Основы современной космологии. Космология

История космологии

Ранние формы космологии представляли собой религиозные мифы о сотворении (космогония) и уничтожении (эсхатология) существующего мира.

Китай

Эпоха Возрождения

Новаторский характер носит космология Николая Кузанского , изложенная в трактате Об учёном незнании . Он предполагал материальное единство Вселенной и считал Землю одной из планет, также совершающей движение; небесные тела населены, как и наша Земля, причём каждый наблюдатель во Вселенной с равным основанием может считать себя неподвижным. По его мнению, Вселенная безгранична, но конечна, поскольку бесконечность может быть свойственна одному только Богу. Вместе с тем, у Кузанца сохраняются многие элементы средневековой космологии, в том числе вера в существование небесных сфер, включая внешнюю из них - сферу неподвижных звёзд. Однако эти «сферы» не являются абсолютно круглыми, их вращение не является равномерным, оси вращения не занимают фиксированного положения в пространстве. Вследствие этого у мира нет абсолютного центра и чёткой границы (вероятно, именно в этом смысле нужно понимать тезис Кузанца о безграничности Вселенной) .

Первая половина XVI века отмечена появлением новой, гелиоцентрической системы мира Николая Коперника. В центр мира Коперник поместил Солнце, вокруг которого вращались планеты (в числе которых и Земля, совершавшая к тому же ещё и вращение вокруг оси). Вселенную Коперник по-прежнему считал ограниченной сферой неподвижных звёзд; по-видимому, сохранялась у него и вера в существование небесных сфер .

Модификацией системы Коперника была система Томаса Диггеса , в которой звёзды располагаются не на одной сфере, а на различных расстояниях от Земли до бесконечности. Некоторые философы (Франческо Патрици , Ян Ессенский) заимствовали только один элемент учения Коперника - вращение Земли вокруг оси, также считая звёзды разбросанными во Вселенной до бесконечности. Воззрения этих мыслителей несут на себе следы влияния герметизма, поскольку область Вселенной за пределами Солнечной системы считалась ими нематериальным миром, местом обитания Бога и ангелов .

Решительный шаг от гелиоцентризма к бесконечной Вселенной, равномерно заполненной звёздами, сделал итальянский философ Джордано Бруно . Согласно Бруно, при наблюдении из всех точек Вселенная должна выглядеть примерно одинаково. Из всех мыслителей Нового времени он первым предположил, что звёзды - это далёкие солнца и что физические законы во всем бесконечном и безграничном пространстве одинаковы . В конце XVI века бесконечность Вселенной отстаивал и Уильям Гильберт . В середине - второй половине XVII века эти взгляды поддержали Рене Декарт , Отто фон Герике и Христиан Гюйгенс .

Возникновение современной космологии

А. А. Фридман

Возникновение современной космологии связано с развитием в XX веке общей теории относительности (ОТО) Эйнштейна и физики элементарных частиц . Первое исследование на эту тему, опирающееся на ОТО, Эйнштейн опубликовал в 1917 году под названием «Космологические соображения к общей теории относительности». В ней он ввёл 3 предположения: Вселенная однородна, изотропна и стационарна. Чтобы обеспечить последнее требование, Эйнштейн ввёл в уравнения гравитационного поля дополнительный «космологический член ». Полученное им решение означало, что Вселенная имеет конечный объём (замкнута) и положительную кривизну .

Возраст Вселенной

Возраст Вселенной - время, прошедшее с момента Большого взрыва . Согласно современным научным данным (результаты WMAP 9), оно составляет 13,830 ± 0,075 млрд лет . Новые данные, полученные с помощью мощного телескопа-спутника «Планк» , принадлежащего Европейскому космическому агентству , показывают, что возраст Вселенной составляет 13,798 ± 0,037 миллиарда лет (68%-й доверительный интервал) .

Возраст Вселенной как функция космологических параметров

Современная оценка возраста Вселенной построена на основе одной из распространённых моделей Вселенной, так называемой стандартной космологической LCDM-модели .

Основные этапы развития Вселенной

Большое значение для определения возраста Вселенной имеет периодизация основных протекавших во Вселенной процессов. В настоящее время принята следующая периодизация :

  • Самая ранняя эпоха, о которой существуют какие-либо теоретические предположения, - это планковское время (10 -43 после Большого взрыва). В это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий . По современным представлениям, эта эпоха квантовой космологии продолжалась до времени порядка 10 -11 с после Большого взрыва.
  • Следующая эпоха характеризуется рождением первоначальных частиц кварков и разделением видов взаимодействий. Эта эпоха продолжалась до времён порядка 10 -2 с после Большого взрыва. В настоящее время уже существуют возможности достаточно подробного физического описания процессов этого периода.
  • Современная эпоха стандартной космологии началась через 0,01 секунды после Большого взрыва и продолжается до сих пор. В этот период образовались ядра первичных элементов, возникли звёзды, галактики, Солнечная система .

Важной вехой в истории развития Вселенной в эту эпоху считается эра рекомбинации , когда материя расширяющейся Вселенной стала прозрачной для излучения. По современным представлениям, это произошло через 380 тыс. лет после Большого взрыва. В настоящее время это излучение мы можем наблюдать в виде реликтового фона , что является важнейшим экспериментальным подтверждением существующих моделей Вселенной.

WMAP

Карта микроволнового излучения, построенная WMAP

Собранная WMAP информация позволила учёным построить самую детальную на сегодняшний день карту флуктуаций температуры распределения микроволнового излучения на небесной сфере. Ранее подобную карту удалось построить по данным аппарата НАСА COBE , однако её разрешение существенно - в 35 раз - уступало данным, полученным WMAP.

Данные WMAP показали, что распределение температуры реликтового излучения по небесной сфере соответствует полностью случайным флуктуациям с нормальным распределением . Параметры функции, описывающей измеренное распределение, согласуются с моделью Вселенной, состоящей:

  • на 4 % из обычного вещества,
  • на 23 % из так называемой тёмной материи (возможно, из гипотетических тяжёлых суперсимметричных частиц) и
  • на 73 % из ещё более таинственной тёмной энергии , вызывающей ускоренное расширение Вселенной.

Данные WMAP позволяют утверждать, что тёмная материя является холодной (то есть состоит из тяжёлых частиц, а не из нейтрино или каких-либо других лёгких частиц). В противном случае лёгкие частицы, движущиеся с релятивистскими скоростями, размывали бы малые флуктуации плотности в ранней Вселенной.

Среди других параметров, из данных WMAP определены (исходя из LCDM -модели, то есть фридмановской космологической модели с L-членом и холодной тёмной материей англ. Cold Dark Matter ) :

  • возраст Вселенной : (13.73 ± 0.12)?10 9 лет;
  • постоянная Хаббла : 71 ± 4 км/с/Мпк ;
  • плотность барионов в настоящее время: (2,5 ± 0,1)?10 -7 см -3 ;
  • параметр плоскостности Вселенной (отношение общей плотности к критической): 1,02 ± 0,02;
  • суммарная масса всех трёх типов нейтрино : <0,7 эВ.

По данным обзора Planck TT, TE, EE+lensing+BAO+JLA+H0

  • 100th MC = 1.04077 ± 0.00032
  • O b h 2 = 0.02225 ± 0.00016
  • O c h 2 = 0.1198 ± 0.0015
  • t=0.079 ± 0.017
  • ln(10 10 As)=3.094 ± 0.034
  • n s = 0.9645 ± 0.0049
  • H 0 = 67.27 ± 0.66
  • O m =0.3089 ± 0.0062
  • O L = 0.6911 ± 0.0062
  • Sm v < 0.17
  • O k =0.0008 -0.0039 +0.0040
  • w= -1.019 -0.08 +0.075

Примечания

  1. , p. 103.
  2. О влиянии герметической литературы на Брадвардина см. работу .
  3. , с. 2-17 и особенно с. 14.
  4. , p. 105-106.
  5. , с. 31-45.
  6. WMAP Cosmological Parameters (англ.) . NASA . Goddard Space Flight Center. Проверено 22 марта 2013. Архивировано 22 марта 2013 года.
  7. N° 7-2013: PLANCK REVEALS AN ALMOST PERFECT UNIVERSE (англ.) .
  8. Planck Collaboration. Planck 2013 results. XVI. Cosmological parameters (англ.) // ArXiv/astro-ph. - 2013. - Bibcode : 2013arXiv1303.5076P . - arXiv :1303.5076 .
  9. P. A. R. Ade et al . (Planck Collaboration) (22 March 2013).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

  • Введение 3
  • 5
  • 2. Релятивистская космология (А. Эйнштейн, А.А. Фридман) 7
  • 11
  • 13
  • Заключение 15
  • Список литературы 16

Введение

Этот реферат посвящен космологии - науке о строении и эволюции Вселенной как целого. На протяжении тысячелетий люди пытались ответить на вопросы “Как устроен мир?”, “Всегда ли мир существовал?”, “Не погибнет ли он?” и так далее. Двадцатый век, благодаря мощным телескопам, радиотелескопам, спутникам и новым фундаментальным физическим теориям - в первую очередь, теории относительности и квантовой механике - пролил новый свет на все эти вопросы, и появилась новая физическая теория - теория Большого Взрыва.

Изменение в представлениях о форме и размерах Вселенной на протяжении веков и до наших дней описано в начальных главах многих научно-популярных книг по космологии. Главные темы космологии сейчас - это ядерные превращения в звездах и физика субатомных частиц. А космогония (от слова gonia - угол), являясь в наше время лишь частью более общей науки - космологии, говорит именно о крупномасштабных пространственных характеристиках Вселенной - не об архитектурных и конструктивных деталях мироздания, а как бы со стороны целиком показывает модель, макет этого «здания», в котором мы живем.

В начале ХХ века Эйнштейн в своей специальной теории относительности (СТО) - рассматривавшей только равномерное движение - сумел внести в механику Ньютона изменения, связанные с постоянством скорости света - как предельной скорости движения вообще. Последствия этого и других изменений были далеко идущими. Из общей теории относительности (ОТО) Эйнштейна, рассматривавшей уже и ускоренное движение, и силы тяготения, следовало, что трехмерное пространство Вселенной не бесконечно - как бесконечны, например, одномерная прямая линия и двумерная плоскость - а конечно по объему и замкнуто само на себя, как конечны и замкнуты одномерная линия окружности и двумерная поверхность шара - сфера.

Но одномерная линия - окружность может быть искривлена и замкнута только потому, что у плоскости, на которой она находится - два измерения. Двумерная поверхность - сфера может быть замкнута только потому, что в пространстве, где она находится - три измерения. А трехмерное пространство Вселенной может иметь свойства искривленности и быть замкнутым, потому что наш мир на самом деле четырехмерен, и четвертое его измерение - это время. Оно фигурировало в качестве четвертого измерения уже в ранней - «специальной» теории относительности.

Самый серьезный удар по представлению о стационарности Вселенной был нанесен результатами измерений скоростей удаления галактик, полученными Хабблом.

1. Основные этапы развития представлений о Вселенной

Вплоть до эпохи Великих географических открытий Колумба, Магеллана и других, большинство людей считало, что Земля это «круг» (так написано в Библии: Исаия 40:22), до краев которого можно дойти и заглянуть с его края «вниз» - в «бездну». На краю круга Земли небесный свод («Твердь»), подобно шатру, опирается на Землю. По тверди ходят Солнце и Луна. А звезды - это шляпки серебряных гвоздей, вбитых в купол-твердь (слово «звезды» - это «гвезды» - гвозди).

Вокруг шарообразной Земли, согласно модели Птолемея, как матрешки - одна в другой, располагались несколько небес - вращающихся прозрачных хрустальных сфер, к которым были прикреплены: плоский фонарь Луна - к ближайшему от Земли небу, к следующему небу - Меркурий, далее Венера, затем Солнце, к следующим - Марс, Юпитер, Сатурн, и к последнему - то ли седьмому, то ли девятому небу - знакомые нам «серебряные гвозди» - звезды.

Хотя было непонятно, как жители противоположной стороны Земли могут жить там вверх ногами и удерживаться от падения «вниз», в «бездну», но всему этом приходилось верить, ведь в основе модели Птолемея лежали элементарные измерения и расчеты, произведенные в Египте.

Николай Коперник, по прошествии более чем тысячи лет, вдруг обратил внимание на некоторые несуразности в модели Птолемея и предложил свою модель - с Солнцем в центре мира. А Галилей, открывший силы инерции, заявил: если страшно удаленное седьмое небо со звездами делает один оборот за сутки, оно развалится на куски от такой скорости вращения, - вращается не небо, а Земля! И, наконец, Джордано Бруно подытожил: «Значит, нет никакого твердого неба со звездами-гвоздями, звезды - это такие же солнца, как наше. И, значит, нет у Вселенной никакого центра».

Эти идеи подхватывались и развивались. На основе законов динамики Галилея и закона всемирного тяготения Ньютона были вычислены расстояния от Солнца до вращающихся вокруг него планет, а также их размеры и массы. И тем же методом, каким путешественники по Нилу вычислили размер Земного шара, теперь, «путешествуя» на Земном шаре вокруг Солнца, и измеряя из противоположных точек уже измеренной орбиты угол между Солнцем и звездами, вычислили расстояния до ближайших из них. Для большинства же звезд изменения угла (называемые параллаксом) были столь малы, что их нельзя было измерить - так эти звезды оказались далеки.

Так появилась ньютоновская модель, господствовавшая до 20-х годов ХХ века. Согласно ей, Вселенная бесконечна в пространстве и во времени, то есть вечна. Звезды вращаются вокруг центра своей галактики. Группы галактик вращаются вокруг центра своей группы. Скопления групп галактик образуют в свою очередь скопления более крупного порядка и т. д. и т. п. Совсем недавно обнаружили, что скопления галактик образуют в пространстве Вселенной ячеистую структуру наподобие пчелиных сот. Но и это не меняет того факта, что по всем направлениям от нас на расстоянии до 12 миллиардов световых лет, которого достигают современные телескопы, все везде одно и то же. И нет никаких оснований думать, что за пределами видимости есть что-то другое.

На границах видимости обнаружены гигантские светящиеся скопления материи, названные квазарами, которых нет вблизи нас. Это можно объяснить тем, что мы видим приграничные области такими, какими были они - и, очевидно, вся наша Вселенная - 10-12 млрд. лет назад. Изменчивость Вселенной во времени подрывает идею ее вечности, а значит, и всю ньютоновскую модель.

2. Релятивистская космология (А. Эйнштейн, А. А. Фридман)

Общая теория относительности, созданная Эйнштейном в 1916 г., просто и естественно учитывает механизм «Большого взрыва». В этой теории присутствие вещества приводит к изменению геометрии пространства на космическом уровне. До сих пор из-за нехватки наблюдательных данных эти изменения не могут быть оценены в полной мере; в частности, пока нет достаточно точных данных о полном количестве вещества во Вселенной.

А. А. Фридман обнаружил еще одно следствие из теории Эйнштейна: замкнутое трехмерное пространство Вселенной не может быть стационарным, а должно расширяться, раздуваться - как растягивается замкнутая двумерная поверхность воздушного детского шарика при его надувании. Расширяется ли наша Вселенная на самом деле и почему расширяется - доказать и объяснить это Фридман предоставил другим. Он говорил, что его дело - решать уравнения, а разбираться в физическом смысле решений должны другие специалисты - физики, астрономы.

Согласно модели (называемой моделью Фридмана), которую предпочитал Эйнштейн, Вселенная содержит достаточно вещества, чтобы быть искривленной настолько, что она замыкается на саму себя, как, например, воздушный шарик. Если надувать такой шарик, то любая картинка, нарисованная на его поверхности, увеличивается в размере, сохраняя при этом те же пропорции между своими частями. Каким-нибудь муравьям, живущим в таком мире, покажется, что они друг от друга удаляются, но ни один из них не будет иметь достаточного основания считать себя центром Вселенной. Согласно представлениям этой модели, расширение Вселенной должно прекратиться примерно через 40 млрд. лет, после чего должно начаться сжатие, в результате чего еще через 100 млрд. лет Вселенная снова окажется в состоянии большой плотности.

Основная трудность, которая встречается при объяснении модели Фридмана, возникает при определении того, что собой представляет внутренний объем воздушного шарика. В нашем мире можно передвигаться вдоль трех направлений: север - юг, запад - восток, вверх - вниз; в мире, который расположен на поверхности воздушного шарика, остаются только первые два. Третье направление (измерение) используется здесь для обозначения кривизны и носит, таким образом, лишь методический характер. Поэтому, хотя наша Вселенная также имеет кривизну, но необходимость введения каких-либо измерений, кроме привычных трех, существует лишь с методической или математической точек зрения; как учили Гаусс и Риман, нет смысла покидать наш мир, чтобы познавать его свойства.

Поскольку гравитационные взаимодействия являются доминирующими на мегауровне организации материи, космологические модели Вселенной должны строиться в соответствии с требованиями теории относительности на основе реально наблюдаемых астрофизических явлений, таких как:

1. Однородность и изотропность космического пространства.

2. Конечная интенсивность светового потока, приходящего из космоса.

3. Красное смещение в спектрах излучения далеких звезд.

4. Существование реликтового излучения (однородного и изотропного фона электромагнитных волн, соответствующего температуре около 3К).

Конечное количество света, приходящего от звездного неба, заставляет отвергнуть классические представления о бесконечном космическом пространстве, однородно заполненном звездами. Предпринимаемые в рамках классической концепции попытки построения космологических моделей с неоднородным распределением звезд в пространстве, находятся в противоречии с астрономическими наблюдениями (неоднородность в концентрации звезд наблюдается только на «относительно малых» космических масштабах вплоть до межгалактических скоплений).

А. Эйнштейном была предложена модель Вселенной, в которой локальные искривления пространства-времени гравитирующими массами приводят к глобальному искривлению, делающему Вселенную замкнутой по пространственным координатам. В этой цилиндрической модели Эйнштейна временная координата не искривляется (время равномерно течет от прошлого к будущему). Впоследствии цилиндрическая модель была усовершенствована голландским астрофизиком Виллем де Ситтером, предположившим на основании наблюдаемого красного смещения, что время в удаленных частях Вселенной течет замедленно (искривление по временной координате) - модель замкнутой гиперсферы.

Обе эти стационарные модели Вселенной имеют два недостатка: необходимость предположить существование дополнительных взаимодействий, препятствующих сжатию Вселенной под действием гравитирующих масс и проблему «утилизации» света, испущенного звездами в предшествующие моменты времени в замкнутое пространство.

На сегодняшний день наиболее популярна предложенная Фридманом модель расширяющейся Вселенной (красное смещение и конечная светимость неба объясняются эффектом Доплера, нет необходимости во введении компенсирующих гравитацию взаимодействий), глобально искривленной из-за наличия гравитирующих масс. Обсуждаются две ее модификации:

1. Замкнутая модель (геометрический аналог - расширяющаяся гиперсфера) предсказывает постепенное замедление расширения вследствие торможения гравитационными силами с последующим переходом к сжатию.

2. Открытая модель (геометрический аналог - «седло») замедляющееся расширение, происходящее бесконечно долго.

В настоящее время предпочтение отдается открытой модели, поскольку оценки средней плотности вещества во Вселенной, сделанные на основе наблюдаемой концентрации звезд, показывают, что гравитационные силы не способны остановить происходящее с наблюдаемой скоростью разбегание. Оценки могут существенно измениться в пользу закрытой модели при наличии в космосе скрытых масс несветящегося вещества (например, за счет ненулевой массы покоя нейтрино).

Уравнения ОТО оказались весьма «гибкими» и допускают наличие большого числа космологических моделей Вселенной и сценариев их временного развития.

3. Концепция расширяющейся Вселенной

Самый серьезный удар по представлению о стационарности Вселенной был нанесен результатами измерений скоростей удаления галактик, полученными Хабблом. В 1929 г. после огромной работы по получению и изучению спектров галактик, а также по определению различными методами расстояний до этих галактик, Э. Хаббл надежно установил факт расширения Вселенной. Он показал, что в «разбегании» галактик существует замечательная закономерность. Чем дальше от нас находится галактика, тем с большей скоростью она удаляется, то есть тем больше её красное смещение. Причем закон имеет предельно простую линейную форму: v=HR, где v - скорость галактики, R - расстояние до нее, а Н - коэффициент пропорциональности, называемый постоянной Хаббла.

Чтобы по достоинству оценить результат Хаббла, нужно помнить, что звезды не рассеяны во Вселенной равномерно: они, наоборот, сгруппированы в отдельные «острова» - галактики, каждая из которых включает в себя в среднем более 100 млрд. звезд, а также межзвездный газ и межзвездную пыль; галактики в большинстве своем имеют «правильную» форму спирали или эллипса, при этом диаметр галактики может достигать и даже превосходить 100000 световых лет. Млечный путь как раз представляет собой одну такую галактику, ту самую «Галактику», которая включает в себя в качестве незначительной периферийной звезды и наше Солнце. В действительно космическом масштабе мы имеем дело уже не со звездами, а с галактиками как отдельными объектами, расстояния до которых измеряются миллионами световых лет.

Итак, Хаббл в результате целой серии кропотливых измерений обнаружил, что любая галактика удаляется от нас в среднем со скоростью, пропорциональной расстоянию до нее, с коэффициентом пропорциональности, равным примерно 20 км/с на миллион световых лет. Например, галактика, находящаяся на расстоянии в 100 млн. световых лет, удаляется от нас со скоростью 2000 км/с. Обнаружены квазары, которые удаляются от нас со скоростью 285000 км/с и которые, следовательно, находятся на расстояниях порядка 10 млрд. световых лет.

Открытие Хаббла окончательно разрушило существовавшее со времен Аристотеля представление о статичной, незыблемой Вселенной, уже, впрочем, ранее получившее сильный удар при открытии эволюции звезд. Значит, галактики вовсе не являются космическими фонарями, подвешенными на одинаковых расстояниях друг от друга для утверждения сил небесных, и, более того, раз они удаляются, то когда-то в прошлом они должны были быть ближе к нам.

Удаляясь со скоростью 20 км/с, галактика проходит примерно 600 млн. км за год, или 60 световых лет за миллион лет; на то, чтобы преодолеть (при постоянной скорости) тот миллион световых лет, который нас разделяет, ей, по-видимому, понадобилось несколько меньше, чем 20 млрд. лет. Следовательно, около 20 млрд. лет тому назад все галактики, судя по всему, были сосредоточены в одной точке, поскольку (согласно закону Хаббла) галактики, которые находятся на расстояниях в десять раз больше других, имеют в десять же раз большую скорость; следовательно, время удаления одинаково для всех галактик.

4. Концепция «Большого Взрыва»

Прокручивая ретроспективно киноленту о жизни Вселенной, мы могли бы увидеть, что было время, а именно около 25 млрд. лет тому назад, когда все галактики были собраны вместе в одной точке. Разумеется, к такой оценке нужно относиться с осторожностью и представлять, что она справедлива только по порядку величины. Во-первых, гравитационное притяжение непрерывно замедляет движение галактик; во-вторых, почти наверняка галактики сами образовались лишь примерно через миллиард лет после начала расширения. Но остается фактом, что Вселенная когда-то начинала свое развитие, будучи намного более плотной и, занимая область намного меньшую, чем в настоящее время; ее эволюцию можно сравнить разве что с гигантским взрывом глобального масштаба - с так называемым «Большим взрывом». Примечательно, что указанный масштаб времени, в общем, согласуется с результатами, полученными при исследовании эволюции звезд.

Наличие разбегания галактик в настоящее время требует предположения о том, что в прошлом вещество Вселенной было более плотным. Экстраполяция наблюдаемых скоростей на значительно более ранние периоды позволяет оценить время, когда это расширение началось в результате Большого Взрыва - около 25 млрд. лет назад. Известные на сегодняшний день законы физики позволяют воспроизвести достаточно правдоподобный сценарий расширения, начиная с нескольких тысячных секунды после Большого Взрыва (что происходило до этого, напр. предшествовало ли ему сжатие предыдущего цикла, на современном этапе развития естествознания не обсуждается, поскольку не может быть хотя бы косвенно проверено экспериментом).

Теория горячей Вселенной была первоначально разработана Г. А. Гамовым и др. для объяснения наблюдаемого химического состава Вселенной. Ведь первоначально все вещество представляло собой в основном водородную плазму, а затем, в эпоху так называемого нуклеосинтеза, образовались ядра более тяжелых химических элементов - различных изотопов гелия и лития. К ядрам водорода, которые представляют собой одиночные протоны, примешались также более сложные ядра дейтерия - тяжелого изотопа водорода. Так в нашем мире появилось разнообразие химических элементов. Однако пройдет еще немало времени, прежде чем образуются первые звезды, в которых в процессе эволюции родится все многообразие химических элементов, наблюдаемых сегодня.

Какой же была Вселенная в момент своего рождения? Наш вопрос имеет смысл, только если он относится к мгновению, следующему непосредственно за началом, то есть к моменту времени, когда применение физических законов становится уже разумным. Спустя всего одну сотую секунды после начала космос занимал гораздо меньший объем, чем теперь, и был заполнен сжатым веществом при температуре в миллиарды градусов с плотностью в триллионы раз выше, чем плотность воды. В этих условиях не могли существовать ни ядра, ни тем более атомы, которые были бы разрушены бурным тепловым движением. Расширение Вселенной происходило с очень большой скоростью. Через несколько минут расширение Вселенной и ее охлаждение достигли такой степени, что стало возможным образование атомных ядер. Спустя еще миллион лет температура упала ниже трех тысяч градусов, и началось образование атомов. Бросив взгляд вокруг себя в ту эпоху, мы увидели бы пространство, заполненное облаком из раскаленных газов и ослепляющим светом. Еще через миллиард лет началось образование галактик, звезд и стабильного вещества в современном виде.

Заключение

Наше место во Вселенной - одна из любимейших тем популяризаторов астрономии все времен. Наши читатели помнят, конечно же, картинки из учебников, на которых показано, что попадет в куб с растущим в геометрической прогрессии ребром, если в его центр поместить человека... Что же, мы также отдадим дань этой традиции. Представим себя пассажирами звездолета, отправляющегося в далекое космическое путешествие. Мы с любопытством смотрим в иллюминаторы, направленные на Землю. Что мы в них видим?

Астрономические наблюдения чёрных дыр затруднены, поскольку такие объекты не излучают свет. Однако обнаружены звезды, совершающие движение, характерное для компонент двойных звезд, хотя парной звезды не наблюдается. Весьма вероятно, что её роль играет черная дыра или не излучающая нейтронная звезда.

Помимо перечисленных обнаружен ряд астрофизических объектов, свойства которых не укладываются в приведенные схемы - квазары. Наблюдаемое их излучение аналогично пульсарному, но очень сильно смещено в красную область. Величина красного смещения указывает на то, что квазары находятся так далеко, что их наблюдаемая яркость соответствует излучению, превосходящему по интенсивности излучения галактического скопления. В то же время наличие быстрых изменений интенсивности ставит вопрос о механизме согласования излучения элементами системы, размеры которой должны составлять тысячи световых лет.

Список литературы

1. Горелов А.А. Концепции современного естествознания: Учебное пособие для студентов высших учебных заведений, обучающихся по гуманитарным специальностям. - М.: Гуманит. изд. центр ВЛАДОС, 2002.

2. Концепция современного естествознания: Под ред. профессора С.И. Самыгина. Изд. третье. Ростов н/Д: «Феникс», 2001 - 576 с.

3. Алексеев В.П. Становление человечества. М.,1984. Бор Н. Атомная физика и человеческое познание. М.,1961 Борн М. Эйнштейновская теория относительности.М.,1964.

4. Вайнберг С. Первые три минуты. Современный взгляд на происхождение Вселенной. М.,1981.

5. Дорфман Я.Г. Всемирная история физики с начала 19 века до середины 20 века. М.,1979.

6. Кемпфер Ф. Путь в современную физику. М.,1972.

7. Мэрион Дж. Б. Физика и физический мир. М.,1975

8. Найдыш В.М. Концепции современного естествознания. Учебное пособие. М.,1999.

9. Николис Г., Пригожин И. Познание сложного. М.,1990.

10. Пригожин И. От существующего к возникающему. М.,1985.

11. Степин В.С. Философская антропология и философия науки. М.,1992.

12. Фейнберг Е.Л. Две культуры. Интуиция и логика в искусстве и науке. М.,1992.

Подобные документы

    История развития представлений о Вселенной. Космологические модели происхождения Вселенной. Гелиоцентрическая система Николая Коперника. Рождение современной космологии. Модели Большого взрыва и "горячей Вселенной". Принцип неопределенности Гейзенберга.

    реферат , добавлен 23.12.2014

    Идеи современной физики. Основные этапы развития представлений о Вселенной. Модель Птолемея, Коперника. Эпоха Великих географических открытий. Релятивистская космология (А. Эйнштейн, А. А. Фридман). Концепция расширяющейся Вселенной, "Большого Взрыва".

    реферат , добавлен 07.10.2008

    Характеристика наиболее известных моделей Вселенной: модель де-Ситтера, Леметра, Милна, Фридмана, Эйнштейна-де Ситтера. Космологическая модель Канта. Теория Большого взрыва. Календарь Вселенной: основные эры в развитии Вселенной и их характеристика.

    презентация , добавлен 17.11.2011

    Сущность и основные концепции космологии, этапы ее изучения и современные знания, гипотезы и выводы из них. Модель горячей Вселенной, ее преимущества и несовпадения. Структура и основные компоненты Вселенной, порядок взаимодействия и методы исследования.

    реферат , добавлен 05.05.2009

    Модель Большого Взрыва как модель эволюционной истории Вселенной, согласно которой она возникла в бесконечно плотном состоянии и с тех пор расширяется, ее преимущества и недостатки. Расширяющаяся Вселенная, теории рождения и гибели, их сторонники.

    курсовая работа , добавлен 27.11.2010

    Сущность понятия "Вселенная". Изучение истории развития крупномасштабной структуры Вселенной. Модель расширяющейся Вселенной. Теория большого взрыва (модель горячей Вселенной). Причина расширения в рамках ОТО. Теория эволюции крупномасштабных структур.

    контрольная работа , добавлен 20.03.2011

    Космология как наука о Вселенной, методика и закономерности изучения. Структура и составные части Вселенной, законы взаимодействия, существующие модели. Теории эволюции Вселенной, их отличительные особенности и доказательства, современные исследования.

    контрольная работа , добавлен 25.11.2010

    Происхождение и эволюция Вселенной, ее дальнейшие перспективы. Креативная роль физического вакуума. Парадоксы стационарной Вселенной. Основные положения теории относительности Эйнштейна. Этапы эволюции горячей Вселенной, неоднозначность данного сценария.

    курсовая работа , добавлен 06.12.2010

    Учение о Вселенной как о едином целом. Охваченная астрономическими наблюдениями область Вселенной (Метагалактика). Гипотетическое представление о Вселенной. Взгляды ученых на механизм расширяющейся Вселенной. Процессы рождения и развития Вселенной.

    реферат , добавлен 24.09.2014

    Происхождение Вселенной - гипотезы и модели; космологические теории Большого взрыва и горячей Вселенной. Образование Солнечной системы. Биологическая, экологическая, социально-экономическая и культурно-историческая эволюции; возникновение жизни на Земле.

Космология: открытия и загадки

Космология – особая наука. Ее предмет – вся Вселенная, рассматриваемая как единое целое, как физическая система с особыми свойствами, которые не сводятся к сумме свойств населяющих ее астрономических тел и физических полей. Размеры наблюдаемой Вселенной приблизительно 10 миллиардов световых лет. Это самый большой по пространственному масштабу объект науки. К тому же он существует в единственном экземпляре. В этом отношении космология, очевидно, сильно отличается от других естественнонаучных дисциплин. Но, как и в любой науке, главное в космологии – надежно установленные факты, достоверные сведения о реальных объектах, процессах и явлениях. В статье известных российских астрофизиков рассказывается о четырех крупнейших открытиях в космологии и трудных загадках этой науки – как старых, так и совсем свежих, которые еще предстоит разрешить

Чем дальше, тем быстрее

Современная космология берет начало в первые десятилетия ХХ века. В 1915-1917 гг. американский астроном Весто Слайфер обнаружил, что галактики (которые тогда называли туманностями) не стоят на месте, а движутся в пространстве, причем большинство из них удаляются от нас. Этот вывод следовал из наблюдений спектров галактик: их движение проявляло себя в сдвиге спектральных линий к красному концу спектра.

Такого рода красное смещение , которое можно интерпретировать как давно известный в физике эффект Доплера, имеет, как впослед­ствии оказалось, всеобщий характер: оно наблюдается у всех галактик во Вселенной. Исключение составляют только самые близкие к нам звездные системы, например, знаменитая туманность Андромеды и другие (менее крупные) галактики, находящиеся на расстояниях, не превышающих примерно 1 мегапарсек (1 Мпк ? 3,26 млн световых лет). Если расстояния больше 1 Мпк, то галактики, по выражению Слайфера, «разбегаются в пространстве».

В 1929 г. другой американский исследователь, Эдвин Хаббл, которого нередко называют величайшим астрономом ХХ в., определил, что движение разбегающихся галактик следует простому закону: скорость V удаления от нас галактики пропорциональна расстоянию R до нее: V = H R. Это соотношение между скоростью и расстоянием называют сейчас законом Хаббла , а коэффициент пропорциональности H – постоянной Хаббла. Величина H постоянна в том смысле, что она одинакова для всех галактик и не зависит ни от расстояния до галактики, ни от направления на нее на небе. По современным данным, значение постоянной Хаббла лежит в пределах от 60 до 75 км/с на мегапарсек.

Эдвин Хаббл (1889-1953), Астроном Обсерватории Маунт-Вилсон в Калифорнии, Наблюдал галактики с помощью самого мощного в его время Телескопа Диаметром 2,5 м. В 1929 г. он установил количественную закономерность в Явлении Разбегания Галактик (Закон Хаббла)

Удаление галактик по закону Хаббла наблюдают сейчас вплоть до расстояний в несколько тысяч мегапарсек. Если галактика находится на расстоянии, скажем, 1000 Мпк, то она движется от нас прочь со скоростью 60-75 тыс. км/с. Это огромная скорость, которая лишь в 4-5 раз уступает скорости света. Всеобщее разбегание галактик - самый грандиозный феномен природы.

Открытия Слайфера и Хаббла, а также дальнейшие исследования заложили наблюдательную основу, на которой строится и развивается вся современная космология. Мы знаем теперь, что живем в огромном мире, который к тому же расширяется со временем. Расширение началось около 14 млрд лет назад; этот гигантский промежуток времени и считается возрастом мира. А событие, которое породило космологическое расширение, называют Большим Взрывом .

Но какова физическая природа Большого Взрыва? Откуда взялись у галактик огромные скорости разбегания? Что заставило их стремительно удаляться друг от друга? На эти вопросы не смогли ответить ни знаменитые астрономы-наблюдатели, основатели космологии, ни великие физики, начиная с Эйнштейна. Нет ответа на них и у космологов наших дней. Возможно, это самая трудная и самая не поддающаяся разрешению загадка из когда-либо возникавших в естественных науках. Мы не знаем, с чего, собственно, началось космологическое расширение, не имеем представления о физике, которая могла бы за этим стоять. Не известно даже, как нужно ставить задачу о причине космологического расширения. Тем более ничего нельзя сказать о том, что было до этого события, и даже не вполне понятно, что значит здесь «до».

И тем не менее сама возможность расширения мира была предсказана русским математиком Александром Фридманом, классиком мировой науки. Пользуясь теорией Эйнштейна, Фридман разработал в 1922-1924 гг. физико-математическую модель мира, который находится в состоянии общего расширения. Прямым следствием этой модели является закон пропорциональности скорости и расстояния, который и был открыт в наблюдениях Хаббла. Космологическая модель Фридмана – теоретическая база современной космологии. Эта модель в сочетании с данными астрономических наблюдений очень хорошо описывает динамику космологического расширения. Конечно, не с «самого начала», о котором ничего не известно. Но замечательно, что теория Фридмана справедлива сразу же после первой секунды космологического расширения. Кроме этой первой секунды, вся дальнейшая история мира нам известна; более того, эта теория говорит и о будущем Вселенной: она предсказывает, что космологическое расширение будет продолжаться неограниченно долго.

Лишний вес Вселенной

В 1933 г. швейцарско-американский астроном Фриц Цвикки заметил, что кроме светящегося вещества галактик во Вселенной должны быть еще невидимые, «скрытые» массы, которые проявляют себя только своим тяготением. Он изучал скопление галактик Кома в созвездии Волосы Вероники – крупное образование, содержащее тысячи звездных систем, подобных туманности Андромеды или нашей Галактике. Галактики движутся в этом скоплении со скоростями, достигающими 1000 км/с. Чтобы удержать их в объеме скопления, требуется тяготение, которое не способны создать одни только видимые, светящиеся массы самих галактик. Для этого необходимо более сильное тяготение, и, согласно подсчетам Цвикки, требуются дополнительные массы, которые примерно в 10 раз больше суммарной видимой массы галактик скопления.

Позднее, в 1970-х гг., усилиями астрономов СССР и США было обнаружено, что скрытые массы должны присутствовать не только в скоплениях галактик, но и в изолированных крупных галактиках. Яан Эйнасто, Вера Рубин, Джеремайя Острайкер, Джим Пиблс и их коллеги выяснили, что скрытые массы образуют невидимые гало галактик. Дело в том, что можно измерить зависимость скорости вращения спиральных галактик от расстояния до центра (кривая вращения ), которое прослеживается как внутри звездной системы, так и вне ее (по движению облаков нейтрального водорода). В области вне видимого диска галактики кривая вращения становится, как правило, плоской, т. е. практически не зависит от расстояния. Во всех случаях ход этой «плоской» зависимости указывает на присутствие скрытой материи и внутри звездной системы, и вне ее, причем масса невидимой материи в гало в 3-10 раз больше массы галактики.

Эти гало имеют почти сферическую форму, их радиусы в 5-10 раз превышают размеры самих звездных систем. Такие крупные галактики, как, скажем, туманность Андромеды или наша Галактика, состоят из звездного диска, погруженного в распределение невидимой массы, которое простирается на расстояния до 100 кпк. Эти темные гало, как и дополнительные массы у Цвикки, проявляют себя исключительно тяготением. Невидимое вещество, наполняющее гало галактик и скоплений, принято сейчас называть темной материей .

Другие интересные эмпирические данные, подтверждающие существование темной материи, связаны с эффектом гравитационной линзы . Скопления галактик создают эйнштейновский эффект отклонения света полем тяготения. Источником света служат в этом случае далекие галактики и квазары. Изображения галактик искажаются при прохождении их света в гравитационном поле скопления, служащего своеобразной гравитационной линзой. Различают сильное и слабое линзирование. При сильном линзировании искажение столь значительно, что появляется несколько изображений источника. Это происходит, когда угловое расстояние между линзой и источником относительно невелико. При сравнительно больших угловых расстояниях искажение не так значительно (слабое линзирование), и оно сводится к изменению видимой формы источника, но уже без дробления его изображения. В обоих случаях этот эффект дает указание на массу скопления, служащего гравитационной линзой. Изучая такие искажения для сотен тысяч и миллионов далеких галактик, можно получить сведения о величине и распределении массы в скоплениях-линзах. Наблюдения такого рода неизменно указывают на то, что скопления содержат большие скрытые массы.

Открытие темной материи – второе (после открытия космологического расширения) важнейшее событие в истории космологии. Обычное вещество, из которого состоит планета Земля (и все, что на ней, включая и нас самих), Солнце, другие звезды, складывается всего из трех видов элементарных частиц: протонов, нейтронов и электронов. А темная материя, которой во Вселенной гораздо больше, имеет совсем другой состав: это не барионы (протоны и нейтроны), не электроны, а… неизвестно что.

Четверть века назад Я. Б. Зельдович активно развивал представление о том, что темная материя могла бы состоять из нейтрино. Космологические нейтрино (и антинейтрино) определенно имеются во Вселенной. Они вышли из равновесия с веществом, когда возраст мира был меньше одной секунды, и с тех пор присутствуют в космосе, взаимодействуя с остальными видами энергии практически только гравитационно. Их должно быть в среднем около 300 в каждом кубическом сантиметре пространства. В начале 1980-х гг. казалось, что лабораторный физический эксперимент позволяет этим частицам иметь массы, подходящие для того, чтобы нейтрино могли играть роль темной материи. Сейчас, однако, стало ясно, что массы нейтрино значительно меньше, так что на них можно списать в лучшем случае примерно 10 % темной материи. Каковы же тогда основные носители этой субстанции?

Одна из современных гипотез, выросшая из идеи Зельдовича, заключается в том, что темная материя состоит в основном из частиц, в некотором смысле очень похожих на нейтрино: они стабильны, не имеют электрического заряда и участвуют только в гравитационном и слабом взаимодействиях. Однако такие частицы сильно отличаются от нейтрино по массе: они должны быть очень тяжелыми, примерно в 1000 раз тяжелее протона, так что энергия покоя такой частицы составляет около 1 ТэВ. Такие частицы до сих пор не были известны ни в теории, ни в физическом эксперименте. Если они действительно существуют, то, как показывает теория, они вполне могли бы присутствовать во Вселенной в нужном количестве. Таким путем космология приходит к интересному предсказанию: в природе должны существовать массивные стабильные слабовзаимодействующие элементарные частицы, на долю которых приходится примерно 25 % всей массы и энергии Вселенной, что в 4-5 раз больше, чем вклад барионов.

Согласно одной из Гипотез, Темная Материя состоит из частиц, похожих на Нейтрино. однако такие частицы должны быть примерно в 1000 раз тяжелее Протона

Возможно, нужные по свойствам новые частицы будут обнаружены на Большом адронном коллайдере в ЦЕРНе, который готовится к проведению небывалых экспериментов. На этом мощнейшем ускорителе пучки протонов и ионов будут разгоняться до энергий более 10 ТэВ, что заметно превышает энергию покоя гипотетических темных частиц. В нескольких крупных лабораториях мира, в том числе и в России, строятся специальные установки для детектирования частиц темной материи, приходящих на Землю из гало нашей Галактики. Не исключено, что вопрос о физической природе темной материи будет решен уже в недалеком будущем. Во всяком случае эта загадка не кажется такой безнадежной, как природа космологического расширения.

Фон фотонов

В 1965 г. американские радиоастрономы Арно Пензиас и Роберт Вилсон обнаружили, что вся Вселенная пронизана электромагнитным излучением, приходящим на Землю изотропно, т. е. равномерно со всех направлений. Это третье из крупнейших открытий в космологии.

Максимум в спектре этого излучения приходится на миллиметровые волны, причем сам спектр, т. е. распределение по длинам волн (или частотам), совпадает по форме со спектром абсолютно черного тела. На языке квантов можно сказать, что в мире имеется газ фотонов, которые равномерно заполняют все пространство. Температура этого газа точно измерена: T = 2,725 K. Как видим, это очень низкая температура, она не выше трех градусов, считая от абсолютного нуля (по шкале Цельсия это -270°). Таких космических фотонов очень много во Вселенной: их почти в 10 млрд раз больше, чем протонов, если считать по числу частиц. В кубическом сантиметре пространства содержится примерно 500 реликтовых фотонов.

Само по себе изотропное космическое излучение не таит никаких особенных загадок. Это реликт, т. е. остаток, того состояния, в котором Вселенная находилась в очень далеком прошлом, в первые минуты своего расширения. В те времена в ней не было ни звезд, ни галактик, а все вещество распределялось в пространстве более или менее равномерно. Это можно себе представить, если мысленно обратить ход времени: глядя назад, мы увидим, что галактики не разбегаются, а сближаются между собой. И в определенный момент они должны перемешаться, так что их вещество окажется газом приблизительно однородной плотности. Этот газ должен быть очень горячим. Еще со школьной скамьи мы знаем, что при расширении тела охлаждаются, а при сжатии – нагреваются. Из физики известно также, что в горячем газе должны обязательно иметься фотоны, находящиеся с газом в термодинамическом равновесии. При расширении Вселенной фотоны не исчезают и должны сохраниться до современной эпохи.

Так рассуждал еще в 1940-х гг. Георгий Гамов, некогда студент профессора Фридмана в Ленинграде. Он построил теорию «горячей Вселенной», которую называют еще теорией Большого Взрыва, и на ее основе смог предсказать само существование этого остаточного, реликтового излучения. Более того, он предсказал и нынешнюю температуру реликтовых фотонов. По его расчетам, она не должна превышать 10 K. В одной из научно-популярных статей (в 1950 г.) Гамов написал, что температура должна быть примерно три градуса абсолютной шкалы. Как выяснилось через полтора десятка лет, предсказание оказалось очень точным. Многие считают, что это было самое красивое количественное предсказание во всей космологической теории.

Но кое-что не до конца ясно и с реликтовым излучением. Космологам не удается понять, почему реликтовых фотонов так много (по сравнению с протонами). Впрочем, правильнее было бы сказать, что это вопрос не о фотонах, а, скорее, о протонах: почему их именно столько, сколько известно из наблюдений? Ответа пока нет. С этой проблемой не удалось справиться даже А. Д. Сахарову, который считал ее одной из самых принципиальных как в космологии, так и во всей фундаментальной физике.

Открытие и изучение реликтового излучения отмечено двумя Нобелевскими премиями. Первая присуждена в 1978 г. Пензиасу и Вилсону, вторая – в 2006 г. Джорджу Смуту и Джону Матеру, которые в 1992 г. доказали, что реликтовое излучение – это действительно термодинамически равновесный газ фотонов определенной температуры. Это было сделано с помощью американского спутника COBE (Cоsmic Background Explorer). Кроме того, COBE измерил слабую - на уровне тысячных долей процента – анизотропию фонового излучения. Последняя представляет собой «отпечаток» первоначально слабых неоднородностей вещества ранней Вселенной, которые позднее дали начало наблюдаемым крупномасштабным космическим структурам – галактикам и скоплениям галактик.

Георгий Гамов (1904-1968)за 15 лет до Открытия Пензиаса и Вилсона предвидел, что Температура Реликтового Излучения должна быть около Трех Градусов. Это было самое точное количественное предсказание в Космологии

В наши дни наблюдения реликтового излучения служат астрономам для изучения крупномасштабных свойств Вселенной. Самый яркий результат, достигнутый на этом пути в последние годы, касается геометрии трехмерного пространства, в котором происходит разбегание галактик. Начиная с Фридмана, космологи стремились выяснить тип геометрии реального пространства. Оказалось, что это обычная школьная эвклидова геометрия. Выходит, наш мир устроен не слишком сложно: по крайней мере его пространственная геометрия – самая простая из возможных.

Всемирное антитяготение

В 1998-1999 гг. две международные группы наблюдателей, одной из которых руководили Брайан Шмидт и Адам Райсс, а другой – Сол Перлматтер, установили, что наблюдаемое космологическое расширение происходит с ускорением: скорости удаления галактик возрастают со временем. Открытие сделано с помощью изучения далеких вспышек сверхновых звезд определенного типа (Ia), которые замечательны тем, что они могут служить «стандартными свечами», т. е. источниками с известной собственной светимостью. Из-за исключительной яркости сверхновые можно наблюдать на очень больших, истинно космологических расстояниях, составляющих тысячи мегапарсек.

Вещество (считая и с темной материей) не способно ускорять галактики, а лишь тормозит их разлет: взаимное притяжение галактик стремится сблизить их друг с другом. Поэтому открытый астрономами факт ускоренного расширения указывает на то, что наряду с обычным веществом, создающим тяготение, во Вселенной присутствует особая космическая масса, или энергия, которая создает не тяготение, а антитяготение – всеобщее отталкивание тел. При этом в космологическом масштабе антитяготение сильнее тяготения. Новая энергия получила название темной энергии. Она дей­ствительно невидима: не излучает, не рассеивает и не поглощает света (и всех вообще электромагнитных волн); она проявляет себя только антитяготением.

Астрономы выяснили, что до расстояний примерно в 7 млрд световых лет космологическое ускорение положительно. Но на еще более далеких расстояниях ускорение, как оказалось, меняет знак: там оно отрицательно, а значит, на этих сверхбольших расстояниях космологическое расширение происходит с замедлением.

Примем теперь во внимание, что свет распространяется в пространстве с конечной скоростью. Это означает, что мы видим объекты такими, какими они были, когда испустили принимаемый нами сейчас свет. Солнце мы видим с задержкой в 8 мин, далекие галактики наблюдаем такими, какими они были миллиарды лет назад. Телескоп – это настоящая машина времени, позволяющая воочию видеть прошлое мира. Возраст мира составляет 13,7 млрд лет – таковы самые свежие космологические данные.

Сказанное только что о космологическом ускорении означает, что первую половину своей и­стории Вселенная расширялась с замедлением, а вторую – с ускорением. Первые 7 млрд лет расширяющаяся Вселенная практически не чувствовала присутствия в ней темной энергии: плотность вещества (темной материи и барионов) была значительно выше плотности темной энергии. Предполагается, что плотность темной энергии не зависит от времени, это величина постоянная. А плотность вещества убывает в ходе расширения, так что в прошлом она была выше, чем сейчас; по этой причине до определенного момента тяготение вещества было сильнее антитяготения темной энергии. Эти две силы как раз и сравнялись по величине примерно 7 млрд лет тому назад. С тех пор темная энергия доминирует, и эта эпоха антитяготения будет длиться неограниченно долго.

По совокупности различных наблюдений (включая и наблюдения реликтового излучения) к настоящему времени установлена доля каждого космического компонента в общем энергетическом балансе Вселенной. Эти компоненты сейчас называют видами космической энергии. На долю темной энергии приходится примерно 70 % всей энергии мира; на темную материю – 25 %; на обычное вещество (протоны, нейтроны, электроны) – около 5 %; на реликтовое излучение – менее 0,1 %. Таков рецепт «энергетической смеси», заполняющей современную Вселенную. В ней, как мы видим, много «темного» – до 95 %. Это стало самой большой неожиданностью для астрономов, космологов и физиков.

Удивительно и достойно восхищения научное предвидение Эйнштейна: еще в 1917 г. он говорил о всеобщем космическом отталкивании как о возможном физическом феномене космологического масштаба. У Эйнштейна антитяготение описывается всего одной константой, которую называют космологической постоянной. Весь комплекс имеющихся сейчас наблюдательных данных о темной энергии прекрасно согласуется с таким описанием.

Антитяготение создается не Галактиками или другими Компактными Объектами, а Непрерывной Космической Средой, в которую все Тела погружены, – Темной Энергией

Эйнштейн не оставил нам физической интерпретации космологической постоянной. Согласно предложению Э. Б. Глинера, высказанному еще в 1965 г., космологическую постоянную можно рассматривать как физическую характеристику особого рода сплошной среды, идеально равномерно заполняющей все пространство Вселенной. Плотность этой среды не только однородна, но и не зависит от времени, она одна и та же во всех системах отсчета. Из этого представления вытекают особые макроскопические свойства темной энергии. Так, оказывается, что у нее имеется давление, причем оно отрицательно, а по абсолютной величине равно плотности энергии (напомним, что плотность энергии и давление имеют одну и ту же размерность). Именно из-за своего отрицательного давления темная энергия создает антитяготение – это специфический эффект общей теории относительности.

Но каковы не макроскопические, а микроскопические свойства темной энергии? Из чего она состоит? В конце 1960-х гг., задолго до открытия темной энергии, Зельдович обсуждал возможную связь между космологической постоянной и квантовым вакуумом элементарных частиц и физических полей. Этот физический вакуум не есть абсолютная пустота, он имеет свою отличную от нуля энергию. Ее носителями служат так называемые нулевые колебания квантовых полей, всегда существующие в пространстве даже в отсутствие в нем каких-либо частиц. Если этот квантовый вакуум рассматривать макроскопически как некую среду, то ему следует приписать не только плотность энергии, но также и давление. При этом связь между давлением и плотностью должна быть в точности такой, как и у темной энергии, описываемой эйнштейновской космологической постоянной. Так не тождественна ли темная энергия физическому вакууму?

Было бы замечательно, если бы удалось доказать, что это действительно так: объединение кажущихся разными сущностей – плодотворнейший путь развития науки. Это известно еще со времен Максвелла, объединившего электричество и магнетизм. Но до сих пор идею Зельдовича не удается ни доказать, ни опровергнуть. Физическая природа и микроскопическая структура темной энергии стала сейчас центральной проблемой космологии и всей фундаментальной физики. Похоже, она столь же сложна, как и вопрос о происхождении космологического расширения.

Итак, за 90 лет своего существования, считая от первых наблюдений Слайфера и теоретической работы Эйнштейна, космология превратилась из области абстрактных и почти фантастических, как казалось, занятий на далекой периферии тогдашней науки в одно из центральных направлений естествознания XXI в. Она обладает надежным наблюдательным фундаментом, который складывается из базовых фактов о Вселенной. На нем строится и развивается теория, прочно связанная со всей современной физикой, включая общую теорию относительности, ядерную физику и физику элементарных частиц. Космология ставит новые важные вопросы, выдвигает содержательные идеи и гипотезы, делает смелые предсказания. Она дает широкую, богатую и согласованную картину мира, которая становится сейчас неотъемлемой частью общей культуры человечества. А нерешенные проблемы в живой, сложной науке всегда есть и должны быть – это источник и резерв ее дальнейшего развития.

Литература

Вейнберг С. Первые три минуты. М.: Атомиздат, 1982.

Новиков И. Д., Шаров А. С. Человек, открывший взрыв Вселенной. М.: Наука, 1989.

Розенталь И. Л. Элементарные частицы и структура Вселенной. М.: Недра, 1984.

Тропп Э. А., Френкель В. Я., Чернин А. Д. Александр Александрович Фридман. Труды и жизнь. М.: Наука, 1988.

Черепащук А. М., Чернин А. Д. Вселенная, жизнь, черные дыры. Фрязино: Век-2, 2003.

Черепащук А. М., Чернин А. Д. Горизонты Вселенной. Новосибирск: Изд-во СО РАН, 2005.

Содержание статьи

КОСМОЛОГИЯ – раздел астрономии и астрофизики, изучающий происхождение, крупномасштабную структуру и эволюцию Вселенной. Данные для космологии в основном получают из астрономических наблюдений. Для их интерпретации в настоящее время используется общая теория относительности А.Эйнштейна (1915). Создание этой теории и проведение соответствующих наблюдений позволило в начале 1920-х годов поставить космологию в ряд точных наук, тогда как до этого она скорее была областью философии. Сейчас сложились две космологические школы: эмпирики ограничиваются интерпретацией наблюдательных данных, не экстраполируя свои модели в неизученные области; теоретики пытаются объяснить наблюдаемую Вселенную, используя некоторые гипотезы, отобранные по принципу простоты и элегантности. Широкой известностью пользуется сейчас космологическая модель Большого взрыва, согласно которой расширение Вселенной началось некоторое время тому назад из очень плотного и горячего состояния; обсуждается и стационарная модель Вселенной, в которой она существует вечно и не имеет ни начала, ни конца.

КОСМОЛОГИЧЕСКИЕ ДАННЫЕ

Под космологическими данными понимают результаты экспериментов и наблюдений, имеющие отношение к Вселенной в целом в широком диапазоне пространства и времени. Любая мыслимая космологическая модель должна удовлетворять этим данным. Можно выделить 6 основных наблюдательных фактов, которые должна объяснить космология:

1. В больших масштабах Вселенная однородна и изотропна, т.е. галактики и их скопления распределены в пространстве равномерно (однородно), а их движение хаотично и не имеет явно выделенного направления (изотропно). Принцип Коперника , «сдвинувшего Землю из центра мира», был обобщен астрономами на Солнечную систему и нашу Галактику, которые также оказались вполне рядовыми. Поэтому, исключая мелкие неоднородности в распределении галактик и их скоплений, астрономы считают Вселенную такой же однородной везде, как и вблизи нас.

2. Вселенная расширяется. Галактики удаляются друг от друга. Это обнаружил американский астроном Э.Хаббл в 1929. Закон Хаббла гласит: чем дальше галактика, тем быстрее она удаляется от нас. Но это не означает, что мы находимся в центре Вселенной: в любой другой галактике наблюдатели видят то же самое. С помощью новых телескопов астрономы углубились во Вселенную значительно дальше, чем Хаббл, но его закон остался верен.

3. Пространство вокруг Земли заполнено фоновым микроволновым радиоизлучением. Открытое в 1965, оно стало, наряду с галактиками, главным объектом космологии. Его важным свойством является высокая изотропность (независимость от направления), указывающая на его связь с далекими областями Вселенной и подтверждающая их высокую однородность. Если бы это было излучение нашей Галактики, то оно отражало бы ее структуру. Но эксперименты на баллонах и спутниках доказали, что это излучение в высшей степени однородно и имеет спектр излучения абсолютно черного тела с температурой около 3 К. Очевидно, это реликтовое излучение молодой и горячей Вселенной, сильно остывшее в результате ее расширения.

4. Возраст Земли, метеоритов и самых старых звезд немногим меньше возраста Вселенной, вычисленного по скорости ее расширения. В соответствии с законом Хаббла Вселенная всюду расширяется с одинаковой скоростью, которую называют постоянной Хаббла Н . По ней можно оценить возраст Вселенной как 1/Н . Современные измерения Н приводят к возрасту Вселенной ок. 20 млрд. лет. Исследования продуктов радиоактивного распада в метеоритах дают возраст ок. 10 млрд. лет, а самые старые звезды имеют возраст ок. 15 млрд. лет. До 1950 расстояния до галактик недооценивались, что приводило к завышенному значению Н и малому возрасту Вселенной, меньшему возраста Земли. Чтобы разрешить это противоречие, Г.Бонди, Т.Голд и Ф.Хойл в 1948 предложили стационарную космологическую модель, в которой возраст Вселенной бесконечен, а по мере ее расширения рождается новое вещество.

5. Во всей наблюдаемой Вселенной, от близких звезд до самых далеких галактик, на каждые 10 атомов водорода приходится 1 атом гелия. Кажется невероятным, чтобы всюду местные условия были столь одинаковы. Сильная сторона модели Большого взрыва как раз в том, что она предсказывает везде одинаковое соотношение между гелием и водородом.

6. В областях Вселенной, удаленных от нас в пространстве и во времени, больше активных галактик и квазаров, чем рядом с нами. Это указывает на эволюцию Вселенной и противоречит теории стационарной Вселенной.

КОСМОЛОГИЧЕСКИЕ МОДЕЛИ

Любая космологическая модель Вселенной опирается на определенную теорию гравитации. Таких теорий много, но лишь некоторые из них удовлетворяют наблюдаемым явлениям. Теория тяготения Ньютона не удовлетворяет им даже в пределах Солнечной системы. Лучше всех согласуется с наблюдениями общая теория относительности Эйнштейна, на основе которой русский метеоролог А.Фридман в 1922 и бельгийский аббат и математик Ж.Леметр в 1927 математически описали расширение Вселенной. Из космологического принципа, постулирующего пространственную однородность и изотропность мира, они получили модель Большого взрыва. Их вывод подтвердился, когда Хаббл обнаружил связь между расстоянием и скоростью разбегания галактик. Второе важное предсказание этой модели, сделанное Г.Гамовым, касалось реликтового излучения, наблюдаемого сейчас как остаток эпохи Большого взрыва. Другие космологические модели не могут так же естественно объяснить это изотропное фоновое излучение.

Горячий Большой взрыв.

Согласно космологической модели Фридмана – Леметра, Вселенная возникла в момент Большого взрыва – ок. 20 млрд. лет назад, и ее расширение продолжается до сих пор, постепенно замедляясь. В первое мгновение взрыва материя Вселенной имела бесконечные плотность и температуру; такое состояние называют сингулярностью.

Согласно общей теории относительности, гравитация не является реальной силой, а есть искривление пространства-времени: чем больше плотность материи, тем сильнее искривление. В момент начальной сингулярности искривление тоже было бесконечным. Можно выразить бесконечную кривизну пространства-времени другими словами, сказав, что в начальный момент материя и пространство одновременно взорвались везде во Вселенной. По мере увеличения объема пространства расширяющейся Вселенной плотность материи в ней падает. С.Хокинг и Р.Пенроуз доказали, что в прошлом непременно было сингулярное состояние, если общая теория относительности применима для описания физических процессов в очень ранней Вселенной.

Чтобы избежать катастрофической сингулярности в прошлом, требуется существенно изменить физику, например, предположив возможность самопроизвольного непрерывного рождения материи, как в теории стационарной Вселенной. Но астрономические наблюдения не дают для этого никаких оснований.

Чем более ранние события мы рассматриваем, тем меньше был их пространственный масштаб; по мере приближения к началу расширения горизонт наблюдателя сжимается (рис. 1). В самые первые мгновения масштаб так мал, что мы уже не в праве применять общую теорию относительности: для описания явлений в столь малых масштабах требуется квантовая механика . Но квантовой теории гравитации пока не существует, поэтому никто не знает, как развивались события до момента 10 –43 с, называемого планковским временем (в честь отца квантовой теории). В тот момент плотность материи достигала невероятного значения 10 90 кг/см 3 , которое нельзя сравнить не только с плотностью окружающих нас тел (менее 10 г/см 3), но даже с плотностью атомного ядра (ок. 10 12 кг/см 3) – наибольшей плотностью, доступной в лаборатории. Поэтому для современной физики началом расширения Вселенной служит планковское время.

Вот при таких условиях немыслимо высокой температуры и плотности состоялось рождение Вселенной. Причем это могло быть рождением в прямом смысле: некоторые космологи (скажем, Я.Б.Зельдович в СССР и Л.Паркер в США) считали, что частицы и гамма-фотоны были рождены в ту эпоху гравитационным полем. С точки зрения физики, этот процесс мог состояться, если сингулярность была анизотропной, т.е. гравитационное поле было неоднородным. В этом случае приливные гравитационные силы могли «вытащить» из вакуума реальные частицы, создав таким образом вещество Вселенной.

Изучая процессы, происходившие сразу после Большого взрыва, мы понимаем, что наши физические теории еще весьма несовершенны. Тепловая эволюция ранней Вселенной зависит от рождения массивных элементарных частиц – адронов, о которых ядерная физика знает еще мало. Многие из этих частиц нестабильны и короткоживущи. Швейцарский физик Р.Хагедорн считает, что может существовать великое множество адронов возрастающих масс, которые в изобилии могли формироваться при температуре порядка 10 12 К, когда гигантская плотность излучения приводила к рождению адронных пар, состоящих из частицы и античастицы. Этот процесс должен был бы ограничить рост температуры в прошлом.

Согласно другой точке зрения, количество типов массивных элементарных частиц ограничено, поэтому температура и плотность в период адронной эры должны были достигать бесконечных значений. В принципе это можно было бы проверить: если бы составляющие адронов – кварки – были стабильными частицами, то некоторое количество кварков и антикварков должно было сохраниться от той горячей эпохи. Но поиск кварков оказался тщетным; скорее всего, они нестабильны.

После первой миллисекунды расширения Вселенной сильное (ядерное) взаимодействие перестало играть в ней определяющую роль: температура снизилась настолько, что атомные ядра перестали разрушаться. Дальнейшие физические процессы определялись слабым взаимодействием, ответственным за рождение легких частиц – лептонов (т.е. электронов, позитронов, мезонов и нейтрино) под действием теплового излучения. Когда в ходе расширения температура излучения понизилась примерно до 10 10 К, лептонные пары перестали рождаться, почти все позитроны и электроны аннигилировали; остались лишь нейтрино и антинейтрино, фотоны и немного сохранившихся с предшествующей эпохи протонов и нейтронов. Так завершилась лептонная эра.

Следующая фаза расширения – фотонная эра – характеризуется абсолютным преобладанием теплового излучения. На каждый сохранившийся протон или электрон приходится по миллиарду фотонов. Вначале это были гамма-кванты, но по мере расширения Вселенной они теряли энергию и становились рентгеновскими, ультрафиолетовыми, оптическими, инфракрасными и, наконец, сейчас стали радиоквантами, которые мы принимаем как чернотельное фоновое (реликтовое) радиоизлучение.

Нерешенные проблемы космологии Большого взрыва.

Можно отметить 4 проблемы, стоящие сейчас перед космологической моделью Большого взрыва.

1. Проблема сингулярности: многие сомневаются в применимости общей теории относительности, дающей сингулярность в прошлом. Предлагаются альтернативные космологические теории, свободные от сингулярности.

2. Тесно связана с сингулярностью проблема изотропности Вселенной. Кажется странным, что начавшееся с сингулярного состояния расширение оказалось столь изотропным. Не исключено, правда, что анизотропное вначале расширение постепенно стало изотропным под действием диссипативных сил.

3. Однородная на самых больших масштабах, на меньших масштабах Вселенная весьма неоднородна (галактики, скопления галактик). Трудно понять, как одна лишь гравитация могла привести к появлению такой структуры. Поэтому космологи изучают возможности неоднородных моделей Большого взрыва.

4. Наконец, можно спросить, каково будущее Вселенной? Для ответа необходимо знать среднюю плотность материи во Вселенной. Если она превосходит некоторое критическое значение, то геометрия пространства-времени замкнутая, и в будущем Вселенная непременно сожмется. Замкнутая Вселенная не имеет границ, но ее объем конечен. Если плотность ниже критической, то Вселенная открыта и будет расширяться вечно. Открытая Вселенная бесконечна и имеет только одну сингулярность вначале. Пока наблюдения лучше согласуются с моделью открытой Вселенной.

Происхождение крупномасштабной структуры.

У космологов на эту проблему есть две противоположные точки зрения.

Самая радикальная состоит в том, что вначале был хаос. Расширение ранней Вселенной происходило крайне анизотропно и неоднородно, но затем диссипативные процессы сгладили анизотропию и приблизили расширение к модели Фридмана – Леметра. Судьба неоднородностей весьма любопытна: если их амплитуда была большой, то неизбежно они должны были коллапсировать в черные дыры с массой, определяемой текущим горизонтом. Их формирование могло начаться прямо с планковского времени, так что во Вселенной могло быть множество мелких черных дыр с массами до 10 –5 г. Однако С.Хокинг показал, что «мини-дыры» должны, излучая, терять свою массу, и до нашей эпохи могли сохраниться только черные дыры с массами более 10 16 г, что соответствует массе небольшой горы.

Первичный хаос мог содержать возмущения любого масштаба и амплитуды; наиболее крупные из них в виде звуковых волн могли сохраниться от эпохи ранней Вселенной до эры излучения, когда вещество было еще достаточно горячим, чтобы испускать, поглощать и рассеивать излучение. Но с окончанием этой эры остывшая плазма рекомбинировала и перестала взаимодействовать с излучением. Давление и скорость звука в газе упали, вследствие чего звуковые волны превратились в ударные волны, сжимающие газ и заставляющие его коллапсировать в галактики и их скопления. В зависимости от типа исходных волн расчеты предсказывают весьма различную картину, далеко не всегда соответствующую наблюдаемой. Для выбора между возможными вариантами космологических моделей важной является одна философская идея, известная как антропный принцип: с самого начала Вселенная должна была иметь такие свойства, которые позволили сформироваться в ней галактикам, звездам, планетам и разумной жизни на них. Иначе некому было бы заниматься космологией.

Альтернативная точка зрения состоит в том, что об исходной структуре Вселенной можно узнать не более того, что дают наблюдения. Согласно этому консервативному подходу, нельзя считать юную Вселенную хаотической, поскольку сейчас она весьма изотропна и однородна. Те отклонения от однородности, которые мы наблюдаем в виде галактик, могли вырасти под действием гравитации из небольших начальных неоднородностей плотности. Однако исследования крупномасштабного распределения галактик (в основном проведенные Дж.Пиблсом в Принстоне), кажется, не подтверждают эту идею. Другая интересная возможность состоит в том, что скопления черных дыр, родившихся в адронную эру, могли стать исходными флуктуациями для формирования галактик.

Открыта или замкнута Вселенная?

Ближайшие галактики удаляются от нас со скоростью, пропорциональной расстоянию; но более далекие не подчиняются этой зависимости: их движение указывает, что расширение Вселенной со временем замедляется. В замкнутой модели Вселенной под действием тяготения расширение в определенный момент останавливается и сменяется сжатием (рис. 2), но наблюдения показывают, что замедление галактик происходит все же не так быстро, чтобы когда-либо произошла полная остановка.

Чтобы Вселенная была замкнута, средняя плотность материи в ней должна превышать определенное критическое значение. Оценка плотности видимого и невидимого вещества весьма близка к этому значению.

Распределение галактик в пространстве весьма неоднородно. Наша Местная группа галактик, включающая Млечный Путь, Туманность Андромеды и несколько галактик поменьше, лежит на периферии огромной системы галактик, известной как Сверхскопление в Деве (Virgo), центр которого совпадает со скоплением галактик Virgo. Если средняя плотность мира велика и Вселенная замкнута, то должно было бы наблюдаться сильное отклонение от изотропного расширения, вызванное притяжением нашей и соседних галактик к центру Сверхскопления. В открытой Вселенной это отклонение незначительно. Наблюдения скорее согласуются с открытой моделью.

Большой интерес космологов вызывает содержание в космическом веществе тяжелого изотопа водорода – дейтерия, который образовался в ходе ядерных реакций в первые мгновения после Большого взрыва. Содержание дейтерия оказалось чрезвычайно чувствительно к плотности вещества в ту эпоху, а следовательно, и в нашу. Однако «дейтериевый тест» осуществить нелегко, ибо нужно исследовать первичное вещество, не побывавшее с момента космологического синтеза в недрах звезд, где дейтерий легко сгорает. Изучение предельно далеких галактик показало, что содержание дейтерия соответствует низкой плотности материи и, следовательно, открытой модели Вселенной.

Альтернативные космологические модели.

Вообще говоря, в самом начале своего существования Вселенная могла быть весьма хаотична и неоднородна; следы этого мы, возможно, наблюдаем сегодня в крупномасштабном распределении вещества. Однако период хаоса не мог длиться долго. Высокая однородность космического фонового излучения свидетельствует, что Вселенная была очень однородна в возрасте 1 млн. лет. А расчеты космологического ядерного синтеза указывают, что если бы по истечении 1 с после начала расширения существовали большие отклонения от стандартной модели, то состав Вселенной был бы совсем иным, чем в действительности. Однако о том, что было в течение первой секунды, еще можно спорить. Кроме стандартной модели Большого взрыва, в принципе существуют и альтернативные космологические модели:

1. Модель, симметричная относительно материи и антиматерии, предполагает равное присутствие этих двух видов вещества во Вселенной. Хотя очевидно, что наша Галактика практически не содержит антивещества, соседние звездные системы вполне могли бы целиком состоять из него; при этом их излучение было бы точно таким же, как у нормальных галактик. Однако в более ранние эпохи расширения, когда вещество и антивещество были в более тесном контакте, их аннигиляция должна была рождать мощное гамма-излучение. Наблюдения его не обнаруживают, что делает симметричную модель маловероятной.

2. В модели Холодного Большого взрыва предполагается, что расширение началось при температуре абсолютного нуля. Правда, и в этом случае ядерный синтез должен происходить и разогревать вещество, но микроволновое фоновое излучение уже нельзя прямо связывать с Большим взрывом, а нужно объяснять как-то иначе. Эта теория привлекательна тем, что вещество в ней подвержено фрагментации, а это необходимо для объяснения крупномасштабной неоднородности Вселенной.

3. Стационарная космологическая модель предполагает непрерывное рождение вещества. Основное положение этой теории, известное как Идеальный космологический принцип, утверждает, что Вселенная всегда была и останется такой, как сейчас. Наблюдения опровергают это.

4. Рассматриваются измененные варианты эйнштейновской теории гравитации. Например, теория К.Бранса и Р.Дикке из Принстона в общем согласуется с наблюдениями в пределах Солнечной системы. Модель Бранса – Дикке, а также более радикальная модель Ф.Хойла, в которой некоторые фундаментальные постоянные изменяются со временем, имеют почти такие же космологические параметры в нашу эпоху, как и модель Большого взрыва.

5. На основе модифицированной эйнштейновской теории Ж.Леметр в 1925 построил космологическую модель, объединяющую Большой взрыв с длительной фазой спокойного состояния, в течение которой могли формироваться галактики. Эйнштейн заинтересовался этой возможностью, чтобы обосновать свою любимую космологическую модель статической Вселенной, но когда было открыто расширение Вселенной, он публично отказался от нее.

Начиная с самых ранних этапов своей истории человек стремился понять, как устроен окружающий мир, что такое звезды, планеты, солнце, как они возникли. Многовековые попытки дать ответы на эти вопросы привели к возникновению космологии.

Космология - раздел естествознания, предметной областью которого является изучение свойств и эволюции Вселенной в целом.

Сам термин «космология» образован от двух греческих слов: kosmos - Вселенная и logos - закон, учение .

Космология использует достижения и методы астрономии, физики, математики, философии. Естественно-научной базой космологии являются астрономические наблюдения Галактики и других звездных систем, общая теория относительности, физика микропроцессов и высоких плотностей энергии, релятивистская термодинамика и ряд других новейших физических теорий.

Возникновение современной космологии

Возникновение современной космологии связано с развитием в XX веке общей теории относительности (ОТО) Эйнштейна и физики элементарных частиц. Первое исследование на эту тему, опирающееся на ОТО, Эйнштейн опубликовал в 1917 году под названием «Космологические соображения к общей теории относительности». В ней он ввёл три предположения: Вселенная однородна, изотропна и стационарна. Чтобы обеспечить последнее требование, Эйнштейн ввёл в уравнения гравитационного поля дополнительный «космологический член». Полученное им решение означало, что Вселенная имеет конечный объём (замкнута) и положительную кривизну.

В 1922 году А. А. Фридман предложил нестационарное решение уравнения Эйнштейна, в котором изотропная Вселенная расширялась из начальной сингулярности . Подтверждением теории нестационарной вселенной стало открытие в 1929 году Э. Хабблом космологического красного смещения галактик. Таким образом, возникла общепринятая сейчас теория Большого взрыва (БВ).

По современным научным представлениям, наблюдаемая нами сейчас Вселенная возникла ~13,8 млрд лет назад из некоторого начального сингулярного состояния и с тех пор непрерывно расширяется и охлаждается.

Согласно известным ограничениям по применимости современных физических теорий, наиболее ранним моментом, допускающим описание, считается момент Планковской эпохи с температурой примерно 10 32 К (Планковская температура) и плотностью около10 93 г/см? (Планковская плотность). Ранняя Вселенная в соответствии с моделью БВ представляла собой высокооднородную и изотропную среду с необычайно высокой плотностью энергии, температурой и давлением. В результате расширения и охлаждения во Вселенной произошли фазовые переходы, аналогичные конденсации жидкости из газа, но применительно к элементарным частицам.

Принятая в настоящее время периодизация

  • Самая ранняя эпоха, о которой существуют какие-либо теоретические предположения, - это планковское время (10 -43 с после Большого взрыва). В это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий. По современным представлениям, эта эпоха квантовой космологии продолжалась до времени порядка 10 -11 с после Большого взрыва.
  • Следующая эпоха характеризуется рождением первоначальных частиц кварков и разделением видов взаимодействий. Эта эпоха продолжалась до времён порядка 10 -2 с после Большого взрыва. В настоящее время уже существуют возможности достаточно подробного физического описания процессов этого периода.
  • Современная эпоха стандартной космологии началась через 0,01 секунды после Большого взрыва и продолжается до сих пор. В этот период образовались ядра первичных элементов, возникли звёзды, галактики, Солнечная система.

Важной вехой в истории развития Вселенной считается эра рекомбинации , когда материя расширяющейся Вселенной стала прозрачной для излучения. По современным представлениям, это произошло через 380 тыс. лет после Большого взрыва. В настоящее время это излучение мы можем наблюдать в виде реликтового фона, что является важнейшим экспериментальным подтверждением существующих моделей Вселенной.

Итак, XX век считается веком рождения современной космологии. Она возникает в начале века и по мере развития вбирает в себя все новейшие достижения, такие как технологии постройки больших телескопов, космические полёты и компьютеры.

Хронология достижений современной космологии

Первые шаги к уже современной космологии были сделаны в 1908–1916 годы. В это время открытие прямо-пропорциональной зависимости между периодом и видимой звёздной величиной у цефеид в Малом Магеллановом облаке (Генриетта Ливитт, США) позволило Эйнару Герцшпрунгу и Харлоу Шепли разработать метод определения расстояний по цефеидам.

В 1916 г. А. Эйнштейн пишет уравнения общей теории относительности - теории гравитации, ставшей основой для доминирующих космологических теорий. В 1917 году, пытаясь получить решение, описывающее «стационарную» Вселенную, Эйнштейн вводит в уравнения общей теории относительности дополнительный параметр - космологическую постоянную.

В 1922–1924 гг. А. Фридман применяет уравнения Эйнштейна (без космологической постоянной и с ней) ко всей Вселенной и получает нестационарные решения.

В 1929 г. Эдвин Хаббл открывает закон пропорциональности между скоростью удаления галактик и расстоянием до них, позже названный его именем. Становится очевидным, что Млечный путь - лишь небольшая часть окружающей Вселенной. Вместе с этим появляется доказательство для гипотезы Канта: некоторые туманности - галактики, подобные нашей. Одновременно подтверждаются выводы Фридмана о нестационарности окружающего мира, а вместе с тем и верность выбранного направления развития космологии.

С этого момента и вплоть до 1998 года классическая модель Фридмана без космологической постоянной становится доминирующей. Влияние космологической постоянной на итоговое решение изучается, но ввиду отсутствия экспериментальных указаний на её существенность для описания Вселенной такие решения для интерпретации наблюдательных данных не применяются.

В 1932 году Ф. Цвикки выдвигает идею о существовании тёмной материи - вещества, не проявляющего себя электромагнитным излучением, но участвующего в гравитационном взаимодействии. В тот момент идея была встречена скептически, и только около 1975 года она получает второе рождение и становится общепринятой.

В 1946–1949 г.г. Г. Гамов , пытаясь объяснить происхождение химических элементов, применяет законы ядерной физики к началу расширения Вселенной. Так возникает теория «горячей Вселенной» - теория Большого Взрыва, а вместе с ней и гипотеза об изотропном реликтовом излучении с температурой в несколько градусов Кельвина.

В 1964 г. А. Пензиас, Р. Вилсон открывают изотропный источник помех в радиодиапазоне. Тогда же выясняется, что это реликтовое излучение, предсказанное Гамовым. Теория горячей Вселенной получает подтверждение, а в космологию приходит физика элементарных частиц.

В 1991–1993 г.г. в космических экспериментах «Реликт-1» и COBE открыты флуктуации реликтового излучения.

В 1998 г. по далеким сверхновым типа Ia строится диаграмма Хаббла для больших z. Выясняется, что Вселенная расширяется с ускорением. Модель Фридмана допускает подобное только при введении антигравитации, описываемой космологической постоянной. Возникает мысль о существовании особого рода энергии, ответственного за это - тёмной энергии. Появляется современная теория расширения - LCDM-модель, включающая в себя как тёмную энергию, так и тёмную материю.