Среда водных растворов: кислая, нейтральная, щелочная. Гидролиз солей
Гидролиз - это взаимодействие веществ с водой, в результате которого изменяется среда раствора.
Катионы и анионы слабых электролитов способны взаимодействовать с водой с образованием устойчивых малодиссоциируемых соединений или ионов, в результате чего меняется среда раствора. Формулы воды в уравнениях гидролиза обычно записывают в виде Н-ОН. При реакции с водой катионы слабых оснований отнимают от воды гидроксил ион, и в растворе образуется избыток Н + . Среда раствора становится кислотной. Анионы слабых кислот притягивают из воды Н + , и реакция среды становится щелочной.
В неорганической химии чаще всего приходится иметь дело с гидролизом солей, т.е. с обменным взаимодействием ионов соли с молекулами воды в процессе их растворения. Различают 4 варианта гидролиза.
1. Соль образована сильным основанием и сильной кислотой.
Такая соль гидролизу практически не подвергается. При этом равновесие диссоциации воды в присутствии ионов соли почти не нарушается, поэтому рН=7, среда нейтральная.
Na + + H 2 O Cl - + H 2 O
2. Если соль образована катионом сильного основания и анионом слабой кислоты, то происходит гидролиз по аниону.
Na 2 CO 3 + HOH \(\leftrightarrow\) NaHCO 3 + NaOH
Так как в растворе накапливаются ионы ОН - , то среда - щелочная, рН>7.
3. Если соль образована катионом слабого основания и анионом сильной кислоты, то гидролиз идет по катиону.
Cu 2+ + HOH \(\leftrightarrow\) CuOH + + H +
СuCl 2 + HOH \(\leftrightarrow\) CuOHCl + HCl
Так как в растворе накапливаются ионы Н + , то среда кислая, рН<7.
4. Соль, образованная катионом слабого основания и анионом слабой кислоты, подвергается гидролизу и по катиону и по аниону.
CH 3 COONH 4 + HOH \(\leftrightarrow\) NH 4 OH + CH 3 COOH
CH 3 COO - + + HOH \(\leftrightarrow\) NH 4 OH + CH 3 COOH
Растворы таких солей имеют или слабокислую, или слабощелочную среду, т.е. величина рН близка к 7. Реакция среды зависит от соотношения констант диссоциации кислоты и основания. Гидролиз солей, образованных очень слабыми кислотой и основанием, является практически необратимым. Это, в основном, сульфиды и карбонаты алюминия, хрома, железа.
Al 2 S 3 + 3HOH \(\leftrightarrow\) 2Al(OH) 3 + 3H 2 S
При определении среды раствора солей необходимо учитывать, что среда раствора определяется сильным компонентом. Если соль образована кислотой, являющейся сильным электролитом, то среда раствора кислая. Если основание сильный электролит, то - щелочная.
Пример. Щелочную среду имеет раствор
1) Pb(NO 3) 2 ; 2) Na 2 CO 3 ; 3) NaCl; 4) NaNO 3
1) Pb(NO 3) 2 нитрат свинца(II). Соль образована слабым основанием и сильной кислотой , значит среда раствора кислая.
2) Na 2 CO 3 карбонат натрия. Соль образована сильным основанием и слабой кислотой, значит среда раствора щелочная.
3) NaCl; 4) NaNO 3 Соли образованы сильным основанием NaOH и сильными кислотами HCl и HNO 3 . Среда раствора нейтральная.
Правильный ответ 2) Na 2 CO 3
В растворы солей опустили индикаторную бумажку. В растворах NaCl и NaNO 3 она не изменила цвет, значит среда раствора нейтральная . В растворе Pb(NO 3) 2 окрасилась в красный цвет, среда раствора кислая. В растворе Na 2 СO 3 окрасилась в синий цвет, среда раствора щелочная.
Вспомните:
Реакция нейтрализации — это реакция между кислотой и щелочью, в результате которой образуются соль и вода;
Под чистой водой химики понимают химически чистую воду, не содержащую никаких примесей и растворенных солей, т. е. дистиллированную воду.
Кислотность среды
Для различных химических, промышленных и биологических процессов очень важной характеристикой является кислотность растворов, характеризующая содержание кислот или щелочей в растворах. Поскольку кислоты и щелочи являются электролитами, то для характеристики кислотности среды используют содержание ионов H+ или OH - .
В чистой воде и в любом растворе вместе с частицами растворенных веществ присутствуют также ионы H+ и OH - . Это происходит благодаря диссоциации самой воды. И хотя мы считаем воду неэлектролитом, тем не менее она может диссоциировать: H 2 O ^ H+ + OH - . Но этот процесс происходит в очень незначительной степени: в 1 л воды на ионы распадается только 1 . 10 -7 моль молекул.
В растворах кислот в результате их диссоциации появляются дополнительные ионы H+. В таких растворах ионов H+ значительно больше, чем ионов OH - , образовавшихся при незначительной диссоциации воды, поэтому эти растворы называют кислотными (рис. 11.1, слева). Принято говорить, что в таких растворах кислотная среда. Чем больше ионов H+ содержится в растворе, тем больше кислотность среды.
В растворах щелочей в результате диссоциации, наоборот, преобладают ионы OH - , а катионы H+ ввиду незначительной диссоциации воды почти отсутствуют. Среда таких растворов щелочная (рис. 11.1, справа). Чем выше концентрация ионов OH - , тем более щелочной является среда раствора.
В растворе поваренной соли количество ионов H+ и OH - одинаково и равно 1 . 10 -7 моль в 1 л раствора. Такую среду называют нейтральной (рис. 11.1, по центру). Фактически это означает, что раствор не содержит ни кислоты, ни щелочи. Нейтральная среда характерна для растворов некоторых солей (образованных щелочью и сильной кислотой) и многих органических веществ. У чистой воды также нейтральная среда.
Водородный показатель
Если сравнивать вкус кефира и лимонного сока, то можно смело утверждать, что лимонный сок намного кислее, т. е. кислотность этих растворов разная. Вы уже знаете, что в чистой воде также содержатся ионы H+, но кислого вкуса воды не ощущается. Это объясняется слишком малой концентрацией ионов H+. Часто бывает недостаточно сказать, что среда кислотная или щелочная, а необходимо количественно ее охарактеризовать.
Кислотность среды количественно характеризуют водородным показателем pH (произносится «пэ-аш»), связанным с концентрацией
ионов Гидрогена. Значение pH соответствует определенному содержанию катионов Гидрогена в 1 л раствора. В чистой воде и в нейтральных растворах в 1 л содержится 1 . 10 7 моль ионов H+, а значение pH равно 7. В растворах кислот концентрация катионов H+ больше, чем в чистой воде, а в щелочных растворах меньше. В соответствии с этим меняется и значение водородного показателя pH: в кислотной среде он находится в пределах от 0 до 7, а в щелочных — от 7 до 14. Впервые водородный показатель предложил использовать датский химик Педер Сёренсен.
Вы могли заметить, что значение pH связано с концентрацией ионов H+. Определение pH напрямую связано с вычислением логарифма числа, которое вы будете изучать на уроках математики в 11 классе. Но взаимосвязь между содержанием ионов в растворе и значением pH можно проследить по следующей схеме:
Значение рН водных растворов большинства веществ и природных растворов находится в интервале от 1 до 13 (рис. 11.2).
Рис. 11.2. Значение рН различных природных и искусственных растворов
Сёрен Педер Лауриц Сёренсен
Датский физико-химик и биохимик, президент Датского королевского общества. Окончил Копенгагенский университет. В 31 год стал профессором Датского политехнического института. Возглавлял престижную физико-химическую лабораторию при пивоваренном заводе Карлсберга в Копенгагене, где сделал свои главные научные открытия. Основная научная деятельность посвящена теории растворов: он ввел понятие о водородном показателе (рН), изучал зависимость активности ферментов от кислотности растворов. За научные достижения Сёренсен внесен в перечень «100 выдающихся химиков XX века», но в истории науки он остался прежде всего как ученый, который ввел понятия «рН» и «рН-метрия».
Определение кислотности среды
Для определения кислотности раствора в лабораториях чаще всего используют универсальный индикатор (рис. 11.3). По его окраске можно определить не только наличие кислоты или щелочи, но и значение рН раствора с точностью до 0,5. Для более точного измерения рН существуют специальные приборы — рН-метры (рис. 11.4). Они позволяют определить рН раствора с точностью до 0,001-0,01.
Используя индикаторы или рН-метры, можно следить за тем, как протекают химические реакции. Например, если к раствору натрий гидроксида приливать хлоридную кислоту, то произойдет реакция нейтрализации:
Рис. 11.3. Универсальным индикатором определяют приблизительное значение рН
Рис. 11.4. Для измерения pH растворов используют специальные приборы — рН-метры: а — лабораторный (стационарный); б — портативный
В этом случае растворы реагентов и продуктов реакции бесцветны. Если же в исходный раствор щелочи поместить электрод рН-метра, то о полной нейтрализации щелочи кислотой можно судить по значению рН образованного раствора.
Применение водородного показателя
Определение кислотности растворов имеет большое практическое значение во многих областях науки, промышленности и других сферах жизни человека.
Экологи регулярно измеряют рН дождевой воды, воды рек и озер. Резкое повышение кислотности природных вод может быть следствием загрязнения атмосферы или попадания в водоемы отходов промышленных предприятий (рис. 11.5). Такие изменения влекут за собой гибель растений, рыбы и других обитателей водоемов.
Водородный показатель очень важен для изучения и наблюдения процессов, происходящих в живых организмах, т. к. в клетках протекают многочисленные химические реакции. В клинической диагностике определяют pH плазмы крови, мочи, желудочного сока и др. (рис. 11.6). Нормальное значение pH крови — от 7,35 до 7,45. Даже небольшое изменение pH крови человека вызывает серьезные заболевания, а при рН = 7,1 и ниже начинаются необратимые изменения, которые могут привести к смерти.
Для большинства растений важна кислотность почвы, поэтому агрономы заранее проводят анализ почв, определяя их рН (рис. 11.7). Если кислотность слишком велика для определенной культуры, почву известкуют — добавляют мел или известь.
В пищевой промышленности при помощью кислотно-основных индикаторов проводят контроль качества продуктов питания (рис. 11.8). Например, в норме для молока pH = 6,8. Отклонение от этого значения свидетельствует либо о наличии посторонних примесей, либо о его скисании.
Рис. 11.5. Влияние уровня pH воды в водоемах на жизнедеятельность растений в них
Важным является значение pH для косметических средств, которые мы используем в быту. В среднем для кожи человека pH = 5,5. Если кожа контактирует со средствами, кислотность которых существенно отличается от этого значения, то это влечет преждевременное старение кожи, ее повреждение или воспаление. Было замечено, что у прачек, которые длительное время использовали для стирки обычное хозяйственное мыло (pH = 8-10) или стиральную соду (Na 2 CO 3 , pH = 12-13), кожа рук становилась очень сухой и покрывалась трещинами. Поэтому очень важно использовать различные косметические средства (гели, кремы, шампуни и т. д.) с pH, близким к естественному pH кожи.
ЛАБОРАТОРНЫЕ ОПЫТЫ № 1-3
Оборудование: штатив с пробирками, пипетка.
Реактивы: вода, хлоридная кислота, растворы NaCl, NaOH, столовый уксус, универсальный индикатор (раствор или индикаторная бумага), пищевые продукты и косметическая продукция (например, лимон, шампунь, зубная паста, стиральный порошок, газированные напитки, соки и т. д.).
Правила безопасности:
Для опытов используйте небольшие количества реактивов;
Остерегайтесь попадания реактивов на кожу, в глаза; при попадании едкого вещества смойте его большим количеством воды.
Определение ионов Гидрогена и гидроксид-ионов в растворах. Установление приблизительного значения pH воды, щелочных и кислых растворов
1. В пять пробирок налейте по 1-2 мл: в пробирку № 1 — воды, № 2 — хлоридной кислоты, № 3 — раствора натрий хлорида, № 4 — раствора натрий гидроксида и № 5 — столового уксуса.
2. В каждую пробирку добавьте по 2-3 капли раствора универсального индикатора или опустите индикаторную бумагу. Определите pH растворов, сравнивая цвет индикатора по эталонной шкале. Сделайте выводы о наличии в каждой пробирке катионов Гидрогена или гидроксид-ионов. Составьте уравнения диссоциации этих соединений.
Исследование pH пищевой и косметической продукции
Испытайте универсальным индикатором образцы пищевых продуктов и косметической продукции. Для исследования сухих веществ, например, стирального порошка, их необходимо растворить в небольшом количестве воды (1 шпатель сухого вещества на 0,5-1 мл воды). Определите pH растворов. Сделайте выводы о кислотности среды в каждом из исследованных продуктов.
Ключевая идея
Контрольные вопросы
130. Наличием каких ионов в растворе обусловлена его кислотность?
131. Какие ионы содержатся в избытке в кислотных растворах? в щелочных?
132. Какой показатель количественно описывает кислотность растворов?
133. Каково значение рН и содержание ионов H+ в растворах: а) нейтральных; б) слабокислотных; в) слабощелочных; г) сильнокислотных; д) сильнощелочных?
Задания для усвоения материала
134. Водный раствор некоторого вещества имеет щелочную среду. Каких ионов больше в этом растворе: H+ или OH - ?
135. В двух пробирках находятся растворы нитратной кислоты и нитрата калия. Какие индикаторы можно использовать для определения, в какой пробирке содержится раствор соли?
136. В трех пробирках находятся растворы барий гидроксида, нитратной кислоты и кальций нитрата. Как с помощью одного реактива распознать эти растворы?
137. Из приведенного перечня выпишите отдельно формулы веществ, растворы которых имеют среду: а) кислотную; б) щелочную; в) нейтральную. NaCl, HCl, NaOH, HNO 3 , H 3 PO 4 , H 2 SO 4 , Ba(OH) 2 , H 2 S, KNO 3 .
138. Дождевая вода имеет рН = 5,6. Что это означает? Какое вещество, содержащееся в воздухе, при растворении в воде определяет такую кислотность среды?
139. Какая среда (кислотная или щелочная): а) в растворе шампуня (рН = 5,5);
б) в крови здорового человека (рН = 7,4); в) в желудочном соке человека (рН = 1,5); г) в слюне (рН = 7,0)?
140. В составе каменного угля, используемого на теплоэлектростанциях, содержатся соединения Нитрогена и Сульфура. Выброс в атмосферу продуктов сжигания угля приводит к образованию так называемых кислотных дождей, содержащих небольшие количества нитратной или сульфитной кислот. Какие значения рН характерны для такой дождевой воды: больше 7 или меньше 7?
141. Зависит ли рН раствора сильной кислоты от ее концентрации? Ответ обоснуйте.
142. К раствору, содержащему 1 моль калий гидроксида, прилили раствор фенолфталеина. Изменится ли окраска этого раствора, если к нему добавить хлоридную кислоту количеством вещества: а) 0,5 моль; б) 1 моль;
в) 1,5 моль?
143. В трех пробирках без надписей находятся бесцветные растворы натрий сульфата, натрий гидроксида и сульфатной кислоты. Для всех растворов измерили значение рН: в первой пробирке — 2,3, во второй — 12,6, в третьей — 6,9. В какой пробирке содержится какое вещество?
144. Ученик купил в аптеке дистиллированную воду. рН-метр показал, что значение рН этой воды равно 6,0. Затем ученик прокипятил эту воду в течение длительного времени, заполнил контейнер до верха горячей водой и закрыл крышкой. Когда вода остыла до комнатной температуры, рН-метр определил значение 7,0. После этого ученик трубочкой пропускал воздух через воду, и рН-метр снова показал 6,0. Как можно объяснить результаты этих измерений рН?
145. Как вы считаете, почему в двух бутылках уксуса от одного производителя могут содержаться растворы с несколько различными значениями рН?
Это материал учебника
Гидролиз солей. Среда водных растворов: кислая, нейтральная, щелочная
Согласно теории электролитической диссоциации, в водном растворе частицы растворенного вещества взаимодействуют с молекулами воды. Такое взаимодействие может привести к реакции гидролиза (от греч. hydro — вода, lysis — распад, разложение).
Гидролиз — это реакция обменного разложения вещества водой.
Гидролизу подвергаются различные вещества: неорганические — соли, карбиды и гидриды металлов, галогениды неметаллов; органические — галогеналканы, сложные эфиры и жиры, углеводы, белки, полинуклеотиды.
Водные растворы солей имеют разные значения рН и различные типы сред — кислотную ($рН 7$), нейтральную ($рН = 7$). Это объясняется тем, что соли в водных растворах могут подвергаться гидролизу.
Сущность гидролиза сводится к обменному химическому взаимодействию катионов или анионов соли с молекулами воды. В результате этого взаимодействия образуется малодиссоциирующее соединение (слабый электролит). А в водном растворе соли появляется избыток свободных ионов $Н^{+}$ или $ОН^{-}$, и раствор соли становится кислотным или щелочным соответственно.
Классификация солей
Любую соль можно представить как продукт взаимодействия основания с кислотой. Например, соль $KClO$ образована сильным основанием $KOH$ и слабой кислотой $HClO$.
В зависимости от силы основания и кислоты можно выделить четыре типа солей.
Рассмотрим поведение солей различных типов в растворе.
1. Соли, образованные сильным основанием и слабой кислотой.
Например, соль цианид калия $KCN$ образована сильным основанием $KOH$ и слабой кислотой $HCN$:
${KOH}?{\text"сильное однокислотное основание"}<-KCN->{HCN}?{\text"слабая однокислотная кислота"}$
1) незначительная обратимая диссоциация молекул воды (очень слабого амфотерного электролита), которую упрощенно можно записать с помощью уравнения
$H_2O{?}?{<-}H^{+}+OH^{-};$
$KCN=K^{+}+CN^{-}$
Образующиеся при этих процессах ионы $Н^{+}$ и $CN^{-}$ взаимодействуют между собой, связываясь в молекулы слабого электролита — цианистоводородной кислоты $HCN$, тогда как гидроксид — ион $ОН^{-}$ остается в растворе, обусловливая тем самым его щелочную среду. Происходит гидролиз по аниону $CN^{-}$.
Запишем полное ионное уравнение происходящего процесса (гидролиза):
$K^{+}+CN^{-}+H_2O{?}?{<-}HCN+K^{+}+OH^{-}.$
Этот процесс обратим, и химическое равновесие смещено влево (в сторону образования исходных веществ), т.к. вода — значительно более слабый электролит, чем цианистоводородная кислота $HCN$.
$CN^{-}+H_2O?HCN+OH^{-}.$
Уравнение показывает, что:
а) в растворе есть свободные гидроксид-ионы $ОН^{-}$, и концентрация их больше, чем в чистой воде, поэтому раствор соли $KCN$ имеет щелочную среду ($рН > 7$);
б) в реакции с водой участвуют ионы $CN^{-}$, в таком случае говорят, что идет гидролиз по аниону . Другие примеры анионов, которые участвуют в реакции с водой:
Рассмотрим гидролиз карбоната натрия $Na_2CO_3$.
${NaOH}?{\text"сильное однокислотное основание"}<-Na_2CO_3->{H_2CO_3}?{\text"слабая двухосновная кислота"}$
Происходит гидролиз соли по аниону $CO_3^{2-}$.
$2Na^{+}+CO_3^{2-}+H_2O{?}?{<-}HCO_3^{-}+2Na^{+}+OH^{-}.$
$CO_2^{2-}+H_2O?HCO_3^{-}+OH^{-}.$
Продукты гидролиза — кислая соль $NaHCO_3$ и гидроксид натрия $NaOH$.
Среда водного раствора карбоната натрия — щелочная ($рН > 7$), потому что в растворе увеличивается концентрация ионов $ОН^{-}$. Кислая соль $NaHCO_3$ тоже может подвергаться гидролизу, который протекает в очень незначительной степени, и им можно пренебречь.
Подведем итог тому, что вы узнали о гидролизе по аниону:
а) по аниону соли, как правило, гидролизуются обратимо;
б) химическое равновесие в таких реакциях сильно смещено влево;
в) реакция среды в растворах подобных солей щелочная ($рН > 7$);
г) при гидролизе солей, образованных слабыми многоосновными кислотами, получаются кислые соли.
2. Соли, образованные сильной кислотой и слабым основанием.
Рассмотрим гидролиз хлорида аммония $NH_4Cl$.
${NH_3·H_2O}?{\text"слабое однокислотное основание"}<-NH_4Cl->{HCl}?{\text"сильная одноосновная кислота"}$
В водном растворе соли происходят два процесса:
1) незначительная обратимая диссоциация молекул воды (очень слабого амфотерного электролита), которую упрощенно можно записать с помощью уравнения:
$H_2O{?}?{<-}H^{+}+OH^{-}$
2) полная диссоциация соли (сильного электролита):
$NH_4Cl=NH_4^{+}+Cl^{-}$
Образующиеся при этом ионы $OH^{-}$ и $NH_4^{+}$ взаимодействуют между собой с получением $NH_3·H_2O$ (слабый электролит), тогда как ионы $Н^{+}$ остаются в растворе, обусловливая тем самым его кислотную среду.
Полное ионное уравнение гидролиза:
$NH_4^{+}+Cl^{-}+H_2O{?}?{<-}H^{+}+Cl^{-}NH_3·H_2O$
Процесс обратим, химическое равновесие смещено в сторону образования исходных веществ, т.к. вода $Н_2О$ — значительно более слабый электролит, чем гидрат аммиака $NH_3·H_2O$.
Сокращенное ионное уравнение гидролиза:
$NH_4^{+}+H_2O?H^{+}+NH_3·H_2O.$
Уравнение показывает, что:
а) в растворе есть свободные ионы водорода $Н^{+}$, и их концентрация больше, чем в чистой воде, поэтому раствор соли имеет кислотную среду ($рН
б) в реакции с водой участвуют катионы аммония $NH_4^{+}$; в таком случае говорят, что идет гидролиз по катиону.
В реакции с водой могут участвовать и многозарядные катионы: двухзарядные $М^{2+}$ (например, $Ni^{2+}, Cu^{2+}, Zn^{2+}…$), кроме катионов щелочноземельных металлов, трехзарядные $М^{3+}$ (например, $Fe^{3+}, Al^{3+}, Cr^{3+}…$).
Рассмотрим гидролиз нитрата никеля $Ni(NO_3)_2$.
${Ni(OH)_2}?{\text"слабое двухкислотное основание"}<-Ni(NO_3)_2->{HNO_3}?{\text"сильная одноосновная кислота"}$
Происходит гидролиз соли по катиону $Ni^{2+}$.
Полное ионное уравнение гидролиза:
$Ni^{2+}+2NO_3^{-}+H_2O{?}?{<-}NiOH^{+}+2NO_3^{-}+H^{+}$
Сокращенное ионное уравнение гидролиза:
$Ni^{2+}+H_2O?NiOH^{+}+H^{+}.$
Продукты гидролиза — основная соль $NiOHNO_3$ и азотная кислота $HNO_3$.
Среда водного раствора нитрата никеля кислотная ($рН
Гидролиз соли $NiOHNO_3$ протекает в значительно меньшей степени, и им можно пренебречь.
Подведем итог тому, что вы узнали о гидролизе по катиону:
а) по катиону соли, как правило, гидролизуются обратимо;
б) химическое равновесие реакций сильно смещено влево;
в) реакция среды в растворах таких солей кислотная ($рН
г) при гидролизе солей, образованных слабыми многокислотными основаниями, получаются основные соли.
3. Соли, образованные слабым основанием и слабой кислотой.
Вам, очевидно, уже ясно, что такие соли подвергаются гидролизу и по катиону, и по аниону.
Катион слабого основания связывает ионы $ОН^{-}$ из молекул воды, образуя слабое основание ; анион слабой кислоты связывает ионы $Н^{+}$ из молекул воды, образуя слабую кислоту . Реакция растворов этих солей может быть нейтральной, слабокислотной или слабощелочной. Это зависит от констант диссоциации двух слабых электролитов — кислоты и основания, которые образуются в результате гидролиза.
Например, рассмотрим гидролиз двух солей: ацетата аммония $NH_4(CH_3COO)$ и формиата аммония $NH_4(HCОO)$:
1) ${NH_3·H_2O}?{\text"слабое однокислотное основание"}<-NH_4(CH_3COO)->{CH_3COOH}?{\text"сильная одноосновная кислота"};$
2) ${NH_3·H_2O}?{\text"слабое однокислотное основание"}<-NH_4(HCOO)->{HCOOH}?{\text"слабая одноосновная кислота"}.$
В водных растворах этих солей катионы слабого основания $NH_4^{+}$ взаимодействуют с гидроксидионами $ОН^{-}$ (напомним, что вода диссоциирует $H_2O?H^{+}+OH^{-}$), а анионы слабых кислот $CH_3COO^{-}$ и $HCOO^{-}$ взаимодействуют с катионами $Н^{+}$ с образованием молекул слабых кислот — уксусной $CH_3COOH$ и муравьиной $HCOOH$.
Запишем ионные уравнения гидролиза:
1) $CH_3COO^{-}+NH_4^{+}+H_2O?CH_3COOH+NH_3·H_2O;$
2) $HCOO^{-}+NH_4^{+}+H_2O?NH_3·H_2O+HCOOH.$
В этих случаях гидролиз тоже обратимый, но равновесие смещено в сторону образования продуктов гидролиза — двух слабых электролитов.
В первом случае среда раствора нейтральная ($рН = 7$), т.к. $К_Д(СН_3COOH)=К+Д(NH_3·H_2O)=1.8·10^{-5}$. Во втором случае среда раствора слабокислотная ($pH
Как вы уже заметили, гидролиз большинства солей является обратимым процессом. В состоянии химического равновесия гидролизована лишь часть соли. Однако некоторые соли полностью разлагаются водой, т.е. их гидролиз является необратимым процессом.
В таблице «Растворимость кислот, оснований и солей в воде» вы найдете примечание: «в водной среде разлагаются» — это значит, что такие соли подвергаются необратимому гидролизу. Например, сульфид алюминия $Al_2S_3$ в воде подвергается необратимому гидролизу, т. к. появляющиеся при гидролизе по катиону ионы $Н^{+}$ связываются образующимися при гидролизе по аниону ионами $ОН^{-}$. Это усиливает гидролиз и приводит к образованию нерастворимого гидроксида алюминия и газообразного сероводорода:
$Al_2S_3+6H_2O=2Al(OH)_3?+3H_2S$
Поэтому сульфид алюминия $Al_2S_3$ нельзя получить реакцией обмена между водными растворами двух солей, например хлорида алюминия $AlCl_3$ и сульфида натрия $Na_2S$.
Возможны и другие случаи необратимого гидролиза, их нетрудно предсказать, ведь для необратимости процесса необходимо, чтобы хотя бы один из продуктов гидролиза уходил из сферы реакции.
Подведем итог тому, что вы узнали о гидролизе и по катиону, и по аниону:
а) если соли гидролизуются и по катиону, и по аниону обратимо, то химическое равновесие в реакциях гидролиза смещено вправо;
б) реакция среды при этом или нейтральная, или слабокислотная, или слабощелочная, что зависит от соотношения констант диссоциации образующихся основания и кислоты;
в) соли могут гидролизоваться и по катиону, и по аниону необратимо, если хотя бы один из продуктов гидролиза уходит из сферы реакции.
4. Соли, образованные сильным основанием и сильной кислотой, не подвергаются гидролизу.
К этому выводу, очевидно, вы пришли сами.
Рассмотрим поведение в растворе хлорида калия $KCl$.
${KOH}?{\text"сильное однокислотное основание"}<-KCl->{HCl}?{\text"сильная одноосновная кислота"}.$
Соль в водном растворе диссоциирует на ионы ($KCl=K^{+}+Cl^{-}$), но при взаимодействии с водой слабый электролит образоваться не может. Среда раствора нейтральная ($рН=7$), т.к. концентрации ионов $Н^{+}$ и $ОН^{-}$ в растворе равны, как в чистой воде.
Другими примерами подобных солей могут быть галогениды, нитраты, перхлораты, сульфаты, хроматы и дихроматы щелочных металлов, галогениды (кроме фторидов), нитраты и перхлораты щелочноземельных металлов.
Следует также отметить, что реакция обратимого гидролиза полностью подчиняется принципу Ле Шателье. По этому гидролиз соли можно усилить (и даже сделать необратимым) следующими способами:
а) добавить воды (уменьшить концентрацию);
б) нагреть раствор, при этом усиливается эндотермическая диссоциация воды:
$H_2O?H^{+}+OH^{-}-57$ кДж,
а значит, увеличивается количество $Н^{+}$ и $ОН^{-}$, которые необходимы для осуществления гидролиза соли;
в) связать один из продуктов гидролиза в труднорастворимое соединение или удалить один из продуктов в газовую фазу; например, гидролиз цианида аммония $NH_4CN$ будет значительно усиливаться за счет разложения гидрата аммиака с образованием аммиака $NH_3$ и воды $Н_2О$:
$NH_4^{+}+CN^{-}+H_2O?NH_3·H_2O+HCN.$
$NH_3{}?{?}H_2$
Гидролиз солей
Условные обозначения:
Гидролиз можно подавить (значительно уменьшить количество подвергающейся гидролизу соли), действуя следующим образом:
а) увеличить концентрацию растворенного вещества;
б) охладить раствор (для ослабления гидролиза растворы солей следует хранить концентрированными и при низких температурах);
в) ввести в раствор один из продуктов гидролиза; например, подкислять раствор, если его среда в результате гидролиза кислотная, или подщелачивать, если щелочная.
Значение гидролиза
Гидролиз солей имеет и практическое, и биологическое значение. Еще в древности в качестве моющего средства использовали золу. В золе содержится карбонат калия $K_2CO_3$, который в воде гидролизуется по аниону, водный раствор приобретает мылкость за счет образующихся при гидролизе ионов $ОН^{-}$.
В настоящее время в быту мы используем мыло, стиральные порошки и другие моющие средства. Основной компонент мыла — это натриевые и калиевые соли высших жирных карбоновых кислот: стеараты, пальмитаты, которые гидролизуются.
Гидролиз стеарата натрия $С_{17}Н_{35}COONa$ выражается следующим ионным уравнением:
$C_{17}H_{35}COO^{-}+H_2O?C_{17}H_{35}COOH+OH^{-}$,
т.е. раствор имеет слабощелочную среду.
В состав же стиральных порошков и других моющих средств специально вводят соли неорганических кислот (фосфаты, карбонаты), которые усиливают моющее действие за счет повышения рН среды.
Соли, создающие необходимую щелочную среду раствора, содержатся в фотографическом проявителе. Это карбонат натрия $Na_2CO_3$, карбонат калия $K_2CO_3$, бура $Na_2B_4O_7$ и другие соли, гидролизующиеся по аниону.
Если кислотность почвы недостаточна, у растений появляется болезнь — хлороз. Ее признаки — пожелтение или побеление листьев, отставание в росте и развитии. Если $рН_{почвы} > 7.5$, то в нее вносят удобрение сульфат аммония $(NH_4)_2SO_4$, которое способствует повышению кислотности благодаря гидролизу по катиону, проходящему в почве:
$NH_4^{+}+H_2O?NH_3·H_2O$
Неоценима биологическая роль гидролиза некоторых солей, входящих в состав нашего организма. Например, в состав крови входят соли гидрокарбонат и гидрофосфат натрия. Их роль заключается в поддержании определенной реакции среды. Это происходит за счет смещения равновесия процессов гидролиза:
$HCO_3^{-}+H_2O?H_2CO_3+OH^{-}$
$HPO_4^{2-}+H_2O?H_2PO_4^{-}+OH^{-}$
Если в крови избыток ионов $Н^{+}$, они связываются с гидроксид-ионами $ОН^{-}$, и равновесие смещается вправо. При избытке гидроксид-ионов $ОН^{-}$ равновесие смещается влево. Благодаря этому кислотность крови здорового человека колеблется незначительно.
Другой пример: в составе слюны человека есть ионы $HPO_4^{2-}$. Благодаря им в полости рта поддерживается определенная среда ($рН=7-7.5$).
В ходе урока мы изучим тему «Гидролиз. Среда водных растворов. Водородный показатель». Вы узнаете о гидролизе - обменной реакции вещества с водой, приводящей к разложению химического вещества. Кроме того, будет введено определение водородному показателю - так называемому РН.
Тема: Растворы и их концентрация, дисперсные системы, электролитическая диссоциация
Урок: Гидролиз. Среда водных растворов. Водородный показатель
Гидролиз - это обменная реакция вещества с водой, приводящая к его разложению . Попробуем разобраться в причине данного явления.
Электролиты делятся на сильные электролиты и слабые. См. Табл. 1.
Табл. 1
Вода относится к слабым электролитам и поэтому диссоциирует на ионы лишь в незначительной степени Н 2 О <-> Н + + ОН -
Ионы веществ, попадающие в раствор, гидратируются молекулами воды. Но при этом может происходить и другой процесс. Например, анионы соли, которые образуются при её диссоциации, могут взаимодействовать с катионами водорода, которые, пусть и в незначительной степени, но все-таки образуются при диссоциации воды. При этом может происходить смещение равновесия диссоциации воды. Обозначим анион кислоты Х - .
Предположим, что кислота сильная. Тогда она по определению практически полностью распадается на ионы. Если кислота слабая , то она диссоциирует неполностью. Она будет образовываться при прибавлении в воду из анионов соли и ионов водорода, получающихся при диссоциации воды. За счет её образования, в растворе будут связываться ионы водорода, и их концентрация будет уменьшаться. Н + + Х - <-> НХ
Но, по правилу Ле Шателье, при уменьшении концентрации ионов водорода равновесие смещается в первой реакции в сторону их образования, т. е. вправо. Ионы водорода будут связываться с ионами водорода воды, а гидроксид ионы - нет, и их станет больше, чем было в воде до прибавления соли. Значит, среда раствора будет щелочная . Индикатор фенолфталеин станет малиновым. См. рис. 1.
Рис. 1
Аналогично можно рассмотреть взаимодействие катионов с водой. Не повторяя всю цепочку рассуждений, подытоживаем, что если основание слабое , то в растворе будут накапливаться ионы водорода, и среда будет кислая .
Катионы и анионы солей можно разделить на два типа. Рис. 2.
Рис. 2. Классификация катионов и анионов по силе электролитов
Поскольку и катионы и анионы, согласно данной классификации, бывают двух типов, то всего существует 4 разнообразных комбинации при образовании их солей. Рассмотрим, как относится к гидролизу каждый из классов этих солей. Табл. 2.
Какими по силе кислотой и основанием образована соль |
Примеры солей |
Отношение к гидролизу |
Среда |
Окраска лакмуса |
Соль сильного основания и сильной кислоты |
NaCl, Ba(NO 3) 2 , K 2 SO 4 |
Гидролизу не подвергаются. |
нейтральная |
фиолетовый |
Соль слабого основания и сильной кислоты |
ZnSO 4 , AlCl 3 , Fe(NO 3) 3 |
Гидролиз по катиону. Zn 2+ + HOH ZnOH + + H + |
||
Соль сильного основания и слабой кислоты |
Na 2 CO 3 ,К 2 SiO 3 , Li 2 SO 3 |
Гидролиз по аниону CO 3 2 + HOH HCO 3 + OH |
щелочная |
|
Соль слабого основания и слабой кислоты |
FeS, Al(NO 2) 3 , CuS |
Гидролиз и по аниону, и по катиону. |
среда раствора зависит от того, какое из образующихся соединений будет более слабым электролитом. |
зависит от более сильного электролита. |
Табл. 2.
Усилить гидролиз можно разбавлением раствора или нагреванием системы.
Соли, которые подвергаются необратимому гидролизу
Реакции ионного обмена протекают до конца при выпадении осадка, выделения газа или малодиссоируемого вещества.
2 Al (NO 3) 3 + 3 Na 2 S +6 Н 2 О -> 2 Al (OH) 3 ?+ 3 H 2 S+6 NaNO 3 (1)
Если взять соль слабого основания и слабой кислоты и при этом и катион, и анион будут многозарядным, то при гидролизе таких солей будет образовываться и нерастворимый гидроксид соответствующего металла, и газообразный продукт. В данном случае гидролиз может стать необратимым. Например, в реакции (1) не образуется осадок сульфида алюминия.
Под это правило подпадают следующие соли: Al 2 S 3 , Cr 2 S 3 , Al 2 (CO 3) 3 , Cr 2 (CO 3) 3 , Fe 2 (CO 3) 3 , CuCO 3 . Эти соли в водной среде подвергаются необратимому гидролизу. Их невозможно получить в водном растворе.
В органической химии гидролиз имеет очень большое значение.
При гидролизе изменяется концентрация ионов водорода в растворе, а во многих реакциях используются кислоты или основания. Поэтому, если мы будем знать концентрацию ионов водорода в растворе, то будет легче следить за процессом и управлять им. Для количественной характеристики содержания ионов в растворе используется pН раствора. Он равен отрицательному логарифму концентрации ионов водорода.
p Н = - lg [ H + ]
Концентрация ионов водорода в воде равна 10 -7 степени, соответственно, рН = 7 у абсолютно чистой воды при комнатной температуре.
Если долить в раствор кислоты или добавить соль слабого основания и сильной кислоты, то концентрация ионов водорода станет больше 10 -7 и рН < 7.
Если добавить щелочи или соли сильного основания и слабой кислоты, то концентрация ионов водорода станет меньше, чем 10 -7 и рН>7. См. рис. 3. Знать количественный показатель кислотности необходимо во многих случаях. Например, водородный показатель желудочного сока равен 1,7. Увеличение или уменьшение этого значения приводит к нарушению пищеварительных функций человека. В сельском хозяйстве ведется контроль кислотности почвы. Например, для садоводства наилучшей является почва с рН = 5-6. При отклонении от этих значений в почву вносят подкисляющие или подщелачивающие добавки.
Рис. 3
Подведение итога урока
В ходе урока мы изучили тему «Гидролиз. Среда водных растворов. Водородный показатель». Вы узнали о гидролизе - обменной реакции вещества с водой, приводящей к разложению химического вещества. Кроме того, было введено определение водородному показателю - так называемому рН.
Список литературы
1. Рудзитис Г.Е. Химия. Основы общей химии. 11 класс: учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. - 14-е изд. - М.: Просвещение, 2012.
2. Попель П.П. Химия: 8 кл.: учебник для общеобразовательных учебных заведений / П.П. Попель, Л.С.Кривля. - К.: ИЦ «Академия», 2008. - 240 с.: ил.
3. Габриелян О.С. Химия. 11 класс. Базовый уровень. 2-е изд., стер. - М.: Дрофа, 2007. - 220 с.
Домашнее задание
1. №№6-8 (с. 68) Рудзитис Г.Е. Химия. Основы общей химии. 11 класс: учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. - 14-е изд. - М.: Просвещение, 2012.
2. Почему рН дождевой воды всегда меньше 7?
3. Что обусловливает малиновую окраску раствора карбоната натрия?
Химическим путем рН раствора можно определить при помощи кислотно-основных индикаторов.
Кислотно-основные индикаторы – органические вещества, окраска которых зависит от кислотности среды.
Наиболее распространенными индикаторами являются лакмус, метиловый оранжевый, фенолфталеин. Лакмус в кислой среде окрашивается в красный цвет, в щелочной – в синий. Фенолфталеин в кислой среде - бесцветный, в щелочной окрашивается в малиновый цвет. Метиловый оранжевый в кислой среде окрашивается в красный цвет, а в щелочной – в желтый.
В лабораторной практике часто смешивают ряд индикаторов, подобранных таким образом, чтобы цвет смеси изменялся в широких пределах значений рН. С их помощью можно определить рН раствора с точностью до единицы. Эти смеси называют универсальными индикаторами .
Имеются специальные приборы – рН–метры, с помощью которых можно определить рН растворов в диапазоне от 0 до 14 с точностью до 0,01 единицы рН.
Гидролиз солей
При растворении некоторых солей в воде нарушается равновесие процесса диссоциации воды и, соответственно, изменяется рН среды. Это объясняется тем, что соли реагируют с водой.
Гидролиз солей – химическое обменное взаимодействие ионов растворенной соли с водой, приводящее к образованию слабодиссоциирующих продуктов (молекул слабых кислот или оснований, анионов кислых солей или катионов основных солей) и сопровождающееся изменением рН среды.
Рассмотрим процесс гидролиза в зависимости от природы оснований и кислот, образующих соль.
Соли, образованные сильными кислотами и сильными основаниями (NaCl, kno3, Na2so4 и др.).
Допустим , что при взаимодействии хлорида натрия с водой происходит реакция гидролиза с образованием кислоты и основания:
NaCl + H 2 O <-> NaOH + HCl
Для правильного представления о характере этого взаимодействия запишем уравнение реакции в ионном виде, учитывая, что единственным слабодиссоциирующим соединением в этой системе является вода:
Na + + Cl - + HOH <-> Na + + OH - + H + + Cl -
При сокращении одинаковых ионов в левой и правой частях уравнения остается уравнение диссоциации воды:
Н 2 О <-> Н + + ОН -
Как видно, в растворе нет избыточных ионов Н + или ОН - по сравнению с их содержанием в воде. Кроме того, никаких других слабодиссоциирующих или труднорастворимых соединений не образуется. Отсюда делаем вывод, что соли, образованные сильными кислотами и основаниями гидролизу не подвергаются, а реакция растворов этих солей такая же, как и в воде, нейтральная (рН=7).
При составлении ионно–молекулярных уравнений реакций гидролиза необходимо:
1) записать уравнение диссоциации соли;
2) определить природу катиона и аниона (найти катион слабого основания или анион слабой кислоты);
3) записать ионно-молекулярное уравнение реакции, учитывая, что вода - слабый электролит- и что сумма зарядов должна быть одинаковой в обеих частях уравнения.
Соли, образованные слабой кислотой и сильным основанием
(Na 2 CO 3 , K 2 S, CH 3 COONa и др .)
Рассмотрим реакцию гидролиза ацетата натрия. Эта соль в растворе распадается на ионы: CH 3 COONa <-> CH 3 COO - + Na + ;
Na + -катион сильного основания, CH 3 COO - - анион слабой кислоты.
Катионы Na + не могут связывать ионы воды, так как NaОН – сильное основание - полностью распадается на ионы. Анионы слабой уксусной кислоты CH 3 COO - связывают ионы водорода с образованием малодиссоциированной уксусной кислоты:
CH 3 COO - + НОН <-> CH 3 COOН + ОН -
Видно, что в результате гидролиза CH 3 COONa в растворе образовался избыток гидроксид-ионов, и реакция среды стала щелочной (рН > 7).
Таким образом можно сделать вывод, что соли, образованные слабой кислотой и сильным основанием гидролизуются по аниону ( An n - ). При этом анионы соли связывают ионы Н + , а в растворе накапливаются ионы ОН - , что обуславливает щелочную среду (рН>7):
An n - + HOH <-> Han (n -1)- + OH - , (при n=1 образуется HAn – слабая кислота).
Гидролиз солей, образованных двух- и трехосновными слабыми кислотами и сильными основаниями, протекает ступенчато
Рассмотрим гидролиз сульфида калия. К 2 S диссоциирует в растворе:
К 2 S <-> 2К + + S 2- ;
К + - катион сильного основания, S 2 - анион слабой кислоты.
Катионы калия не принимают участия в реакции гидролиза, взаимодействуют с водой только анионы слабой сероводородной кислоты. В данной реакции по первой ступени происходит образование слабодиссоциирующих ионов HS - , по второй ступени – образование слабой кислоты H 2 S:
1-я ступень: S 2- + HOH <-> HS - + OH - ;
2-я ступень: HS - + HOH <-> H 2 S + OH - .
Образующиеся по первой ступени гидролиза ионы ОН - значительно снижают вероятность гидролиза по следующей ступени. В результате практическое значение обычно имеет процесс, идущий только по первой ступени, которым, как правило, и ограничиваются при оценке гидролиза солей в обычных условиях.