на различных механизмах действия. Вода проходит в клетки корня пассивно, благодаря осмосу. В корневом волоске находится огромная вакуоль с клеточным соком. Ее осмотический потенциал и обеспечивает поступление воды из почвенного раствора в корневой волосок.

Минеральные вещества поступают в клетки корня в основном в результате активного транспорта. Их поглощению способствует выделение корнем различных органических кислот, переводящих неорганические соединения в доступную для поглощения форму.

В корне горизонтальное движение воды и минеральных веществ происходит в следующей последовательности: корневой волосок, клетки паренхимы коры, эндодерма, перицикл, паренхима осевого цилиндра, сосуды корня. Горизонтальный транспорт воды и минеральных веществ происходит тремя путями:

    Путь через апопласт (система, состоящая из межклетников и клеточных стенок). Основной для транспорта воды и ионов неорганических веществ.

    Путь через симпласт (система протопластов клеток, соединенная посредством плазмодесм). Осуществляет транспорт минеральных и органических веществ.

    Вакуолярный путь – движение из вакуоли в вакуоль через другие компоненты смежных клеток (плазматические мембраны, цитоплазма, тонопласт вакуолей). Применим исключительно для транспорта воды. Для корня незначителен.

В корне вода передвигается по апопласту до эндодермы. Здесь ее дальнейшему продвижению препятствуют пояски Каспари, поэтому дальше вода попадает в стелу по симпласту через пропускные клетки эндодермы. Такое переключение путей обеспечивает регуляцию движения воды и минеральных веществ из почвы в ксилему. В стеле вода не встречает сопротивления и поступает в проводящие сосуды ксилемы.

Вертикальный транспорт воды идет по мертвым клеткам, поэтому перемещение воды обеспечивается деятельностью корня и листьев. Корень подает воду в сосуды стебля под давлением, называемым корневым. Оно возникает в результате того, что осмотическое давление в сосудах корня превышает осмотическое давление почвенного раствора из – за активного выделения клетками корня минеральных и органических веществ в сосуды. Его величина 1 – 3 атм.

Доказательством наличия корневого давления является «плач растения» и гуттация.

«Плач растения» – выделение жидкости из перерезанного стебля.

Гуттация – выделение воды у неповрежденного растения через кончики листьев, когда оно находится во влажной атмосфере или интенсивно поглощает воду и минеральные вещества из почвы.

Верхней силой движения воды является присасывающая сила листьев, обеспечиваемая транспирацией. Транспирация – испарение воды с поверхности листьев. Сосущая сила листьев у деревьев может достигать 15 – 20 атм.

В сосудах ксилемы вода движется в виде непрерывных водяных нитей. Между молекулами воды существуют силы сцепления (когезия), что заставляет их двигаться друг за другом. Прилипание молекул воды к стенкам сосудов (адгезия) обеспечивает восходящий капиллярный ток воды. Основной движущей силой является транспирация.

Для нормального развития растения корни должны быть обеспечены влагой, доступом свежего воздуха и необходимыми минеральными солями. Все это растения получают из почвы, которая представляет собой верхний плодородный слой земли.

Для повышения плодородия почвы в нее вносят различные удобрения. Внесение удобрений во время роста растений называется подкормкой.

Выделяют две основные группы удобрений:

    Минеральные удобрения: азотные (селитра, мочевина, сульфат аммония), фосфорные (суперфосфат), калийные (хлорид калия, зола). Полные удобрения содержат азот, фосфор и калий.

    Органические удобрения – вещества органического происхождения (навоз, птичий помет, торф, перегной).

Азотные удобрения хорошо растворяются в воде, способствуют росту растений. Их вносят в почву перед посевом. Для созревания плодов, роста корней, луковиц и клубней необходимы фосфорные и калийные удобрения. Фосфорные удобрения плохо растворимы в воде. Их вносят осенью, вместе с навозом. Фосфор и калий повышают холодоустойчивость растений.

Растения в теплицах можно выращивать без почвы, на водной среде, которая содержит все элементы, необходимые растению. Такой способ получил название гидропоники.

Существует также метод аэропоники – воздушной культуры,- когда корневая система находится в воздухе и периодически орошается питательным раствором.

Задачи : сформировать у школьников понятие о развитии корня из зародышевого корешка; изучить особенности строения корневых систем двудольных и однодольных растений; прививать практические умения по их определению и распознаванию.

Оборудование : проростки фасоли, гороха, кукурузы, пшеницы с развитыми корнями (на каждый стол), луковицы с корнями, окоренившиеся черенки тополя, смородины, традесканции, пеларгонии и других растений; гербарий "Типы корневых систем"; фильм "Строение и рост корня", проростки для закладки опытов; таблицы, тушь, линейки, лабораторное оборудование.

Методические рекомендации . В начале урока следует повторить, как развивается главный корень из зародышевого корешка семени, какое значение имеет корень для растения. При этом необходимо подчеркнуть, что корень - один из важнейших органов растения. Учитель демонстрирует стержневые и мочковатые корневые системы и предлагает учащимся объяснить, чем они различаются. Сообщение учителя о корневых системах, особенностях их развития и формирования стержневого и мочковатого корня сопровождается демонстрацией живых объектов и гербария. В процессе рассказа учитель уточняет понятия: главный корень, боковые и придаточные корни, объясняет, из чего они образуются, а также обращает внимание на особенности развития корневой системы двудольных и однодольных растений. С целью углубления знаний и выработки практических умений по определению типов корневых систем проводится лабораторная работа.

Лабораторная работа. Стержневые и мочковатые корневые системы

1) Рассмотрите корневые системы различных растений. Найдите стержневые и мочковатые корневые системы. По учебнику прочтите, какие корневые системы называют стержневыми, какие - мочковатыми. 2) По строению корневой системы определите, к какому классу относится растение. Зарисуйте в тетради. 3) Рассмотрите корни на черенках тополя, смородины и традесканции. Из чего они образовались?

После выполнения и оформления лабораторной работы можно предложить учащимся поупражняться в распознавании типов корневых систем по дидактическим карточкам, на которых смонтированы различные корневые системы растений: путем сравнения найти в них общие признаки, определить тип корневой системы, данные записать в таблицу:

Учитель сообщает, что благодаря многочисленным боковым корням образуется развитая корневая система, боковые корни могут быть первого, второго и последующих порядков. Учитель дает определение видов корней, объясняет, из чего состоит стержневая корневая система, показывает на гербариях примеры растений с различными стержневыми системами (нитевидной, веретеновидной, репчатой, ветвистой). Важно отметить, что у некоторых растений корень уходит в глубину до 10 м, например у люцерны. Особенности строения корневой системы связаны с условиями внешней среды (климатом, почвой и др.). При изучении материала используются знания, полученные на уроках природоведения IV класса и сельскохозяйственного труда о том, как рост корня связан с почвой и другими условиями среды. При изучении придаточных корней следует обратить внимание школьников на их отрастание от стебля (убедиться в этом школьники могут при рассмотрении окоренившихся черенков традесканции, тополя, смородины). Учащимся необходимо усвоить, что благодаря образованию придаточных корней многие двудольные растения размножаются вегетативно, что вегетативное размножение имеет большое практическое значение и т. д. Учитель знакомит учащихся с агротехническим приемом окучивания. При окучивании создаются условия для наилучшего питания и роста корней. Учащиеся приводят примеры растений, которые окучивают на учебно-опытном участке. Для закрепления знаний демонстрируется фрагмент фильма о распространении корней в почве и образовании боковых и придаточных корней. После просмотра фильма учитель предлагает учащимся самостоятельно сделать выводы о том, что изучено на уроке, как связать знания о строении корней и о строении семени, какие виды корней изучили и каковы их особенности, каково значение придаточных корней для повышения урожая. При подведении итогов урока учитель подчеркивает значение знаний о строении корня для управления ростом и развитием сельскохозяйственных растений. Учащиеся сообщают по дневнику результаты наблюдений за опытами. Во внеурочное время закладывают опыты к 7-му и 8-му урокам.

Опыт 1 . Определение зоны роста корня. Для опыта используются проростки фасоли, гороха, кукурузы, пшеницы, подсолнечника, редиса с хорошо развитыми зародышевыми корешками (проростки можно сохранить после изучения темы "Семя"). Берут широкогорлую банку, создают влажную камеру. На корень тушью наносят деления от кончика до середины корня на одинаковом расстоянии друг от друга. Когда тушь высохнет, проростки осторожно помещают между фильтровальной бумагой и стенкой банки. Сверху банку прикрывают стеклом и оставляют при температуре около +20°С. Крупные проростки (фасоль, горох) можно прикрепить к крышке энтомологической булавкой.

Опыт 2 . Прищипка главного корня. Готовят влажную камеру. Берут 4 проростка фасоли или гороха, с корешками длиной 3-5 см. У двух проростков отщипывают главный корешок; два проростка (контроль) оставляют без прищипки. Прикрепляют к банке (влажной камере). Учащиеся ведут наблюдения за опытами.

Опыт 3 . Значение воздуха для роста и развития корней. Для опыта берут две широкогорлые банки с крышками. В крышках делают по три отверстия. В обе банки до половины наливают кипяченой воды. В два отверстия вставляют одинаковые проростки фасоли или гороха. В третье отверстие первой банки вставляют стеклянную трубку с резиновой грушей для продувания воздуха. В другую банку через свободное отверстие при помощи пипетки приливают слой растительного масла. Банки следует обвернуть плотной темной бумагой и поставить на свет при температуре около +22°С. Опыт можно варьировать, для того чтобы выяснить состав выделяемого воздуха. Тогда в одну банку наливают кипяченую воду, а в другую - водопроводную. В банки через свободное отверстие приливают тонкий слой масла.

Как и всякий орган, корень растения выполняет несколько важных функций. Прежде всего он удерживает растение в почве

2. Виды корней

3. Типы корневых систем

4. Зоны корня

1. Как и всякий орган, корень растения выполняет несколько важных функций. Прежде всего он удерживает растение в почве . Трудно в сильный ветер удержать в руках зонтик. В сотни раз большие усилия должны выдерживать корни, чтобы дерево в бурю не свалилось.

2. Его вторая важная роль - это всасывание и передача в побег воды с растворенными минеральными веществами . Корни всасывают и передают в побег необходимую для жизни растения воду и минеральные соли. У некоторых растений скорость движения воды в древесине достигает десятков метров в час.

3. У некоторых растений корни дают приют микроорганизмам, которые делятся с растением-хозяином ценными минеральными веществами . У клевера, гороха и их родственников в корневых клубеньках обитают почвенные бактерии, вырабатывающие необходимые растению соединения азота.

4. Частокорень служит хранилищем запасов.

5. Иногда корень может служить для размножения . У некоторых растений, например у тополей, серой ольхи от корней могут отрастать побеги. Такой способ размножения помогает им быстро захватывать территорию.

Дыхательные корни таксодиума или болотного кипариса поднимаются над поверхностью почвы. Их задача - проведение воздуха к глубже лежащим корням.

Функции корней
Почвенное питание Закрепление Накопление веществ
Корень обеспечивает почвенное питание, растение получает воду и растворённые в ней минеральные вещества. Корни закрепляют растение в почве и прочно удерживают его. В корнях некоторых растений могут откладываться и накапливаться запасные вещества (например, корнеплоды). Корни могут выполнять функцию вегетативного размножения (например, корнеотпрысковые растения).

2. Виды корней

  • Корень , развивающийся из зародышевого корешка семени , называется главным .
  • От главного корня отходят боковые корни, способные к ветвлению.
  • Корни могут формироваться также на надземных частях растений - стеблях или листьях; такие корни называются придаточными .

Совокупность всех корней растения составляет корневую систему.

3. Типы корневых систем

Различают два основных типа корневых систем:

  • стержневую , имеющую хорошо развитый главный корень, который длиннее и толще других;
  • мочковатую , в которой главный корень отсутствует или не выделяется среди многочисленных придаточных корней.

Стержневая корневая система характерна главным образомдля двудольных растений , мочковатая - для большинства однодольных.

4. Зоны корня

Зона корня Рабочая ткань Особенности участка корня и его клеток Функции
Корневой чехлик Покровная ткань Живые клетки, которые постоянно обновляются. Клетки выделяют слизь, она покрывает поверхность молодого корня.
  • Защищает зону деления,
  • облегчает продвижение корня в почве,
  • обеспечивает ориентацию корня в пространстве.
Зона деления Образовательая ткань - меристема Клетки зоны деления тонкостенные и заполнены цитоплазмой, вакуоли отсутствуют. Зону деления можно отличить на живом корешке по желтоватой окраске, длина её около 1 мм.

Обеспечивает рост корня .

Туника - дает начало корневому чехлику, ризодерме. Корпус: средний слой – периблема - дают начало первичной коре, внутренний слой – плерома – образуют стелу. Закладываются элементы первичной флоэмы.

Зона роста Образовательная ткань Клетки зоны роста уже не делятся, но способны растягиваться в продольном направлении, проталкивая корневое окончание вглубь почвы.
Клетки вытягиваются за счет увеличения вакуоли.

Обеспечивает рост корня растяжением.

В пределах зоны роста происходит разделение клеток на ткани.Закладываются элементы первичной ксилемы.

Зона всасывания

(зона корневых волосков)

Покровная ткань

Длина зоны от нескольких миллиметров до нескольких сантиметров. В отличие от зоны роста участки этой зоны уже не смещаются относительно частиц почвы.

Корневые волоски - это выросты клеток поверхностной ткани поглощающей зоны корня растения.Они содержат слой протоплазмы, ядро, крупную вакуоль; их тонкие, легко проницаемые для воды, оболочки плотно склеиваются с комочками почвы.

Корневые волоски выделяют в почву различные вещества.

Длина варьируется у разных видов растений от 0,06 до 10 мм.

С увеличением влажности почвы образование замедляется; не образуются они и в очень сухой почве.

По прошествии определённого времени корневой волосок отмирает. Продолжительность его жизни не превышает 10-20 дней

Участвует в поглощении воды и минеральных веществ.

Основную массу воды и питательных веществ молодые корни всасывают с помощью корневых волосков.

Зона проведения Проводящая ткань

В состав проводящих тканей этой зоны корня входят:

  • сосуды - по ним вода с минеральными веществами поступает в стебель и листья;
  • клетки, по которым в корень поступают органические вещества, образовавшиеся в листьях и стеблях.
Проведение поглощенных веществ в надземную часть

{spoiler title=Ткани растений. Повторение}

Растительные ткани
Покровные
ткани
Защитная функция Живые и мёртвые клетки, плотно прилегают друг к другу, могут быть с утолщёнными оболочками. Находятся на поверхности корней, стеблей, листьев.
Механические
ткани
Придают прочность Клетки с толстыми оболочками, которые могут одревесневать.
Проводящие
ткани
Осуществляют передвижение питательных веществ Живые или мёртвые клетки, которые имеют вид трубочек. По ним передвигаются растворённые в воде питательные вещества.
Запасающие
ткани
Запасают воду и питательные вещества В клетках имеются крахмальные или белковые зёрна, капли масла, или большие вакуоли с клеточным соком.
Образовательные
ткани
Образуют новые клетки, из которых формируются все типы тканей Небольшие клетки с тонкими стенками и крупными ядрами. Клетки быстро делятся.
Основные
ткани
Занимают пространство между другими тканями и выполняют различные функции, например, фотосинтез, всасывание воды и минеральных веществ и пр. Строение зависит от выполняемой функции: фотосинтезирующая ткань содержит большое количество хлоропластов, всасывающая ткань образована тонкостенными клетками.

{spoiler title=Текстовый материал по теме урока}

Корни некоторых строений имеют склонность к метаморфозу.

  1. Корнеплод - видоизменённый сочный корень. В образовании корнеплода участвуют главный корень и нижняя часть стебля. Большинство корнеплодных растений двулетние. Корнеплоды состоят в основном из запасающей основной ткани (репа, морковь, петрушка).
  2. Корневые клубни (корневые шишки) образуются в результате утолщения боковых и придаточных корней.
  3. Корни-зацепки - своеобразные придаточные корни. При помощи этих корней растение «приклеивается» к любой опоре.
  4. Ходульные корни - выполняют роль опоры.
  5. Воздушные корни - боковые корни, растут вниз. Поглощают дождевую воду и кислород из воздуха. Образуются у многих тропических растений в условиях повышенной влажности.
  6. Микориза - сожительство корней высших растений с гифами грибов. При таком взаимовыгодном сожительстве, называемом симбиозом, растение получает от гриба воду с растворёнными в ней питательными веществами, а гриб - органические вещества. Микориза характерна для корней многих высших растений, особенно древесных. Грибные гифы, оплетающие толстые одревесневшие корни деревьев и кустарников, выполняют функции корневых волосков.
  7. Бактериальные клубеньки на корнях высших растений - сожительство высших растений с азотфиксирующими бактериями - представляют собой видоизменённые боковые корни, приспособленные к симбиозу с бактериями. Бактерии проникают через корневые волоски внутрь молодых корней и вызывают у них образование клубеньков. При таком симбиотическом сожительстве бактерии переводят азот, содержащийся в воздухе, в минеральную форму, доступную для растений. А растения, в свою очередь, предоставляют бактериям особое местообитание, в котором отсутствует конкуренция с другими видами почвенных бактерий. Бактерии также используют вещества, находящиеся в корнях высшего растения. Чаще других бактериальные клубеньки образуются на корнях растений семейства Бобовые. В связи с этой особенностью семена бобовых богаты белком, а представителей семейства широко используют в севообороте для обогащения почвы азотом.
  8. Дыхательные корни - у тропических растений - выполняют функцию дополнительного дыхания.

Отличаются от низших тем, что их тело четко дифференцировано на органы. Они более высоко организованы, имеют сложно устроенные проводящие системы и ткани. Разнообразию их нет предела.

Приспосабливаясь к разным условиям обитания, они были вынуждены сформировать необычные структуры в своем строении. Изменить, модернизировать и адаптировать некоторые части тела, чтобы получить больше шансов на комфортное существование. Больше всего это отразилось на корнях растений.

Органы высших растений

Все их можно разделить на две группы:

  • наземные;
  • подземные.

К первой следует отнести стебель, листья, цветок и плод. Ко второй - со всеми входящими в ее состав элементами. На первый взгляд ошибочно кажется, что таковых совсем немного, ведь это просто корень. Органы растений представляют собой довольно сложно организованные структуры, поэтому внешняя простота обманчива. Это касается всех частей организма.

Подземный орган корень: виды корней

Корни растений могут быть различными как по окраске, так и по форме, длине, разветвленности. Всего можно выделить три основных разновидности типов корешков. Название видов корней следующее.


Таким образом, для наземных растений характерно три типа корней, которые в общем органичном сочетании формируют целые системы.

Типы корневых систем

Какие бывают виды корней, мы выяснили. Теперь остается разобраться с вопросом систем, ими образованных. Всего различают два основных типа.

  1. Стержневая . Характерна для класса (злаки, лилейные, пальмовые и другие). Основная отличительная особенность: ярко выражен главный корень и слабо - придаточные и боковые.
  2. Мочковатая . Характерна для класса Двудольные растения (розоцветные, крестоцветные, бобовые и так далее). Особенность, которую имеет корень: виды корней выражены в одинаковой степени. Нет главного, так как придаточные и боковые своим ветвлением его подавляют, и формируется общая сильно изрезанная структура.

Больше вариантов корневых систем не известно.

Разновидности измененных структур

Мы рассмотрели, какие бывают виды корней. Но существуют еще и их измененные формы. То есть когда главный, боковые и преобразуются в несколько иную форму, помогающую растению приспосабливаться к тем или иным условиям обитания.

Виды измененных корней следующие:


У отдельных тропических видов выделяются некоторые узкоспецифичные преобразования корневой системы. Мы же рассмотрим наиболее интересные и распространенные варианты.

Воздушные корни

Растения с воздушными корнями - это обитатели таких мест, в которых почва бедна влагой и кислородом. Это могут быть засоленные земли или избыточно кислые (щелочные). Поэтому таким особям категорически не хватает кислорода. Чтобы улавливать и поглощать его дополнительно, они приспособились следующим образом.

Их боковые корни возвышаются над землей и таким способом поглощают влагу и кислород прямо из окружающего воздуха. Смотрятся растения с видоизмененными корнями очень необычно, иногда даже пугающе. Если воздушных корней образуется слишком много, то дерево выглядит очень объемным, кустистым и каким-то немного сказочным.

В древние времена растениям с подобными особенностями приписывали различные магические свойства, потому что выглядели они действительно мистически. Представителями можно назвать следующие виды:

  • орхидеи, в том числе декоративные комнатные растения;
  • некоторые ;
  • метросидеросы;
  • заросли ;
  • лианы;
  • монстера и прочие.

Ходульные корни

Очевидно, что опора - это главная функция, которую выполняет корень. Виды корней, которые являются измененными придатками основных структур, также могут служить для этой цели. Типичным примером являются ходульные корни. Они формируются у растений, произрастающих:

  • в плотном и вязком иле;
  • прибрежных зонах (полосах), где погружены в воду;
  • в песчаном грунте.

Они очень важны, ведь рост свой начинают именно со стебля. Таким способом организм укрепляется в земле. Многочисленные твердые и прочные ходульные придатки в целом придают растению устойчивость и способствуют плотному укоренению.

Примеры организмов, для которых характерны подобные структуры, можно привести такие:


В целом растения с подобными корнями имеет вид организма, словно стоящего на ходулях. Иногда они похожи на шатер, в других случаях просто создается впечатление многогранного мощного ствола.

Корни-подпорки

Есть множество удивительных вещей, о которых нам рассказывает наука биология. Виды корней у некоторых растений настолько нелепы и нереальны, что сложно вообразить себе их натуральность.

Например, существуют такие разновидности этих органов, как столбовидные, или корни-подпорки. Их главное назначение - обеспечить растению не только дополнительную опору и устойчивость, но и воздушное питание. Наподобие воздушных, они тоже способны фиксировать из воздуха атмосферный кислород.

Таким образом, получается, что столбовидные видоизменения - это сочетание воздушных и ходульных корней. Растения, для которых характерны такие структуры, это:


Особенности формирования таких корней в том, что они возникают от горизонтальных ветвей и затем растут вниз до земли. Достигнув ее, укореняются и становятся надежной дополнительной опорой. А так как находятся над землей, то и вторую функцию - поглощения кислорода - выполняют успешно.

Корнеплоды

Такое видоизменение известно каждому, ведь именно его мы выращиваем на дачных участках. У растений с такими структурами самый сочный и питательный корень. Виды корней подобного изменения могут быть такими:

  • клубни;
  • корнеплоды.

Корневые клубни формируются из придаточных корешков и боковых. В них накапливается большое количество что позволяет растению ускорить вегетацию и чувствовать себя более защищенным при наступлении неблагоприятных условий. Примеры растений:

  • артишок;
  • настурция;
  • картофель;
  • земляная груша;
  • бегония;
  • каладиум;
  • диаскарея;
  • кувшинка и другие.

Корнеплоды, хотя и содержат в названии слово "плод", но к этим органам никакого отношения не имеют. Это утолщенный главный корень растения, в котором происходит накопление большой массы питательных веществ, пигментов, витаминов и так далее.

Примеры таких растений самые популярные:


Эти культуры являются одними из самых востребованных культурных растений. Их готовят, используют для приготовления лекарственных средств, получают из них витамины.

Какие функции выполняет корень растения?

Ответ на этот вопрос уже затрагивался в ходе статьи. Остается только лишь подытожить и обобщить все сказанное, чтобы четко обозначить ответ на вопрос: "Какие функции выполняет корень растения?"

  1. Якорная, или закрепляющая.
  2. Осуществление поглощения и транспорта минеральных соединений и воды.
  3. Видоизменения служат для фиксации и хранения питательных веществ.
  4. Корень является органом размножения вегетативным способом.
  5. В нем происходит формирование витаминов, гормонов, пигментов.
  6. Корень вступает в симбиотические взаимоотношения с бактериями, грибами.

Специфические видоизменения корней служат для разных функциональных приспособлений. О них мы уже говорили при рассмотрении каждого конкретного примера.