Синтетическое получение альдегидов. Свойства спиртов, альдегидов, кислот, сложных эфиров, фенола
Альдегиды и их химические свойства
Альдегидами называют такие органические вещества, в молекулах которых есть карбонильная группа, связанная, минимум, с одним атомом водорода и углеводородным радикалом.
Химические свойства альдегидов предопределяются в их молекуле наличием карбонильной группы. В связи с этим в молекуле карбонильной группы можно наблюдать реакции присоединения.
Так, например, если взять и пропустить пары формальдегида разом с водородом над разогретым никелевым катализатором, то произойдет присоединение водорода и формальдегид восстановиться в метиловый спирт. Кроме этого полярный характер данной связи порождает и такую реакцию альдегидов, как присоединение воды.
А теперь давайте рассмотрим все особенности реакций от присоединения воды. Следовало бы отметить, что к углеродному атому карбонильной группы, который несет частичный положительный заряд, благодаря электронной паре кислородного атома, добавляется гидроксильная группа.
При таком присоединении характерны следующие реакции:
Во-первых, происходит гидрирование и образуются первичные спирты RСН2ОН.
Во-вторых, происходит добавление спиртов и образование полуацеталей R-СН (ОН) – ОR. А в присутствии хлороводорода НСl, выступающего катализатором и при излишке спирта мы наблюдаем образование ацетали RСН (ОR)2;
В-третьих, происходит добавление гидросульфита натрия NаНSO3 и образуются производные гидросульфитных альдегидов. При окислении альдегидов можно наблюдать такие особенные реакции, как взаимодействие с аммиачным раствором оксида серебра (I) и с гидроксидом меди (II) и образование карбоновых кислот.
При полимеризации альдегидов характерны такие особенные реакции, как линейная и циклическая полимеризация.
Если говорить о химических свойствах альдегидов, следует упомянуть и реакцию окисления. К таким реакциям можно отнести реакцию «серебряного зеркала» и реакцию светофор.
Пронаблюдать за необычной реакцией «серебряного зеркала» можно, проведя в классе интересный опыт. Для этого вам понадобиться чисто вымытая пробирка, в которую следует налить несколько миллилитров аммиачного раствора оксида серебра, а потом к нему добавить четыре или пять капель формалина. Следующим этапом при проведении этого опыта нужно пробирку поместить в стакан с горячей водой и тогда вы сможете увидеть, как на стенках пробирки появляется блестящий слой. Это образовавшееся покрытие является осадком металлического серебра.
А вот так называемая реакция «светофор»:
Физические свойства альдегидов
Теперь давайте приступим к рассмотрению физических свойств альдегидов. Какими же свойствами обладают эти вещества? Следует обратить внимание на то, что ряд простых альдегидов являют из себя бесцветный газ, более сложные представлены в виде жидкости, а вот высшие альдегиды – это твердые вещества. Чем больше молекулярная масса альдегидов, тем выше температура кипения. Так, например, пропионовый альдегид достигает точки кипения при 48,8 градусов, а вот пропиловый спиртзакипает при 97,8 0С.
Если говорить о плотности альдегидов, то она меньше единицы. Так, например, уксусный и муравьиный альдегид имеет свойство неплохо растворяться в воде, а более сложные альдегиды имеют более слабую способность к растворению.
Альдегиды, которые относятся к низшему разряду, имеют резкий и неприятный запах, а твердые и нерастворимые в воде, наоборот характеризуются приятным цветочным запахом.
Нахождение альдегидов в природе
В природе, повсеместно встречаются представители различных групп альдегидов. Они присутствуют в зеленых частях растений. Эта одна из простейших групп альдегидов, к которым относится муравьиный альдегид СН2О.
Также встречаются альдегиды с более сложным составом. К таким видам относятся ванилин или виноградный сахар.
Но так как альдегиды обладают способностью легко вступать во всякие взаимодействия, имеют склонность к окислению и восстановлению, то можно с уверенностью сказать, что альдегиды очень способны к различным реакциям и поэтому в чистом виде они встречаются крайне редко. А вот их производные можно встретить повсеместно, как в растительной среде, так и животной.
Применение альдегидов
Альдегидная группа присутствует в целом ряде природных веществ. Их отличительной чертой, по крайней мере, многих из них, является запах. Так, например представители высших альдегидов, владеют различными ароматами и входят в состав эфирных масел. Ну и, как вам уже известно, такие масла присутствуют в цветочных, пряных и душистых растениях, плодах и фруктах. Они отыскали масштабное использование в производстве промышленных товаров и при производстве парфюмерии.
Алифатический альдегид СН3(СН2)7С(Н)=О можно найти в эфирных маслах цитрусовых. Такие альдегиды имеют запах апельсина, и применяется в пищевой промышленности, как ароматизатор, а также в косметике, парфюмерии и бытовой химии, в качестве отдушки.
Муравьиный альдегид – это бесцветный газ, который имеет резкий специфический запах и легко растворяется в воде. Такой водный раствор формальдегида еще называют формалином. Формальдегид очень ядовит, но в медицине его применяют в разбавленном виде в качестве дезинфицирующего средства. Его используют для дезинфекции инструментов, а его слабый раствор используют для обмывания кожи при сильной потливости.
Кроме того, формальдегид используют при дублении кожи, так как он имеет способности соединяться белковыми веществами, которые имеются в составе кожи.
В сельском хозяйстве формальдегид прекрасно зарекомендовал себя при обработке зерна перед посевными работами. Его применяют для производства пластмасс, которые так необходимы для техники и бытовых нужд.
Уксусный альдегид являет из себя бесцветную жидкость, которая имеет запах прелых яблок и легко растворяется в воде. Применяется он для получения уксусной кислоты и других веществ. Но так как он является ядовитым веществом, то может вызвать отравление организма или воспаление слизистых оболочек глаз и дыхательных путей.
АЛЬДЕГИДЫ И КЕТОНЫ
Альдегидами и кетонами называют производные углеводородов, содержащие карбонильную группу С=О. В молекуле альдегидов по крайней мере одна валентность карбонильной группы затрачивается на соединение с атомом водорода, а другая - с радикалом (предельного ряда в предельных альдегидах и непредельного - в непредельных альдегидах). Общая формула альдегидов:
причем R может быть равно Н.
В случае кетонов обе валентности карбонильной группы затрачиваются на соединение с радикалами. Общая формула кетонов:
Изомерия. Номенклатура.
Общая формула предельных альдегидов и кетонов С n Н 2 n O.
Изомерия альдегидов связана со строением радикалов. Так, например, известно четыре альдегида с формулой
(см. ниже).
Альдегиды называют или по кислотам, в которые они переходят при окислении (с тем же числом углеродных атомов), или по предельным углеводородам с добавлением суффикса -аль (систематическая номенклатура).
муравьиный альдегид (формальдегид), метаналь (рис. 1а ) | |
уксусный альдегид, этаналь (рис. 1б ) | |
![]() | пропионовый альдегид, пропаналь |
СН 3 -СН 2 -СН 2 -СНО | масляный альдегид, бутаналь |
![]() | изомасляный альдегид, 2-метилпропаналь |
СН 3 -СН 2 -СН 2 -СН 2 -СНО | валериановый альдегид, пентаналь |
![]() | изовалернановый альдегид, 3-метилбутаналь |
![]() | метилэтилуксусный альдегид, 2-метилбутаналь |
![]() | триметилуксусный альдегид, 2,2-диметлпропаналь |

Изомерия кетонов связана со строением радикалов и с положением карбонильной группы в углеродной цепи. Кетоны называют по наименованию радикалов, связанных с карбонильной группой. По систематической номенклатуре к названию предельного углеводорода добавляется суффикс -он и указывается номер атома углерода, связанного с карбонильным кислородом:
Способы получения
Альдегиды и кетоны получают рядом общих методов.
1. Окислением или каталитическим дегидрированием первичных спиртов получают альдегиды, вторичных - кетоны. Эти реакции уже приводились при рассмотрении химических свойств спиртов.
2. Альдегиды и кетоны удобно также получать пиролизом кислот и их смесей в виде паров над оксидами некоторых металлов (ThО 2 , МnО 2 , CaO, ZnO) при 400-450 °С:
R - СООН + Н-СООН->R-СНО + СО 2 + Н 2 0
2R-СООН->R -СО -R + C0 2 + Н 2 0
R-СООН + R" - СООН -> R - СО-R’+С0 2 + Н 2 0
Во многих учебниках указывается, что альдегиды и кетоны могут быть получены пиролизом Са- и Ва-солей карбоновых кислот. В действительности эта реакция дает очень низкие выходы. Однако некоторые метилкетоны все же могут быть получены пиролизом смесей бариевых или железных солей уксусной и какой-либо другой кислоты. Все эти реакции имеют радикальный механизм.
3. Гидролиз геминальных дигалогенопроизводных приводит к альдегидам, если оба галогена находятся у одного из крайних атомов углерода, и кетонам, если атомы галогена находятся у одного из средних атомов углерода. Эти реакции уже упоминались при изучении химических свойств дигалогенопроизводных углеводородов.
4. Гидратация ацетилена и его гомологов в условиях реакции Кучерова приводит соответственно к уксусному альдегиду или кетонам:
НС?СН + Н 2 O-> СН 3 -СНО
5. Карбонильные соединения с высокими выходами (порядка 80%) образуются при окислении соответствующих спиртов смесями дпметилсульфоксида с уксусным ангидридом или безводной фосфорной кислотой.
RCH 2 OH + (CH 3) 2 SO-> RCH = О + (CH 3) 2 S
6. Превращение галогеналкилов в альдегиды с удлинением цепи на один атом углерода достигается обработкой их натрийтетракарбонилферратом в присутствии трифенилфосфина, а затем уксусной кислотой:
R - Hlg + Na 2 Fe(CO) 4 RCOFe(CO 3)P(C 6 H 5) 3 R–CH = О
Имеется несколько модификаций этого метода.
7. Кетоны с хорошими выходами получаются при взаимодействии хлорангидридов кислот с литийдиалкилкупратамн и кадмийалкилами:
R 2 CuLi + R"COCI->R - СО - R"+LiCI + R - Сu
8. В технике альдегиды получают прямым присоединением СО и H 2 к олефинам (оксосинтез) при 100-200 °С под давлением 10-20 МПа (100-200 атм) в присутствии кобальтового или никелевого катализаторов (например, Со + ThO 2 + MgO, нанесенные на кизельгур):
Реакцию с этиленом и пропиленом проводят в газовой фазе, а с более сложными олефинамн (С 4 -С 20) - в жидкой фазе. Как видно из приведенной схемы, при оксосинтезе получаются альдегиды, содержащие на один атом углерода больше, чем исходные олефины. Этот синтез имеет важное значение для получения высших первичных спиртов (каталитическим восстановлением альдегидов). Механизм оксосинтеза можно представить следующим образом:
2Со + 8СО-> Со 2 (СО) 8
Cо 2 (CO)8 + H 2 -> 2НСо(СО) 4
R -СН=СН 2 + НСо(СО) 4 -> R - СН 2 -СН 2 - Со(СО) 4
R - СН 2 -СН 2 -Со(СО) 4 +СО-> R-СН 2 -СН 2 -СО - Со(СО) 4
R-СН 2 -СН 2 -СО-Со(СО) 4 + НСо(СО) 4 ->R-СН 2 -СН 2 -СНО + Со(СО) 8
Физические свойства
Муравьиный альдегид - газ с весьма резким запахом. Другие низшие альдегиды и кетоны - жидкости, легко растворимые в воде; низшие альдегиды обладают удушливым запахом, который при сильном разведении становится приятным (напоминает запах плодов). Кетоны пахнут довольно приятно.
При одном и том же составе, и строении углеродной цепи кетоны кипят при несколько более высоких температурах, чем альдегиды. Температуры кипения альдегидов и кетонов с нормальным строением цепи выше, чем у соединений изостроения. Например, валериановый альдегид кипит при 103,4 °С, а изовалериановый - при 92,5 °С. Альдегиды и кетоны кипят при температуре, значительно более низкой, чем спирты с тем же числом углеродных атомов, например у пропионового альдегида т. кип. 48,8 °С, у ацетона 65,1 °С, у н -пропилового спирта 97,8 °С. Это показывает, что альдегиды и кетоны в отличие от спиртов не являются сильно ассоциированными жидкостями. В то же время температуры кипения карбонильных соединений значительно выше температур кипения углеводородов с той же молекулярной массой, что связано с их высокой полярностью. Плотность альдегидов и кетонов ниже единицы.
В ИК-спектрах для СО-группы характерно интенсивное поглощение при 1720 см -1 . В спектре ЯМР сигнал водорода альдегидной группы находится в очень слабом поле.
Химические свойства
Альдегиды и кетоны отличаются большой реакционной способностью. Большинство их реакций обусловлено присутствием активной карбонильной группы. Двойная связь карбонильной группы сходна по физической природе с двойной связью между двумя углеродными атомами (s-связь + p-связь). Однако в то время как Е с=с <2Е с-с, энергия связи С=О (749,4 кДж/моль) больше, чем энергия двух простых С-О-связей (2х358 кДж/моль). С другой стороны, кислород является более электроотрицательным элементом, чем углерод, и потому электронная плотность вблизи атома кислорода больше, чем вблизи атома углерода. Дипольный момент карбонильной группы - около 9 10 -30 Кл/м (2,7 D). Благодаря такой поляризации углеродный атом карбонильной группы обладает электрофильными свойствами и способен реагировать с нуклеофильными реагентами. Соответственно атом кислорода является нуклеофильным. В реакциях присоединения отрицательно поляризованная часть присоединяющейся молекулы всегда направляется к углеродному атому карбонильной группы, в то время как ее положительно поляризованная часть направляется к кислородному атому.
Реакция присоединения нуклеофильных реагентов по месту карбонильной связи - ступенчатый процесс. Схематически реакцию присоединения, например гидросульфита натрия к уксусному альдегиду, можно изобразить следующим образом:
Радикалы, способные увеличивать положительный заряд на атоме углерода карбонильной группы, сильно повышают реакционную способность альдегидов и кетонов; радикалы или атомы, уменьшающие положительный заряд на этом углеродном атоме, оказывают противоположное действие.
Помимо реакций присоединения по карбонильной группе для альдегидов и кетонов характерны также реакции с участием соседних с карбонильной группой углеродных радикалов, обусловленные электроноакцепторным влиянием на них карбонильной группы. К ним относятся реакции окисления, галогенирования, конденсации.
А. Гидрирование. Присоединение водорода к альдегидам и кетонам происходит в присутствии катализаторов гидрирования (Ni, Со, Си, Pt, Pd и др.). При этом альдегиды переходят в первичные, а кетоны - во вторичные спирты. На этом основан один из методов получения спиртов.
В последнее время в качестве восстанавливающего агента часто применяют лнтийалюминийгидрид LiА1Н 4 . Реакция идет с переносом гидридного иона:
Преимуществом восстановления с помощью LiAlН 4 является то, что этот реагент не восстанавливает двойные углерод-углеродные связи.
При восстановлении альдегидов или кетонов водородом в момент выделения (с помощью щелочных металлов или амальгамированного магния) образуются наряду с соответствующими спиртами также гликоли:
пинакон
Соотношение между образующимися спиртом и гликолем зависит от природы карбонильного соединения и условий восстановления. При восстановлении кетонов в продуктах реакции в апротонных растворителях преобладают пинаконы; в случае алифатических насыщенных альдегидов гликоли образуются в малых количествах.
Реакция протекает с промежуточным образованием свободных радикалов:
Б. Реакции нуклеофильного присоединения.
1. Присоединение магнийгалогеналкилов подробно разобрано при описании методов получения спиртов.
2. Присоединение синильной кислоты приводит к образованию a-оксинитрилов, омылением которых получают a-гидроксикислоты:
нитрил a-гидроксипропионовой кислоты
Эта реакция начинается нуклеофильной атакой углеродного атома ионом CN - . Цианистый водород присоединяется очень медленно. Добавление капли раствора цианистого калия значительно ускоряет реакцию, в то время как добавление минеральной кислоты уменьшает скорость реакции практически до нуля. Это показывает, что активным реагентом при образовании циангидрина является ион CN - :
3. Присоединение гидросульфита натрия дает кристаллические вещества, обычно называемые гидросульфитными производными альдегидов или кетонов:
При нагревании с раствором соды или минеральных кислот гидросульфитные производные разлагаются с выделением свободного альдегида или кетона, например:
Реакция с гидросульфитом натрия используется для качественного определения альдегидов и кетонов, а также для их выделения и очистки. Следует, однако, заметить, что в реакцию с гидросульфитом натрия в жирном ряду вступают только метилкетоны, имеющие группировку СН 3 -СО- .
4. Взаимодействие с аммиаком позволяет различать альдегиды и кетоны. Альдегиды выделяют воду, образуя альдимины:
ацетальдимин, этаними н
которые легко полимеризуются (циклизуются в кристаллические тримеры - альдегидаммиаки:
альдегидаммиа к
При циклизации разрывается двойная связь C = N и три молекулы имина соединяются в шестичленный цикл с чередующимися атомами углерода и азота.
Кетоны с аммиаком подобных соединений не образуют. Они реагируют очень медленно и более сложно, например, так:
5. С гидроксиламином альдегиды и кетоны, выделяя воду, образуют оксимы (альдоксимы и кетоксимы):
ацетальдоксим
ацетоноксим
Эти реакции применяют для количественного определения карбонильных соединений.
Механизм реакции (R=H или Alk):
6. Особый интерес представляют реакции карбонильных соединений с гидразином и его замещенными. В зависимости от условий гидразин вступает в реакцию с альдегидами и кетонами в соотношении 1:1 или 1:2. В первом случае образуются гидразоны, а во втором - азины (альдазины и кетазины):
гидразон
альдазин
кетазин
Гидразоны кетонов и альдегидов при нагревании с твердым КОН выделяют азот и дают предельные углеводороды (реакция Кижнера):
В настоящее время эту реакцию проводят нагреванием карбонильного соединения с гидразином в высококипящих полярных растворителях (ди- и триэтиленгликоли) в присутствии щелочи. Реакция может быть проведена и при комнатной температуре при действии трет-бутилкалия в диметлисульфоксиде.
Альдегиды и кетоны с замещенными гидразинами - с фенилгидразином C 6 H 5 -NH-NH 2 и семикарбазидом образуют соответственно фенилгидразоны и семикарбазоны. Это кристаллические вещества. Они служат для качественного и количественного определения карбонильных соединений, а также для их выделения и очистки.
Образование фенилгидразонов:
Семикарбазоны образуются по схеме:
Реакции альдегидов и кетонов с производными гидразина по механизму аналогичны их реакциям с аммиаком и гидроксиламином. Например, для ацетальдегида и фенилгидразина:
Для этих реакций характерен кислотный катализ.
7. Альдегиды и кетоны способны присоединять по карбонильной группе воду с образованием гидратов - геминальных гликолей. Эти соединения во многих случаях существуют только в растворах. Положение равновесия зависит от строения карбонилсодержащего соединения:
Так, формальдегид при 20 °С существует в водном растворе на 99,99% в форме гидрата, ацетальдегид- на 58%; в случае ацетона содержание гидрата незначительно, а хлораль и трихлорацетон образуют стойкие кристаллические гидраты.
Альдегиды с более высокой молекулярной массой образуют с водой устойчивые при низких температурах твердые полугидраты:
8.
В присутствии следов минеральной кислоты образуются ацетали:
Ацетали - жидкости с приятным эфирным запахом. При нагревании с разбавленными минеральными кислотами (но не щелочами) они подвергаются гидролизу с образованием спиртов и выделением альдегидов:
Ацеталь, полученный из масляного альдегида и поливинилового спирта, используется в качестве клея при изготовлении безосколочных стекол.
Ацетали кетонов получаются более сложно - действием на кетоны этиловых эфиров ортомуравьиной НС(ОС2Н 5)з или ортокремниевой кислоты:
9. При действии на альдегиды спиртов образуются полуацетали:
Альдегиды и кетоны при взаимодействии с PCI 5 обменивают атом кислорода на два атома хлора, что используется для получения геминаль- ных дихлоралканов:
Эта реакция в стадии, определяющей характер конечного продукта, также является реакцией нуклеофильного присоединения:
В. Реакции окисления. Окисление альдегидов идет значительно легче, чем кетонов. Кроме того, окисление альдегидов приводит к образованию кислот без изменения углеродного скелета, в то время как кетоны окисляются с образованием двух более простых кислот или кислоты и кетона.
Альдегиды окисляются кислородом воздуха до карбоновых кислот. Промежуточными продуктами являются гидропероксиды:
Аммиачный раствор гидроксида серебра OH при легком нагревании с альдегидами (но не с кетонами) окисляет их в кислоты с образованием свободного металлического серебра. Если пробирка, в которой идет реакция, была предварительно обезжирена изнутри, то серебро ложится тонким слоем на ее внутренней поверхности - образуется серебряное зеркало:
Эта реакция, известная под названием реакции серебряного зеркала, служит для качественного определения альдегидов.
Для альдегидов характерна также реакция с так называемой фелинговой жидкостью. Последняя представляет собой водно-щелочной раствор комплексной соли, образовавшейся из гидроксида меди и натрийкалиевой соли винной кислоты. При нагревании альдегидов с фелинговой жидкостью медь (II) восстанавливается до меди (I), а альдегид окисляется до кислоты:
Красная окись меди Cu 2 О почти количественно выпадает в осадок. Реакция эта с кетонами не идет.
Альдегиды могут быть окислены в карбоновые кислоты с помощью многих обычных окислителей, таких, как дихромат калия, перманганат калия, по ионному механизму, причем первой стадией процесса обычно является присоединение окислителя по СО-группе.
Окисление кетонов протекает с разрывом углеродной цепочки в разных направлениях в зависимости от строения кетонов.
По продуктам окисления можно судить о строении кетонов, а так как кетоны образуются при окислении вторичных спиртов, то, следовательно, и о строении этих спиртов.
Г. Реакции полимеризации. Эти реакции характерны только для альдегидов. При действии на альдегиды кислот происходит их тримеризация (частично и тетрамеризация):
Механизм полимеризации может быть представлен в следующем виде:
Д. Галогенирование. Альдегиды и кетоны реагируют с бромом и иодом с одинаковой скоростью независимо от концентрации галогена. Реакции ускоряются как кислотами, так и основаниями.
Подробное изучение этих реакций привело к выводу, что они идут с предварительным превращением карбонильного соединения в енол:
Е. Реакции конденсации.
1. Альдегиды в слабоосновной среде (в присутствии ацетата, карбоната или сульфита калия) подвергаются альдольной конденсации (А.П. Бородин) с образованием альдегидосииртов (гидроксиальдегидов), сокращенно называемых альдолями. Альдоли образуются в результате присоединения альдегида к карбонильной группе другой молекулы альдегида с разрывом связи С-Н в a-положении к карбонилу, как это показано на примере уксусного альдегида:
альдоль
В случае альдолизацин других альдегидов, например пропионового, в реакцию вступает только группа, находящаяся в a-положении к карбонилу, так как только водородные атомы этой группы в достаточной степени активируются карбонильной группой:
3-гидрокси-2-метилпентаналь
Если рядом с карбонилом находится четвертичный атом углерода, альдолизация невозможна. Например, триметилуксусный альдегид (СНз)зС-СНО не дает альдоля.
Механизм реакции альдольной конденсации, катализируемой основаниями, следующий. Альдегид проявляет свойства СН-кислоты. Гидроксильный ион (катализатор) обратимо отрывает протон от а-углеродного атома:
Альдоль при нагревании (без водоотнимающих веществ) отщепляет воду с образованием непредельного кротонового альдегида:
Поэтому переход от предельного альдегида к непредельному через альдоль называется кротоновой конденсацией. Дегидратация происходит благодаря очень большой подвижности водородных атомов в a-положении по отношению к карбонильной группе (сверхсопряжение), причем разрывается, как и во многих других случаях, p-связь по отношению к карбонильной группе.
При действии на альдегиды, способные к альдольной конденсации, сильных оснований (щелочей) в результате глубокой альдольной (или кротоновой) поликонденсации происходит осмоление. Альдегиды, не способные к альдольной конденсации, в этих условиях вступают в реакцию Канниццаро:
2(СН 3) 3 С-СНО +КОН->(СН 3) 3 С-COOK +(СН 3) 3 С-СН 2 ОН.
Альдольная конденсация кетонов происходит в более жестких условиях - в присутствии оснований, например Ва(ОН) 2 . При этом образуются Р-кетоноспирты, легко теряющие молекулу воды:
В еще более жестких условиях, например при нагревании с концентрированной серной кислотой, кетоны подвергаются межмолекулярной дегидратации с образованием непредельных кетонов:
окись мезитила
Окись мезитила может реагировать с новой молекулой ацетона:
форон
Возможна и конденсация между альдегидами и кетонами, например:
3-пентен-2-он
Во всех этих реакциях вначале идет альдольная конденсация, а затем дегидратация образовавшегося гидроксикетона.
2. Сложноэфирная конденсация альдегидов проходит при действии на них алкгоголятов алюминия в неводной среде (В.Е. Тищенко).
уксусноэтиловый эфир
Ж. Декарбонилирование. Альдегиды при нагревании с трис(трифенилфосфин)родийхлоридом претерпевают декарбонилирование с образованием углеводородов:
R-СНО + [(C 6 H 5) 3 P] 3 PhCl-> R-Н + [(C 6 H 5) 3 P] 3 RhCOCl.
При изучении химических превращений альдегидов и кетонов необходимо обратить внимание на существенные различия между ними. Альдегиды легко окисляются без изменения углеродной цепи (реакция серебряного зеркала), кетоны окисляются трудно с разрывом цепи. Альдегиды полимеризуются под влиянием кислот, образуют альдегидоаммиаки, со спиртами в присутствии кислот дают ацетали, вступают в сложноэфирную конденсацию, дают окрашивание с фуксинсернистой кислотой. Кетоны не способны к подобным превращениям.
Отдельные представители. Применение
Муравьиный альдегид (формальдегид) - бесцветный газ с резким специфическим запахом, т. кип. -21 °С. Он ядовит, действует раздражающе на слизистые оболочки глаз и дыхательных путей. Хорошо растворим в воде, 40% -ный водный раствор формальдегида называется формалином. В промышленности формальдегид получают двумя методами - неполным окислением метана и его некоторых гомологов и каталитическим окислением или дегидрированием метанола (при 650-700 °С над серебряным катализатором):
СН 3 ОН-> Н 2 +Н 2 СО.
Благодаря отсутствию алкильного радикала формальдегиду присущи некоторые особые свойства.
1. В щелочной среде он претерпевает реакцию окисления - восстановления (реакция Канниццаро):
2. При легком нагревании формальдегида (формалина) с аммиаком получается гексаметилентетрамин (уротропин), синтезированный впервые А. М. Бутлеровым:
6Н 2 С=О + 4NH 3 -> 6H 2 0 + (CH 2) 6 N 4
уротропин
Уротропин в больших количествах применяют в производстве фенолформальдегидных смол, взрывчатых веществ (гексогена, получаемого нитрованием уротропина)
гексаген
в медицине (в качестве мочегонного средства, как составная часть антигриппозного препарата кальцекса, при лечении почечных заболеваний и др.).
3. В щелочной среде, например в присутствии известкового молока, как это впервые было показано А. М. Бутлеровым, формальдегид подвергается альдолизации с образованием оксиальдегидов вплоть до гексоз и еще более сложных сахаров, например:
гексоза
В присутствии щелочей формальдегид может конденсироваться и с другими альдегидами, образуя многоатомные спирты. Так, конденсацией формальдегида с уксусным альдегидом получают четырехатомный спирт - пентаэритрит С(СН 2 ОН) 4
СН 3 СНО + 3Н 2 СО -> (НОСН 2) 3 ССНО
(НОСН 2) 3 ССНО + Н 2 СО -> (НОСН 2) 4 С + НСОО -
Пентаэритрит используется для получения смол и весьма сильного взрывчатого вещества - тетранитропентаэритрита (ТЭН) C(CH 2 ОNО 2) 4 .
4. Формальдегид способен к полимеризации с образованием циклических и линейных полимеров.
5. Формальдегид способен вступать в различные реакции конденсации с образованием синтетических смол, широко применяемых в промышленности. Так, поликонденсацией формальдегида с фенолом получают фенолформальдегидные смолы, с мочевиной или меламином - карбамидные смолы.
6. Продуктом конденсации формальдегида с изобутиленом (в присутствии H 2 SO 4) является 4,4-диметил-1,3-диоксан, который при нагревании до 200-240 °С в присутствии катализаторов (SiO 2 +Н 4 Р 2 О 7) разлагается с образованием изопрена.
Формалин широко применяется в качестве дезинфицирующего вещества для дезинфекции зерно- и овощехранилищ, парников, теплиц, для протравливания семян и т. д.
Уксусный альдегид, ацетальдегид СН 3 СНО - жидкость с резким неприятным запахом. Т.кип. 21 °С. Пары ацетальдегида вызывают раздражение слизистых оболочек, удушье, головную боль. Ацетальдегид хорошо растворим в воде и во многих органических растворителях.
Промышленные методы получения ацетальдегида уже были рассмотрены: гидратация ацетилена, дегидрирование этилового спирта, изомеризация окиси этилена, каталитическое окисление воздухом предельных углеводородов.
В последнее время ацетальдегид получают окислением этилена кислородом воздуха в присутствии катализатора по схеме:
CH 2 =CH 2 +H 2 O +PdCl 2 ->CH 3 -СНО + 2HCl + Pd
Pd + 2CuC1 2 -> 2CuCl + PdCl 2
2CuCl + 2HCI + 1 / 2 O 2 -> 2CuCI 2 + H 2 O
2CH 2 = CH 2 + O 2 ->2CH 3 CHO
Другие 1-алкены образуют в этой реакции метилкетоны.
Из ацетальдегида в промышленных масштабах получают уксусную кислоту, уксусный ангидрид, этиловый спирт, альдоль, бутиловый спирт, ацетали, этилацетат, пентаэритрит и ряд других веществ.
Подобно формальдегиду, он конденсируется с фенолом, аминами и другими веществами, образуя синтетические смолы, которые используются в производстве различных полимерных материалов.
Под действием небольшого количества серной кислоты ацетальдегид полимеризуется в паральдегид (С 2 Н 4 О 3) 3 и метальдегид (С 2 Н 4 О 3) 4 ; количества последнего возрастают с понижением температуры (до -10 °С):
Паральдегид - жидкость с т. кип. 124,5 °С, метальдегид - кристаллическое вещество. При нагревании со следами кислоты оба эти вещества деполимеризуются, образуя ацетальдегид. Из паральдегида и аммиака получают 2-метил-5-винилпиридин, используемый при синтезе сополимеров - синтетических каучуков.
Трихлоруксусный альдегид, хлораль CCI 3 CHO, получают хлорированием этилового спирта.
Хлораль - бесцветная жидкость с резким запахом; с водой образует кристаллический гидрат - хлоральгидрат. Устойчивость хлоральгидрата объясняется усилением электроноакцепторных свойств карбонильного углерода под влиянием сильного индукционного эффекта хлора:
Обладает снотворным действием. Конденсацией хлораля с хлорбензолом получают в промышленных масштабах инсектициды.
При действии на хлораль щелочей образуется хлороформ:
Ацетон СН 3 СОСН 3 - бесцветная жидкость с характерным запахом; Т.кип.=56,1 °С, Т.пл.=0,798. Хорошо растворим в воде и во многих органических растворителях.
Ацетон получают:
1) из изопропилового спирта - окислением или дегидрированием;
2) окислением изопропилбензола, получаемого алкилированием бензола, наряду с фенолом;
3) ацетон-бутанольным брожением углеводов.
Ацетон в качестве растворителя применяется в больших количествах в лакокрасочной промышленности, в производствах ацетатного шелка, кинопленки, бездымного пороха (пироксилина), для растворения ацетилена (в баллонах) и т. д. Он служит исходным продуктом при производстве небьющегося органического стекла, кетена и т. д.
Альдегиды и кетоны относятся к карбонильным органическим соединениям. Карбонильными соединениями называют органические вещества, в молекулах которых имеется группа >С=О (карбонил или оксогруппа).
Общая формула карбонильных соединений:
Функциональная группа –СН=О называется альдегидной. Кетоны - органические вещества, молекулы которых содержат карбонильную группу, соединенную с двумя углеводородными радикалами. Общие формулы: R 2 C=O, R–CO–R" или
|
Модели простейших карбонильных соединений |
||
Название | ||
Формальдегид (метаналь) |
H 2 C=O | |
Ацетальдегид (этаналь) |
СH 3 -CH=O | |
Ацетон (пропанон) |
(СH 3 ) 2 C=O |
|
Номенклатура альдегидов и кетонов.
Систематические названия альдегидов строят по названию соответствующего углеводорода и добавлением суффикса -аль . Нумерацию цепи начинают с карбонильного атома углерода. Тривиальные названия производят от тривиальных названий тех кислот, в которые альдегиды превращаются при окислении.
Формула |
Название |
|
систематическое |
тривиальное |
|
H 2 C=O |
метаналь |
муравьиный альдегид (формальдегид) |
CH 3 CH=O |
этаналь |
уксусный альдегид (ацетальдегид) |
(CH 3 ) 2 CHCH=O |
2-метил-пропаналь |
изомасляный альдегид |
CH 3 CH=CHCH=O |
бутен-2-аль |
кротоновый альдегид |
Систематические названия кетонов несложного строения производят от названий радикалов (в порядке увеличения) с добавлением слова кетон . Например: CH 3 –CO–CH 3 - диметилкетон (ацетон); CH 3 CH 2 CH 2 –CO–CH 3 - метилпропилкетон. В более общем случае название кетона строится по названию соответствующего углеводорода и суффикса -он ; нумерацию цепи начинают от конца цепи, ближайшего к карбонильной группе (заместительная номенклатура ИЮПАК). Примеры: CH 3 –CO–CH 3 - пропанон (ацетон); CH 3 CH 2 CH 2 –CO–CH 3 - пентанон- 2; CH 2 =CH–CH 2 –CO–CH 3 - пентен-4-он- 2.
Изомерия альдегидов и кетонов .
Для альдегидов и кетонов характерна структурная изомерия .
Изомерия альдегидов :
изомерия углеродного скелета, начиная с С 4 |
|
межклассовая изомерия с кетонами, начиная с С 3 |
|
циклическими оксидами (с С 2) |
|
непредельными спиртами и простыми эфирами (с С 3) |
|
Изомерия кетонов : углеродного скелета (c C 5) |
|
положения карбонильной группы (c C 5) |
|
межклассовая изомерия (аналогично альдегидам).
Строение карбонильной группы C=O.
? Свойства альдегидов и кетонов определяются строением карбонильной группы >C=O.
Связь С=О сильно полярна. Ее дипольный момент (2,6-2,8D) значительно выше, чем у связи С–О в спиртах (0,70D). Электроны кратной связи С=О, в особенности более подвижные ?-электроны, смещены к электроотрицательному атому кислорода, что приводит к появлению на нем частичного отрицательного заряда. Карбонильный углерод приобретает частичный положительный заряд.
? Поэтому углерод подвергается атаке нуклеофильными реагентами, а кислород - электрофильными, в том числе Н + .
В молекулах альдегидов и кетонов отсутствуют атомы водорода, способные к образованию водородных связей. Поэтому их температуры кипения ниже, чем у соответствующих спиртов. Метаналь (формальдегид) - газ, альдегиды С 2 –C 5 и кетоны С 3 –С 4 - жидкости, высшие - твердые вещества. Низшие гомологи растворимы в воде, благодаря образованию водородных связей между атомами водорода молекул воды и карбонильными атомами кислорода. С увеличением углеводородного радикала растворимость в воде падает.
Реакционные центры альдегидов и кетонов
sp 2 -Гибридизованный атом углерода карбонильной группы образует три s-связи, лежащие в одной плоскости, и p-связь с атомом кислорода за счет негибридизованной p-орбитали. Вследствие различия в электроотрицательности атомов углерода и кислорода p-связь между ними сильно поляризована (рис. 5.1). В результате на атоме углерода карбонильной группы возникает частичный положительный заряд d+, а на атоме кислорода - частичный отрицательный заряд d-. Поскольку атом углерода электронодефицитен, он представляет собой центр для нуклеофильной атаки.
Распределение электронной плотности в молекулах альдегидов и кетонов с учетом передачи электронного влияния электроно-
Рис. 5.1. Электронное строение карбонильной группы
дефицитного атома углерода карбонильной группы по s-связям представлено на схеме 5.1.
Схема 5.1. Реакционные центры в молекуле альдегидов и кетонов
В молекулах альдегидов и кетонов присутствует несколько реакционных центров:
Электрофильный центр - атом углерода карбонильной группы - предопределяет возможность нуклеофильной атаки;
Основный центр - атом кислорода - обусловливает возможность атаки протоном;
СН-кислотный центр, атом водорода которого обладает слабой протонной подвижностью и может, в частности, подвергаться атаке сильным основанием.
В целом альдегиды и кетоны обладают высокой реакционной способностью.
Класс органических соединений с общей формулой
где R - углеводородный радикал (остаток); в организме являются промежуточными продуктами обмена веществ.
Отдельные представители альдегидов обычно получают название от кислоты, образующейся при их окислении (например, уксусная кислота - уксусный альдегид). В зависимости от типа радикала различают насыщенные, ненасыщенные, ароматические, циклические альдегиды и другие. Если радикалом является остаток спирта, карбоновой кислоты и прочее, образуются альдегидоспирты, альдегидокислоты и другие соединения со смешанными функциями, обладающие химическими свойствами, присущими альдегидам и соответствующим R-группам. При замещении водорода альдегидной группы на углеводородный радикал получаются кетоны (см.), дающие многие сходные с альдегидами реакции. Один из простейших альдегидов - уксусный, или ацетальдегид СН 3 - СНО, иногда получают дегидрогенизацией этилового спирта над нагретой медью.
Распространен способ получения альдегида из углеводородов ацетиленового ряда путем присоединения к ним воды в присутствии катализатора, открытый М. Г. Кучеровым:
Эта реакция применяется при синтетическом производстве уксусной кислоты. Ароматические альдегиды обычно получают окислением ароматических, углеводородов, имеющих боковую метильную группу:
или действием на соответствующие углеводороды окиси углерода в присутствии НСl и катализатора.
Особенности и химические свойства альдегидов Связаны в основном со свойствами и превращениями альдегидной группы. Так, простейший из альдегидов - муравьиный, или формальдегид
альдегидная группировка которого связана с водородом, является газом; низшие альдегиды (например, ацетальдегид) - жидкости с резким запахом; высшие альдегиды - нерастворимые в воде твердые вещества.
Благодаря присутствию карбонильной группы и подвижного атома водорода альдегиды относятся к числу наиболее реакционноспособных органических соединений. Большинство из разносторонних реакций альдегидов характеризуется участием в них карбонильной группы. К ним относятся реакции окисления, присоединения и замещения кислорода на другие атомы и радикалы.
Альдегиды легко полимеризуются и конденсируются (см. Альдольная конденсация); при обработке альдегидов щелочами или кислотами получаются альдоли, например:
При отщеплении воды альдоль превращается в кротоновый альдегид
способный к дальнейшему присоединению молекул (путем полимеризации). Полученные в результате конденсации полимеры носят общее название альдольных смол.
При исследовании биологических субстратов (крови, мочи и так далее) положительный эффект реакций, основанных на окислении альдегидной группы, дает сумма редуцирующих веществ. Поэтому эти реакции, хотя и применяются для количественного определения сахара (глюкозы) по Хагедорну-Йенсену, а также пробы Ниландера, Гайнеса, Бенедикта и прочие, но не могут считаться специфическими.
Альдегиды играют большую роль в биологических процессах, в частности биогенные амины в присутствии ферментов аминоксидаз превращаются в альдегиды с последующим их окислением в жирные кислоты.
Радикалы альдегиды высших жирных кислот входят в состав молекул плазмалогенов (см.). Растительные организмы в процессах фотосинтеза для ассимиляции углерода используют муравьиный альдегид. Вырабатываемые растениями эфирные масла состоят в основном из циклических ненасыщенных альдегидов. (анисовый, коричный, ванилин и другие).
При спиртовом брожении под действием фермента карбоксилазы дрожжей происходит декарбоксилирование пировиноградной кислоты с образованием уксусного альдегида, превращающегося путем восстановления в этиловый спирт.
Альдегиды широко используются в синтезе многих органических соединений. В медицинской практике применяются как непосредственно альдегиды (см. Формалин , Паральдегид , Цитраль), так и синтетические производные, получаемые из альдегидов, например, уротропин (см. Гексаметилентетрамин), хлоралгидрат (см.) и другие.
Альдегиды как профессиональные вредности
Аьдегиды широко применяются в промышленном производстве синтетических смол и пластмасс, ванилинокрасочной и текстильной промышленности, в пищевой промышленности и парфюмерии. Формальдегид применяется главным образом в производстве пластмасс и искусственных смол, в кожевенно-меховой промышленности и так далее; акролеин - при всех производственных процессах, где жиры подвергаются нагреванию до t° 170° (литейные цеха - сушка стержней с масляным крепителем, электротехническая промышленность, маслобойные заводы и салотопенное производство и так далее). Более подробно - смотри статьи, посвященные отдельным альдегидам.
Все альдегиды, особенно низшие, обладают выраженным токсическим действием.
Альдегиды раздражают слизистые оболочки глаз и верхних дыхательных путей. По характеру общетоксического действия альдегиды являются наркотиками, однако наркотический эффект их значительно уступает раздражающему. Степень выраженности интоксикации определяется наряду с величиной действующей концентрации также характером радикала и как следствие - изменением физико-химических свойств альдегидов: низшие альдегиды (хорошо растворимые и высоколетучие вещества) обладают резким раздражающим действием на верхние отделы органов дыхания и сравнительно менее выраженным наркотическим действием; при увеличении длины углеводородной цепочки радикала растворимость и летучесть альдегидов падают, в результате чего снижается раздражающее, не нарастает наркотическое действие; раздражающее действие непредельных альдегидов сильнее, чем у предельных.
Механизм токсического действия альдегидов связан с высокой реакционной способностью карбонильной группы альдегидов, которая, вступая в реакции взаимодействия с тканевыми белками, обусловливает первичный раздражающий эффект, рефлекторные реакции центральной нервной системы, дистрофические изменения внутренних органов и так далее. Кроме того, попадая в организм, альдегиды подвергаются различным биохимическим превращениям; в этом случае токсическое действие на организм оказывают уже не сами альдегиды, а продукты их превращений. Альдегиды медленно выводятся из организма, способны кумулировать, чем объясняется развитие хронических отравлений, основные проявления которых наблюдаются в первую очередь в виде патологических изменений органов дыхания.
Первая помощь при отравлении альдегидами. Вывести пострадавшего на свежий воздух. Промыть глаза 2% щелочным раствором. Щелочные и масляные ингаляции. При явлениях асфиксии - вдыхание кислорода. По показаниям средства, стимулирующие сердечную деятельность и дыхание, успокаивающие средства (бромиды, валериана). При болезненном кашле - горчичники, банки, препараты кодеина. При отравлении через рот - промывания желудка, внутрь 3% раствор бикарбоната натрия, сырые яйца, белковая вода, молоко, солевые слабительные. При попадании на кожу - обмывание водой или 5% нашатырным спиртом.
См. также статьи, посвященные отдельным альдегидам.
Профилактика
Герметизация и автоматизация производственных процессов. Вентиляция помещений (см. Вентиляция). Использование индивидуальных средств защиты, например фильтрующего противогаза марки «А» (см. Противогазы), спецодежды (см. Одежда) и так далее.
Предельно допустимые концентрации в атмосфере производственных помещений: для акролеина - 0,7 мг/м 3 , для ацетальдегида, масляного и проппонового альдегидов - 5 мг/м 3 , для формальдегида и кротонового А. - 0,5 мг/м 3 .
Определение альдегидов. Все альдегиды суммарно определяются бисульфитным методом по связыванию кислым сернокислым натрием или колориметрически - с фуксиносернистой кислотой. Разработан полярографический метод (Петрова-Яковцевская), спектрофотометрический (Векслер).
Библиография
Бауер К. Г. Анализ органических соединений, пер. с нем., М., 1953; Несмеянов А. Н. и Несмеянов Н. А. Начала органической химии, кн. 1-2, М., 1969-1970.
Профессиональные вредности - Амирханова Г. Ф. и Латыпова З. В. Экспериментальное обоснование предельно допустимой концентрации ацетальдегида в воде водоемов, в кн.: Пром. загрязн. водоемов, под ред. С. Н. Черкинского, в. 9, с. 137, М., 1969, библиогр.; Быховская М. С., Гинзбург С. Л. и Xализова О. Д. Методы определения вредных веществ в воздухе, с. 481, М., 1966; Ван Вэнь-янь, Материалы к токсикологии альдегидов жирного ряда, в кн.: Материалы по токсикол. веществ, применяемых в производ. пластич. масс и синтетич. каучуков, под ред. Н. В. Лазарева и И. Д. Гадаскиной, с. 42, Л., 1957, библиогр.; Вредные вещества в промышленности, под ред. Н. В. Лазарева, т. 1, с. 375, Л., 1971, библиогр.; Гурвиц С. С. и Сергеева Т. И. Определение малых количеств альдегидов в воздухе производственных помещений методом производной полярографии, Гиг. труда и проф. заболев., №9, с. 44, 1960; Трофимов Л. В. Сравнительное токсическое действие кротонового и масляного альдегидов, там же, №9, с. 34, 1962, библиогр.; Цай Л. М. К вопросу о превращениях ацетальдегида в организме, там же, № 12, с. 33, 1962, библиогр.; Нinе С. Н. а. о. Studies on the toxicity of glycid aldehyde, Arch, environm. Hlth, v. 2, p. 23, 1961, bibliogr.; Jung F. u. Onnen K. Bindung und Wirkungen des Formaldehyds an Erythrocyten, Naunyn-Schmiedeberg"s Arch. exp. Path. Pharmak., Bd 224, S. 179, 1955; Nova H. a. Touraine R. G. Asthme au formol, Arch. Mai. prof., t. 18, p. 293, 1957; Skоg E. A lexicological investigation of lower aliphatic aldehydes, Actapharmacol. (Kbh.), v. 6, p. 299, 1950, bibliogr.
Б. В. Кулибакин; Н. К. Кулагина (проф.).
