Как пользоваться макетной платой для монтажа без пайки. Быстрая сборка схем Монтаж схем на макетной плате с пайкой

Конструкция макетной платы для моделирования электронных схем. (10+)

Макетная плата своими руками

Разрабатывая различные радиоэлектронные устройства, я часто сталкиваюсь с необходимостью изготовить макет. Конечно математическое моделирование - великая вещь. Но во-первых , не все схемы поддаются математическому моделированию, а во-вторых , математическая модель бывает недостаточно точна. В общем, после проверки на компьютере обязательно необходимо собрать в живую. Сначала я делал пробную печатную плату, понимая, что потом ее придется выбросить. Но потом стал использовать макетную плату. Макетные платы на основе фольгированного текстолита мне совершенно не нравятся. Причина в том, что они плохо переносят частую перепайку. От периодического нагрева проводники начинают отставать. Так что печатная макетная плата - практически настолько же одноразовая, как и пробная, разработанная под конкретное устройство.

Чертеж самодельной макетной платы

В итоге я изготовил макетную плату по собственной технологии, которая мне очень понравилась. Теперь пользуюсь ею повсеместно. Плату изготовил из нефольгированного текстолита. Можно взять фольгированный и снять фольгу.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Еще статьи

Корпус РЭА, РЭУ своими руками. Самодельный. Электроника. Радиоэлектрон...
Изготовим корпус для своего электронного изделия...

Схема защиты от ошибки подключения минуса и плюса (переполюсовки)....
Схема защиты от неправильной полярности подключения (переполюсовки) зарядных уст...

ШИМ, PWM контроллер. Схема. Микросхема. Принцип работы. Описание, выво...
ШИМ контроллер описание принципа работы....

Силовой мощный импульсный трансформатор. Расчет. Рассчитать. Онлайн. O...
Онлайн расчет силового импульсного трансформатора....

Датчик, индикатор горения, пламени, огня, факела. Поджиг, запал, искро...
Индикатор наличия пламени, совмещенный с запалом на одном электроде...

Сигналы - математические (арифметические) операции. Сложение, суммиров...
Схемы для выполнения арифметических операций над сигналами. Суммирование, вычита...

Отрицательное сопротивление, импеданс. Схема. Преобразователь в против...
Понятие отрицательного сопротивления. Схемы с отрицательным сопротивлением....

Триггер Шмитта (Шмидта, Шмита). Схема. Электрический гистерезис. Расче...
Схемы и расчет триггера Шмитта. Гистерезис, пороги срабатывания, входное сопроти...


Если в первой части статьи упор сделан на обзор макетных плат и описание их устройства, то сейчас рассмотрим некоторые полезные тонкости и ньюансы, которые нужно знать при работе с такими макетными платами.

Если в инструкции беспаечной макетной платы сказано, что диаметр провода, вставляемого в контакты 0,4 - 0,7 мм, то не следует пытаться вставлять выводы деталей, которые толще указанной величины. Это приведет к ослаблению и износу контактов. Если же возникает необходимость применения таких деталей, то лучше припаять к толстым выводам проволочки указанного диаметра, или просто обмотать. Естественно, проволочка должна быть без изоляции.

Беспаечные макетные платы продаются в двух комплектациях: с проводами - джамперами и без них. В первом варианте плата получается несколько дороже, но вовсе не беда, если удалось купить отдельно плату, - всегда можно что-нибудь приспособить.

Коммутационные провода, конечно, продаются отдельно, но если нет желания или возможности их купить, то вполне подойдет провод КСВВ 4*0,4, используемый для монтажа .

Такой провод содержит 4 изолированных жилы с диаметром как раз 0,4 мм. Изоляция с провода легко снимается бокорезами или ножом, а сами жилы не имеют лакового покрытия.

В случае необходимости макетирования сложного устройства его отдельные функционально завершенные части лучше собрать на отдельных макетных платах небольших размеров, после чего из полученных узлов собрать всю конструкцию.

Иногда случается, что одно устройство еще не собрано, а требуется почему-то срочно собрать другое, совсем новое. И вот тут начинается! Надо разобрать собранную, еще не отлаженную схему, которую потом, возможно, придется собирать еще раз. А ведь единственный невосполнимый ресурс это время, которое теряется на эти бессмысленные сборки - разборки. Поэтому лучше не скупиться, а приобрести несколько макетных плат, дело пойдет быстрее.

Не следует забывать о том, что макетные платы рассчитаны на слаботочную аппаратуру, - и . Поэтому ни в коем случае недопустимо подавать на них напряжение сети - 220 В. Это может привести к перегреву контактов и пробою изоляции, а что будет после этого всем, наверно, известно.

Но даже и в транзисторах и микросхемах может случиться короткое замыкание, что вызовет перегрев этих элементов, приведет к нагреву контактов и расплавлению пластмассового основания платы. Поэтому при первом включении схемы желательно померить потребляемый ток или хотя бы проконтролировать пальцем температуру всех элементов.

Общее правило, не только для макетных плат. Сначала устанавливаются компоненты не подверженные воздействию статического электричества: , и .

На макетной плате также кроме деталей устанавливаются соединительные провода. Соединительные провода лучше устанавливать пинцетом или маленькими плоскогубцами. Этими же инструментами проводить и демонтаж проводов.

Как и во всех подобных случаях проверить плату на правильность монтажа, на отсутствие коротких замыканий или неконтактов. Неиспользуемые выводы микросхем не оставлять «висеть в воздухе», а подключать либо к общему проводу либо к шине питания. Свободные входы приведут к появлению на выходах таких элементов просто напросто помех, которые будут распространяться по всей схеме и ее наладка станет намного проблематичней.

Наверное, здесь же придется отметить, что макетные платы имеют большую емкость монтажа за счет длинных соединительных проводов, а также множества контактов. Поэтому слишком высокочастотные схемы на таких платах работать будут плохо, а может, не будут совсем.

Чтобы избежать влияния длинных проводников желательно выводы питания микросхем шунтировать керамическими конденсаторами небольшой емкости, как это делается на печатных платах.

Проверяя правильность монтажа, можно воспользоваться «дубовыми» микросхемами ТТЛ, которые практически не чувствительны к статике. Можно, конечно, обойтись и без них, но не очень удобно просовывать щупы мультиметра в отверстия на плате, удобнее касаться ножек микросхем. После завершения проверки и устранения неточностей «учебные» микросхемы следует заменить настоящими.

При использовании микросхем структуры КМОП для защиты от статики очень желательно применение антистатических заземляющих браслетов. Если таких в наличии нет, то можно рекомендовать использование проволочной мочалки для мытья сковородок. Такая мочалка имеет форму кольца, куда можно просунуть руку. С помощью гибкого провода через резистор сопротивлением не более 1МОм подключиться к заземлению.

После проверки схемы можно вставить в плату упомянутые микросхемы КМОП. При настройке схемы, замене деталей, либо внесении изменений защитный антистатический браслет лучше не снимать.

Давайте рассмотрим устройство и назначение беспаечных макетных плат. В чем их преимущество перед другими видами сборки, и как с ними работать, а также какие схемы можно быстро собрать на них новичку.

Предыстория

Первой проблемой с которой сталкивается радиолюбитель это даже не отсутствие теоретических знаний, а отсутствия средств и знаний о способах монтажа электронных устройств. Если вы не знаете как работает та или иная деталь, это не помешает вам подключить её по схеме электрической принципиальной, а вот чтобы наглядно и качественно собрать схема нужна печатная плата. Чаще всего их изготавливают по методу ЛУТ, но лазерный принтер есть не у всех. Наши отцы и деды рисовали платы вручную лаком для ногтей или краской, а потом их вытравливали.

Здесь новичка настигает вторая проблема — отсутствие реактивов для травления. Да, безусловно, хлорное железо продается в каждом магазине радиоэлектронных компонентов, но на первых порах и так нужно много всего приобрести и изучить, что уделить внимания технологии травления плат из фольгированного текстолита или гетинакса просто сложно. Да и не только новичкам, но и опытным радиолюбителям порой нет смысла травить плату и тратить средства на недоработанное изделие на этапах его наладки.

Чтобы избежать проблем с поиском хлорного железа, текстолита, принтера и не получить от жены (мамы) за несанкционированное использование утюга, можно практиковаться в монтаже электронных устройств на беспаечных макетных платах.

Что такое беспаечная макетная плата?

Как видно из названия это такая плата, на которой можно собрать макет устройства без использования паяльника. Макетка - так её называют в народе - в магазинах присутствует разных размеров и модели несколько отличаются по компоновке, но принцип действия и внутреннее их устройство одинаковы.

Макетная плата состоит из корпуса из ABS пластика, в котором расположены разъёмные соединения, которые напоминают сдвоенные металлические шины между которыми зажимается проводник. На лицевой части корпуса отверстия, пронумерованные и промаркированные, в них можно вставлять провода, ножки микросхема, транзисторов и других радиодеталей в корпусах с выводами. Взгляните на картинку ниже, на ней я всё это изобразил.

На рассмотренной печатной плате крайние два столбца отверстий с каждой из сторон объединили вертикально общими шинами, из которых обычно формируют шину плюсового контакта источника питания и минусовую (общую шину). Обычно обозначаются красной и синей полосой по краю платы плюс и минус соответственно.

Средняя часть платы разделена на две части, каждая из частей объедены по строчно по пять отверстий в ряд на данной конкретной плате. На рисунке изображено схематическое соединение отверстий (черными сплошными линиями).

Внутренняя структура платы изображена на рисунке ниже. Сдвоенные шины зажимают проводники, что и проиллюстрированно. Жирными линиями обозначены внутренние соединения.

Такие платы в англоязычной среде называются Breadboard именно по такому названию вы сможете найти её на aliexpress и подобных интернет магазинах.

Как с ней работать?

Просто в отверстия вставляете ножки электронных компонентов, соединяя между собой детали по горизонтальным линиям, а с крайних вертикальных подаёте питание. Если нужна перемычка часто используют специальные с тонкими штекерами на конца, в магазинах их можно встретить под название «перемычки dupont» или перемычки для ардуино, её кстати тоже можно вставить в такую макетку и собирать свои проекты.

Если вам не хватило размеров одной макетной платы вы можете совместить несколько, он словно пазлы вставляются друг в друга, обратите внимание на первой картинке в статье схема собрана на двух соединенных платах. На одной из них есть шип, а на другой выемка, скошенные от наружной части к корпусу платы, чтобы конструкция не развалилась.

Сборка простых схем на макетной плате

Начинающему радиолюбителю важно быстро собрать схему чтобы убедиться в работоспособности и понять как она работает. Давайте рассмотрим как выглядят разные схемы на макетной плате.

Схема симметричного мультивибратора советуется как первая многим новичкам, она позволяет научиться соединять детали последовательно и параллельно, а также определять цоколевку транзисторов. Её можно собрать навесным монтажом или развести печатную плату, но это требует пайки, а навесной монтаж несмотря на свою простоту, на самом деле очень сложен для начинающих и чреват замыканиями или плохим контактом.

Посмотрите как просто она выглядит на беспаечной макетной плате.

Кстати обратите внимание здесь не использовались перемычки Dupont. Вообще, их не всегда можно найти в радиомагазинах, а особенно в магазинах маленьких городов. Вместо них можно использовать жилы от интернет-кабеля (Витая пара) они в изоляции, а жила не покрыта лаком, что позволяет быстро оголить конец кабеля, сняв небольшой слой изоляции и вставить в разъём на плате.

Соединять вы можете детали как угодно, лишь бы обеспечить нужную цепь, вот та же схема, но собрана слегка иначе.

Кстати для описания соединений вы можете пользоваться маркировкой платы, столбцы обозначают буквами, а строки цифрами.

Для ваших конструкций встречаются такие блоки питания, на них есть штекера которые монтируются в беспаечную плату подключаясь к шинам «+» и «-». Это удобно, на нём есть выключатель и линейный малошумящий стабилизатор напряжения. В целом вам не составит труда развести такую плату самому и собрать её.

Вот так , например для его проверки. На картинке изображена более “продвинутая” версия печатной платы с зажимными клеммами для подключения источника питания. Анод светодиода подключен к плюсу питания (красная шина) а катод на горизонтальную шину рабочей области, где и соединен с токоограничительным резистором.

Источник питания на линейном стабилизаторе типа L7805, или любой другой микросхеме серии L78xx, где хх - нужное вам напряжение.

Собранная схема пищалки на логике. Правильное название такой схемы - Генератор импульсов на логических элементах типа 2и-не. Сначала ознакомьтесь со схемой электрической принципиальной.

В качестве логической микросхемы подойдет отечественная К155ЛА3, либо иностранная типа 74HC00. Элементы R и C задают рабочую частоту. Вот её реализация на плате без пайки.

Справа заклееный белой бумажкой - буззер. Его можно заменить светодиодом, если уменьшить частоту.

Чем больше Сопротивление ИЛИ ёмкость - тем меньше частота.

А вот так выглядит типовой проект Ардуинщика на стадии тестирования и разработки (а иногда и в конечном виде, зависит от того насколько он ленив).

Собственно в последнее время популярность “бредбордов” существенно возросла. Они позволяют быстро собирать схемы и проверять их работоспособность, а также использовать в качестве разъёма при перепрошивке микросхем в DIP корпусе, и в других корпусах, если есть переходник.

Ограничения беспаечной макетной платы

Несмотря на свою простоту и очевидные преимущества перед пайкой, беспаечные макетки имеют и ряд недостатков. Дело в том что не все цепи нормально работают в такой конструкции, давайте рассмотрим подробнее.

На беспаечных макетных платах не рекомендуется собирать мощные преобразователи, а особенно импульсные схемы. Первые не будут нормально работать по причине токовой пропускной способности контактных дорожек. Не стоит залазить за токи более 1-2 Ампер, хотя в интернете встречаются и сообщения о том что включают и 5 Ампер, делайте сами выводы и экспериментируйте.

Электробезопасность

Не стоит забывать и о том, что высокое напряжение опасно для жизни. Макетирование устройств работающих, например от 220 В ЗАПРЕЩЕНО категорически. Хоть и выводы закрыты пластиковой панелью, но куча проводников и перемычек могут привести к случайному замыканию или поражению электрическим током!

Заключение


Беспаечная макетная плата годится для простых схем, аналоговых схем которые не предъявляют высоких требованиям к электрическим соединениям и точности, автоматики и цифровых схем, которые не работают на высоких скоростях (ГигаГерцы и десятки МегаГерц - это уже слишком). При этом высокое напряжение и токи опасны и в таких целях лучше использовать навесной монтаж и печатные платы, при этом новичку не следует производить и навесного монтажа таких цепей. Стихия беспаечных макетных плат — простейшие схемы до десятка элементов и любительские проекты на Ардуино и других микроконтроллерах.

При конструировании и сборке новых электронных схем обязательно требуется их отладка. Она проводится на временной монтажной плате, позволяющей достаточно свободно расположить компоненты с целью обеспечения возможности быстрой и удобной их замены, проведения контрольно-измерительных работ.

Детали в такой плате могут крепиться при помощи пайки, а сама площадка будет называться макетной платой. Чтобы лишний раз не подвергать компоненты механическим и тепловым воздействиям, монтажниками и конструкторами используется беспаечная макетная плата. Часто радиолюбители называют это приспособление макеткой.

Макетная плата для сборки без пайки позволяет произвести монтаж электрической схемы и запустить ее без использования паяльника. При этом можно проверить все параметры и характеристики будущего устройства, подключив к плате измерительные и контрольные приборы.

Макетная плата представляет собой пластину из полимерного материала, являющегося диэлектриком. На пластине в определенном порядке просверлены монтажные отверстия, в которые должны вставляться выводы деталей – компонентов будущего устройства.

Отверстия допускают подключение выводов диаметром 0,4-0,7 мм. Расположены они на плате, как правило, с шагом 2,54 мм.

Чтобы смоделировать соединения выводов компонентов между собой, макетка имеет специальные токопроводящие пластины, в определенном порядке соединяющие отверстия.

Как правило, эти соединения осуществляются группами вдоль платы по ее длинным сторонам. Таких рядов может быть два-три. Эти контактные группы используются как шины для подключения питания.

Между продольными рядами отверстия соединяются пластинами в группы по пять. Эти пластины расположены в направлении поперек платы.

Около отверстий в местах будущих контактов токопроводящие пластины имеют конструктивные особенности, позволяющие зажимать и прочно удерживать выводы деталей, обеспечивая при этом наличие электрического контакта. В этом и есть смысл монтажа без пайки.

Качественные макетные платы допускают монтаж и разборку при сохранении прочного и надежного соединения между деталями до 50 000 раз.

Макетные платы, выпускаемые промышленным способом и приобретенные в торговой сети, как правило, имеют схему расположения контактов и токопроводящих связей между отверстиями.

Как правильно пользоваться

Чтобы успешно и рационально пользоваться макеткой, необходимо иметь еще такие приспособления:

  • несколько монтажных проводов диаметром 0,4-0,7 мм для устройства различных перемычек и подключения питания;
  • кусачки-бокорезы;
  • плоскогубцы;
  • пинцет.

Паяльник при монтаже без пайки, разумеется, не нужен, но он может понадобиться, чтобы припаять провода к клеммам источника питания, если отсутствуют разъемные изделия. Иногда пайку придется применить для осуществления экранирования.

Зная расположение токопроводящих дорожек на макетной плате, легко осуществить монтаж любой схемы и, подключив ее к источнику питания, проверить работоспособность. Для сборки нужно только вставить выводы компонентов в зажимы разъемов и соединить их в нужной последовательности.

При этом необходимо четко представлять расположение токопроводящих дорожек, чтобы не допустить короткого замыкания. При необходимости осуществления контактов между дорожками на макетной плате используются соединители.

В случае если выводы деталей по диаметру не подходят под монтажные отверстия, к ним можно подпаять или подмотать отрезки подходящего провода. Микросхемы и компоненты в BAG-корпусах устанавливаются в центре платы.

Подготовка и экранирование

Для того чтобы работать с макетной платой, особенно, если она предназначена для монтажа без пайки, сначала необходимо произвести подготовительные работы. Это тем более актуально, если плата не использовалась длительное время.

Подготовка включает в себя очистку макетной платы от пыли. Для этого можно воспользоваться мягкой кистью, а для очистки отверстий можно использовать пылесос или баллончик со сжатым воздухом.

Следующим этапом необходимо прозвонить мультиметром токопроводящие дорожки, чтобы избежать лишних трат времени на поиск возможной потери контакта при монтаже схемы.

При отладке устройств, они могут работать некорректно из-за различных помех и наведенных токов, возникающих при работе схемы. Для устранения этого явления необходимо применить экранирование макетной платы.

Для этого используют металлическую пластину, прикрепленную снизу и соединенную пайкой с общей шиной, которая впоследствии станет отрицательной.

Для успешного использования макетной платы под пайку и осуществления быстрой отладки целесообразно приобретать несколько макеток разных размеров.

Во-первых, это позволит собирать сложные схемы отдельными блоками, отлаживая каждый, и позже соединять в одно устройство. Во-вторых, так можно собрать дополнительные устройства, которые могут понадобиться для контроля работы основной схемы.

Приобретать макетную плату лучше с комплектом соединительных проводов. Их еще называют «джамперами».

Но в некоторых случаях можно сэкономить значительную сумму, если купить плату для беспаечного монтажа, неукомплектованную соединителями. Их в этом случае можно изготовить самостоятельно из подходящего провода.

Идеально подойдет кабель КСВВ 4-0,5, используемый при устройстве систем пожарной сигнализации. Этот кабель имеет 4 изолированных жилы из тонкого медного провода диаметром 0,5 мм. Одного метра кабеля будет достаточно, чтобы получить много соединительных перемычек.

При монтаже всегда нужно надежно подключать все выводы полупроводников и микросхем. Даже, если какие-либо выводы не используются, их необходимо подключить к общей шине, чтобы избежать возникновения наведенных токов.

При использовании макетных плат можно применять только слаботочные детали, работающие от напряжения не более 12 В. Подключать к макетной плате переменный ток напряжением 220 В от бытовой электросети запрещено.

Правильное использование макетной платы для монтажа без пайки существенно упростит сборку всей схемы и снизит затраты на изготовление устройства, в котором такая схема будет использоваться.

Породившая холивар в комментариях. Многие сторонники Ардуины, по их словам, хотят просто чего-то собрать типа мигающих светодиодов с целью разнообразить свой досуг и поиграться. При этом они не хотят возиться с травлением плат и пайкой. Как одну из альтернатив товарищ упомянул конструктор «Знаток», но его возможности ограничены набором деталей, входящих в комплект, да и конструктор все же детский. Я же хочу предложить другую альтернативу - так называемый Breadboard, макетная плата для монтажа без использования пайки.
Осторожно, много фоток.

Что это такое и с чем его едят

Основное назначение такой платы - конструирование и отладка прототипов различных устройств. Состоит данное устройство из отверстий-гнезд с шагом 2,54мм (0,1 дюйма), именно с таким (либо кратным ему) шагом располагаются выводы на большинстве современных радиодеталей (SMD-не в счет). Макетные платы бывают различных размеров, но в большинстве случаев они состоят из вот таких одинаковых блоков:

Схема электрических соединений гнезд изображена на правом рисунке: пять отверстий с каждой стороны, в каждом из рядов(в данном случае 30) электрически соединены между собой. Слева и справа находится по две линии питания: здесь все отверстия в столбце соединены между собой. Прорезь по средине предназначена для установки и удобного извлечения микросхем в DIP-корпусах. Для сборки схемы в отверстия вставляются радиодетали и перемычки, так как мне плата досталась без заводских перемычек - я их делал из металлических канцелярских скрепок, а маленькие(для соединения соседних гнезд) из скоб для степлера.
Может показаться, что чем больше плата - тем больше её функциональность, это не совсем так. Весьма малый шанс что кто-то (особенно из начинающих) будет собирать устройство, которое займет все сегменты платы, вот несколько устройств одновременно - это да. Например здесь я собрал электронное зажигание на микроконтроллере, мультивибратор на транзисторах и генератор частоты для LC-метра:

Ну и что можно с этим сделать?

Чтобы оправдать название статьи, я приведу несколько устройств. Описание того, что и куда нужно вставлять будет на изображениях.
Неободимые детали


Для того, чтобы собрать одну из описанных ниже схем понадобится сама макетная плата типа Breadboard и набор перемычек. Кроме того желательно иметь подходящий источник питания, в простейшем случае - батарейка(-ки), для удобства её(их) подключения рекомендуется использовать специальный контейнер. Можно использовать и блок питания, но в этом случае нужно быть осторожным и постараться ничего не сжечь, так как БП стоит гораздо дороже батареек. Остальные детали будут приведены в описании самой схемы.
Подключение светодиода
Одна из простейших конструкций. На принципиальных схемах изображается так:

Из деталей понадобятся: маломощный светодиод, любой резистор на 300Ом-1кОм и источник питания на 4,5-5В. В моем случае резистор мощный советский(первый попавшийся под руку) на 430Ом (о чем свидетельствует надпись К43 на самом резисторе), а в качестве источника питания - 3 пальчиковых (типа АА) батарейки в контейнере: итого 1,5В*3 = 4,5В.
На плате это выглядит вот так:


Батарейки подключены к красной(+) и черной(-) клеммам от которых тянутся перемычки к линиям питания. Затем от минусовой линии к гнездам №18 подключен резистор, с другой стороны к этим же гнездам катодом(короткой ножкой) подключен светодиод. Анод светодиода подключен к плюсовой линии. Вдаваться в принцип действия схемы и объяснять закон Ома я не буду - если хочется просто поиграться, то это и не нужно, а если все же интересно, то можно и у .
Линейный стабилизатор напряжения
Может это и достаточно резкий переход - от светодиода к микросхемам, но в плане реализации я не вижу никаких сложностей.
Итак, существует такая микросхемка LM7805 (или просто 7805), ей на вход подается любое напряжение от 7,5В до 25В, а на выходе получаем 5В. Есть и другие, например, микросхема 7812 - 12В. Вот такая у неё схема включения:


Конденсаторы используются для стабилизации напряжения и при желании их можно не ставить. Вот так это выглядит в жизни:


И крупным планом:


Нумерация выводов микросхемы идет слева направо, если смотреть на нее со стороны маркировки. На фото нумерация выводов микросхемы совпадает с нумерацией разъемов брэдборда. Красная клемма(+) подключена к 1-й ноге микросхемы - вход. Черная клемма(-) напрямую подключена к минусовой линии питания. Средняя ножка микросхемы(Общий, GND) также подключается к минусовой линии, а 3-я ножка (Выход) к плюсовой линии. Теперь, если подать на клеммы напряжение 12В, на линиях питания должно быть 5В. Если нету источника питания на 12В, можно взять 9В батарейку типа «Крона» и подключить её через специальный разъем, изображенный на фотографии выше. Я использовал блок питания на 12В:


Вне зависимости от значения входного напряжения, если оно лежит в указанных выше пределах - выходное напряжение будет 5В:


В завершение, добавим конденсаторы, чтобы все было по правилам:

Генератор импульсов на логических элементах
А теперь пример использования уже другой микросхемы, при чем не в самом стандартном её применении. Используется микросхема 74HC00 или 74HCТ00, в зависимости от фирмы-производителя перед названием и после него могут стоять различные буквы. Отечественный аналог - К155ЛА3. Внутри этой микросхемы 4 логических элемента «И-НЕ» (англ. «NAND»), у каждого из элементов по два входа, замкнув их между собой получим элемент «НЕ». Но в данном случае логические элементы будут использоваться в «аналоговом режиме». Схема генератора такая:


Элементы DA1.1 и DA1.2 генерируют сигнал, а DA1.3 и DA1.4 - формируют четкие прямоугольники. Частота генератора определяется номиналами конденсатора и резистора и вычисляется по формуле: f=1/(2RC). К выходу генератора подключаем любой динамик. Если взять резистор на 5,6кОм и конденсатор на 33нФ получим примерно 2,7кГц - эдакий пищащий звук. Вот так это выглядит:


На верхние по фотографии линии питания подключено 5В с собранного ранее стабилизатора напряжения. Для удобства сборки приведу словесное описание соединений. Левая половинка сегмента(нижняя на фото):
Конденсатор установлен в гнезда №1 и №6;
Резистор - №1 и №5;

№1 и №2;
№3 и №4;
№4 и №5;



№2 и №3;
№3 и №7;
№5 и №6;
№1 и «плюс» питания;
№4 и «плюс» динамика;
Кроме того:



микросхема устанавливается так, как на фото - первая ножка в первый разъем левой половинки. Первую ножку микросхемы можно определить по так называемому ключу - кружочку(как на фото) либо полукруглому вырезу в торце. Остальные ноги ИМС в DIP-корпусах нумеруются против часовой стрелки.
Если все собрано правильно - при подаче питания динамик должен запищать. Изменяя номиналы резистора и конденсатора можно проследить за изменениями частоты, но при сильно большом сопротивлении и/или слишком малой емкости схема работать не будет.
Теперь изменим номинал резистора на 180кОм, а конденсатор на 1мкФ - получим клацающе-тикающий звук. Заменим динамик на светодиод подключив анод (длинная ножка) к 4 разъему правой половики, а катод через резистор 300Ом-1кОм к минусу питания, получим мигающий светодиод, который выглядит вот так:


А теперь добавим еще один такой же генератор так, чтобы получилась такая схема:


Генератор на DA1 генерит низкочастотный сигнал ~3Гц, DA2.1 - DA2.3 - высокочастотный ~2,7кГц, DA2.4 - модулятор , который их смешивает. Вот такая должна получится конструкция:


Описание подключений:
Левая половинка сегмента(нижняя на фото):
Конденсатор С1 установлен в гнезда №1 и №6;
Конденсатор С2 - №11 и №16;
Резистор R1 - №1 и №5;
Резистор R2 - №11 и №15;
Перемычки установлены между следующими гнездами:
№1 и №2;
№3 и №4;
№4 и №5;
№11 и №12;
№13 и №14;
№14 и №15;
№7 и минусовой линией питания.
№17 и минусовой линией питания.
Правая половинка сегмента(верхняя на фото):
перемычки установлены между следующими гнездами:
№2 и №3;
№3 и №7;
№5 и №6;
№4 и №15;
№12 и №13;
№12(13) и №17;
№1 и «плюс» питания;
№11 и «плюс» питания;
№14 и «плюс» динамика;
Кроме того:
перемычки между разъемами №6 левой и правой половинок;
перемычки между разъемами №16 левой и правой половинок;
- между левой и правой «минусовыми» линиями;
- между минусом питания и "-" динамика;
микросхема DA1 устанавливается так же, как и в предыдущем случае - первая ножка в первый разъем левой половинки. Вторая микросхема - первой ножкой в разъем №11.
Если все сделать правильно, то при подаче питания динамик начнет издавать по три пика каждую секунду. Если в те же разъемы(параллельно) подключить светодиод, соблюдая полярность, получится такой девайс, напоминающий по звукам крутые электронные штуковины из не менее крутых боевиков:
Мультивибратор на транзисторах
Данная схемка - скорее дань традициям так как в былые времена почти каждый начинающий радиолюбитель собирал подобную.


Для того, чтобы собрать подобную понадобятся 2 транзистора BC547, 2 резистора на 1,2кОм, 2 резистора на 310Ом, 2 электролитических конденсатора на 22мкФ и два светодиода. Емкости и сопротивления необязательно соблюдать точно, но желательно чтобы в схеме было по два одинаковых номинала.
На плате устройство выглядит следующим образом:


Цоколевка транзистора следующая:

B(Б)-база, C(К)-коллектор, E(Э)-эмиттер.
У конденсаторов минусовый выход подписан на корпусе (в советских конденсаторах подписывался "+").
Описание подключений
Вся схема собрана на одной (левой) половинке сегмента.
Резистор R1 - №11 и "+";
резистор R2 - №19 и "+";
резистор R3 - №9 и №3;
резистор R4 - №21 и №25;
транзистор Т2 - эмиттер -№7, база - №8, коллектор - №9;
транзистор Т1 - эмиттер -№23, база - №22, коллектор - №21;
конденсатор С1 - минус - №11, плюс - №9;
конденсатор С2 - минус - №19, плюс - №21;
светодиод LED1 - катод-№3, анод-"+";
светодиод LED1 - катод-№25, анод-"+";
перемычки:
№8 - №19;
№11 - №22;
№7 - "-";
№23 - "-";
При подаче напряжения 4,5-12В на линии питания должно получится примерно такое:

В заключение

В первую очередь статья ориентирована на тех, кто хочет «поиграться», поэтому я не приводил описаний принципов работы схем, физических законов и пр. Если кто задастся вопросом «а почему же оно мигает?» - в интернете можно найти кучи объяснений с анимациями и прочими красивостями. Кто-то может сказать что брэдборд не подходит для составления сложных схем, но а как насчет этого:

а бывают и еще более страшные конструкции. По поводу возможного плохого контакта - при использовании деталей с нормальными ножками вероятность плохого контакта очень мала, у меня такое случалось всего пару раз. Вообще подобные платы уже всплывали здесь несколько раз, но как часть устройства построенного на Ардуино. Честно говоря, я не понимаю конструкции типа этой:


Зачем вообще нужно Ардуино, если можно взять программатор, прошить им контроллер в DIP-корпусе и установить его в плату, получив более дешевое, компактное и портативное устройство.
Да, на breadboard нельзя собрать некоторые аналоговые схемы чувствительные к сопротивлению и топологии проводников, но они попадаются не так уж часто, тем более среди новичков. А вот для цифровых схем здесь почти нет никаких ограничений.