Сравнительные характеристики запорной арматуры. Чем вентиль отличается от крана — основные отличия

При устройстве газопровода, водопроводной и канализационной систем, а также других промышленных инженерных систем не обойтись без вентилей и задвижек. Многие считают, что вентили являются разновидностью задвижек, только меньшего размера, но на самом деле это разные устройства, имеющие существенные конструкционные отличия, определяющие особенности их эксплуатации. Вентили и задвижки имеют свои плюсы и минусы, которые и определяют оптимальный выбор устройства для конкретных условий применения.

Вентиль – это прибор, который устанавливается на газо-, воздухо-, водо-, паро-, масло- и иные трубопроводы для открытия и закрытия проходных отверстий с помощью клапана. Вентиль состоит из стального, чугунного или бронзового корпуса, имеющего седло для клапана, самого клапана со шпинделем с винтовой нарезкой и рукоятки, обеспечивающей возможность вращения шпинделя. К трубопроводу вентили присоединяются с помощью резьбы или фланцев и подразделяются на муфтовые и фланцевые.
Вентиль в разрезе
Задвижка – это прибор, который устанавливается на трубопроводы для открытия и закрытия проходных отверстий с помощью клапана, перемещающегося перпендикулярно по отношению к оси потока рабочей среды. В зависимости от конструкции запорного органа задвижки подразделяются на шланговые, шиберные и параллельные. Шпинделя же могут быть выдвижными или вращаемыми.
Задвижка в разрезе

Сравнение вентиля и задвижки

В чем же разница между вентилем и задвижкой? Она обусловлена различной конструкцией их запорных органов. В вентиле поток жидкости или газа перекрывается с помощью клапана, прижимаемого к седлу в параллельных потоку горизонтальных плоскостях, для чего производится двойной изгиб потока жидкости или газа под углом 90 °, но при этом повышается сопротивление ему. В задвижке поток перекрывает заслонка или конус, опускаемые перпендикулярно направлению его движения.
Если вентиль правильно сконструирован, то не происходит сужения проходных отверстий по сравнению с входными и выходными, а при использовании задвижек возможны варианты. В большинстве трубопроводов устанавливаются полноприводные задвижки, то есть диаметр их проходного отверстия соответствует диаметру трубопровода, но иногда, с целью уменьшения крутящих моментов, устанавливаются и суженные задвижки, что позволяет снизить износ уплотнительных поверхностей.
При большом диаметре трубопроводов (от 300 мм) или высоком давлении в них эффективней работают задвижки. Вентили же имеют более простую конструкцию, следствием чего является их более низкая стоимость, их также легче вращать при больших давлениях, но при высоком давлении стремление отжать клапан от седла создает дополнительную нагрузку на конструкцию. В задвижке сопротивление полностью отсутствует, поскольку она не имеет изгибов. Одностороннее давление обеспечивает более плотное прилегание заслонки к седлу, что делает задвижки более надежными запорными устройствами.
Блокирующие элементы задвижек могут либо полностью перекрывать поток жидкости или газа, либо быть полностью открыты, в то время как вентили могут использоваться в качестве регулирующих элементов.

TheDifference.ru определил, что отличие вентиля от задвижки заключается в следующем:

Запорные органы вентиля перемещаются параллельно потоку, задвижки – перпендикулярно. Это делает задвижки более надежными, но обеспечивает более легкое вращение вентилей при больших нагрузках.
Вентиль имеет более простую конструкцию и, соответственно, более низкую стоимость.
Задвижка может находиться только в двух положениях (открыто-закрыто), а установка вентиля позволяет регулировать уровень наполнения трубопроводов или объем расходуемых газов и жидкостей.

Все трубопроводы снабжаются соответствующей арматурой. Ее назначение - открывать и перекрывать поток жидкости (газа), регулировать ее температуру, давление или расход, а также предохранять оборудование от нерасчетных режимов. В соответствии с назначением арматура бывает запорной, регулирующей, предохранительной, приводной и др. К какому же типу арматуры относятся краны и вентили, и в чем состоит их различие?

Определение

Кран - тип трубопроводной приводной арматуры, в котором затворный орган вращается вокруг своей собственной оси, размещенной перпендикулярно направлению потока. Обычный кран состоит из двух главных элементов: неподвижного корпуса и вращающейся пробки.

Шаровой кран

Вентиль (запорный клапан) - это тип приводной арматуры, в котором затворный орган, перемещаясь в направлении потока, садится на седло. Вентиль предназначен для открытия, закрытия и регулировки потоков газа или жидкости.


Вентиль

Сравнение

Основное различие между вентилем и краном заключается в том, что вентилем можно регулировать напор рабочего потока, а краном нельзя (к тому же регулировка краном по правилам эксплуатации категорически запрещена). Кран выполняет всего две функции, имея только положение «открыто» или «закрыто», а вентилем можно легко регулировать напор рабочего потока.

Всё дело в конструктивных отличиях вентиля и крана. В вентилях запорный орган садится на седло, перемещаясь в направлении потока, а в кранах он оборачивается вокруг своей собственной оси. К тому же краны обычно бывают шаровыми, то есть при повороте шара изменяется диаметр отверстия, а вентили оборудованы грун-буксой (выкручивая или закручивая шток грун-буксы, поднимают или опускают клапан, прикрепленный к штоку, тем самым открывая или закрывая отверстие, находящееся в седле).

Выводы сайт

  1. Кран имеет два положения - это положение «открыто» и положение «закрыто».
  2. Конструкция вентиля, кроме включения/выключения, позволяет еще и регулировать напор рабочего потока.
  3. Визуально кран от вентиля отличается следующим образом: если ручка простая и конец ее прикреплен к штоку - это кран, если на штоке вместо ручки имеется «барашек» - это вентиль.

Трубопроводная арматура настолько разнообразна, что даже краткое описание основных её типов только по конструкции затвора занимает достаточно большой объём. Выполнение одних и тех же функций может осуществляться различными типами арматуры, обладающими различными принципами конструкции затвора.

Сравнение трубопроводной арматуры различных типов

Преимущества вентилей

Основное преимущество вентилей — отсутствие трения уплотнительных поверхностей в момент закрытия, так как затвор движется перпендикулярно, что уменьшает опасность повреждения (задиров). Высота вентилей меньше, чем у задвижек, ввиду того что ход шпинделя невелик и обычно составляет не более четверти диаметра трубопровода. Однако строительная длина вентилей больше, чем у задвижек, так как требуется развернуть поток внутри корпуса.

Недостатки клапанов

Недостатком клапанов является большое гидравлическое сопротивление , вследствие того что

  1. направление потока рабочей среды изменяется внутри корпуса устройства дважды
  2. мало проходное сечение седла.

Вентили эксплуатируются только при определенном направлении движения рабочей среды: поток должен подтекать под тарелку и в закрытом положении давить на тарелку со стороны седла. При открывании вентиля давление способствует отрыву тарелки от седла. Если же вентиль будет ориентирован в противоположном направлении, то в закрытом состоянии давление будет придавливать тарелку к седлу и создавать значительные трудности при открытии. Это может повлечь срыв тарелки со штока и вентиль выйдет из строя.

Заслонки

Рисунок 4. Заслонка
дроссельная фланцевая.

Заслонки (англ. butterfly valve) — устройства арматуры с затвором в виде диска или прямоугольника, поворачивающимся на оси, расположенной перпендикулярно проходу. Затвор заслонки движется по дуге.

Применение заслонок

Заслонки наиболее часто используются на трубопроводах больших диаметров, малых давлениях среды и пониженных требованиях к герметичности запорного органа.

Заслонки применяют в вентиляции и кондиционировании воздуха на воздуховодах, а так же на различных газоходах, то есть там, где имеют место большие диаметры трубопроводов, небольшие давления и невысокие требования к герметичности.

По количеству установленных пластин различаются заслонки одинарные и многостворчатые. На капельных жидкостях заслонки применяют редко, так как их конструкция не обеспечивает надежной герметичности перекрытия прохода. На газах дроссельные заслонки (throttle) ввиду простоты конструкции и надежности применяют очень часто для регулирования и отключения расхода.

Конденсатоотводчики

Предназначены конденсатоотводчики (англ. steam trap) для вывода из газовой системы конденсата, не участвующего в рабочем или технологическом процессе. Конденсат сливается постоянно или периодически по мере его накопления в системе.

Конденсатоотводчики должны выпускать жидкость и задерживать газообразную фазу вещества, что осуществляется за счёт наличия гидравлического или механического затвора. Затвор должен надёжно выпускать конденсат при различных давлениях газа, температур конденсата и скорости его поступления в конденсатоотводчик.

Клапанные и бесклапанные конденсатоотводчики

Конденсатоотводчики могут быть клапанными и бесклапанными. Бесклапанные конденсатоотводчики выпускают конденсат непрерывно, а бесклапанные — периодически при наступлении заданных условий.

Клапанные конденсатоотводчики являются двухпозиционными регуляторами, в которых роль чувствительного элемента и привода одновременно выполняет поплавок, термостат, биметаллическая пластина или диск.

Конденсатоотводчики в зависимости от принципа действия бывают:

Конденсатоотводчики поплавковые в зависимости от конструкции поплавка различают с открытым поплавком и с закрытым поплавком, а также с опрокинутым поплавком колокольного типа.

В поплавковых конденсатоотводчиках проходное сечение клапана для выпуска конденсата открывается при всплытии поплавка, с которым связан затвор клапана. Всплытие поплавка происходит в тот момент, когда уровень конденсата в корпусе конденсатоотводчика достигнет предельного значения. После открывания выпускного клапана часть конденсата выдавливается в конденсатную линию и поплавок снова опускается, перекрывая отверстие седла клапана.

Принцип работы поплавкового конденсатоотводчика таков же, как и принцип работы регулятора уровня (регулятора перелива).

Термостатные конденсатоотводчики

В конденсатоотводчиках термостатических или термостатных для управления затвором клапана используется термосильфон, расширяющийся при повышении температуры, биметаллическая пластина или диск. Работа таких конденсатоотводчиков основана на разнице температур паровой и жидкой фазы.

В термостатных сильфонного типа конденсатоотводчиках сильфон (тонкостенная гофрированная трубка) заполнен жидкостью, испаряющейся при температуре свежего пара, но находящейся в жидкой фазе при температуре конденсата. Так, например, при удалении конденсата с температурой 85…90°С используется смесь из 25% этилового спирта и 75 % пропилового спирта. Как только сильфон начинает омываться паром, жидкость испаряется, сильфон расширяется и перемещает клапан, закрывая отверстие для выпуска конденсата. В других конструкциях для этой цели применяют биметаллические пластины.

Термодинамические конденсатоотводчики

Конденсатоотводчики термодинамические имеют непрерывное действие. Они широко распространены вследствие простоты конструкции, малым габаритам, надежности в работе, низкой стоимости, высокой пропускной способности и малым потерям пара.

Тарельчатый конденсатоотводчик

Тарельчатый конденсатоотводчик имеет лишь одну подвижную деталь — тарелку, свободно лежащую на седле. Проходящий конденсат приподнимает тарелку и выходит через отводной канал. При поступлении пара тарелка прижимается к седлу в связи с тем, что высокие скорости истечения пара создают под ней зону пониженного давления.

Лабиринтные конденсатоотводчики

Конденсатоотводчики лабиринтные также имеют непрерывное действие. Они содержат устройство в виде лабиринта, которое создает большое гидравлическое сопротивление газу, а конденсату — значительно меньшее. Вследствие этого конденсат проходит через конденсатоотводчик, а пар задерживается.

Сопловые конденсатоотводчики

Конденсатоотводчики сопловые также действуют непрерывно. Они содержат устройство в виде ступенчатого сопла, которое также обладает значительным различием в сопротивлении для конденсата и газообразной фазы.

Недостатки конденсатоотводчиков

Конденсатоотводчики — малонадежные устройства, нуждающиеся в частой ревизии.

Краны

Кран (англ. tap valve) — трубопроводное устройство с затвором в форме тела вращения, поворачивающимся вокруг своей оси на 90° по отношению к оси движения потока рабочей среды.

Рисунок 6. Кран шаровый
нержавеющий
с соединительными фланцами.

Затвор крана иногда называют пробкой. Пробка крана имеет отверстие, перпендикулярное оси тела вращения, предназначенное для прохода среды. Если кран открыт, отверстие пробки располагается соосно оси движения среды, если кран закрыт, отверстие пробки перпендикулярно потоку.

В отличие от вентиля и задвижки, для того, чтобы открыть или закрыть кран, требуется совершить не несколько оборотов шпинделя, а всего один поворот пробки на 90?. Следовательно, краны, как правило, снабжают не маховиком, а рукояткой.

В зависимости от числа рабочих положений пробки кранов бывают двухходовыми или трехходовыми.Принципиально могут быть краны и на большее число положений, однако они нашли применение только в лабораторной арматуре. В зависимости от формы отверстий на пробке краны могут выполнять различные функции

В зависимости от формы тела вращения, образующего затвор, краны бывают:

  • цилиндрическими,
  • конусными,
  • шаровыми.

Для герметичности затвор должен быть смазан, чтобы смазка заполнила микрозазоры между поверхностью пробки и корпуса, и уменьшала усилия, требуемые на поворот пробки.

Пробка должна быть постоянно прижата к поверхности корпуса. В зависимости от способа прижатия пробки различают сальниковые и натяжные краны.

В сальниковых кранах между крышкой крана и верхним торцом пробки расположена упругая сальниковая набивка, создающая постоянное усилие, прижимающее пробку к корпусу.

В натяжных кранах снизу пробки расположен стержень с резьбой, проходящий через отверстие в корпусе. Прижатие пробки осуществляется посредством пружины, надеваемой на винт и стянутой гайкой. Натяжные краны более надежны , так как в них работа крана не зависит от свойств сальниковой набивки, которая со временем теряет свои упругие свойства. Поэтому натяжные краны используют в газоснабжении.

Конусные краны

Преимуществом конусных кранов является невысокая стоимость , малое гидравлическое сопротивление, простота конструкции и ревизии.

Недостатком таких кранов является большое усилие, требуемое на поворот пробки. По истечении некоторого срока работы (в зависимости от качества воды в системе) микрозазоры между поверхностью корпуса и пробки зарастают отложениями - пробка «прикипает». В этик условиях на поворот пробки требуется настолько большое усилие, что возможно поломка крана.

Регуляторы давления, расхода и уровня

Рисунок 7. Регулятор давления
с присоединительными фланцами

Назначение регуляторов

Регуляторы (редукторы) давления, расхода и уровня предназначены для автоматического поддержания соответствующего параметра без использования вторичных источников энергии.

Конструкция регуляторов

Регулятор по конструкции представляет из себя клапан с пневмо- или гидроприводом мембранного, сильфонного или плунжерного типа, а так же специальную установочную пружину, предназначенную для подстройки регулятора на требуемое значение параметра. Конструкции регуляторов необычайно разнообразны.

Подразделяются регуляторы уровня на:

  • регуляторы питания, в которых уровень поддерживается за счет периодического добавлением жидкости в сосуд, и
  • регуляторы перелива, в которых происходит слив избытка жидкости.

Регулятор давления

Рассмотрим регулятор давления на примере редуктора газового баллона. Отверстие входного патрубка для подачи газа является седлом клапана, к которому прижимается тарелка клапана, закрепленная на одном конце углового рычага. Второй конец рычага соединен с подвижной мембраной, на которую с внешней стороны действует сила атмосферного давления и сила сжатия установочной пружины, а с другой стороны — сила давления газа в полости регулятора. Ось вращения рычага закреплена на днище корпуса регулятора. Если давление одна из горелок газовой плиты будет закрыта, то уменьшится расход газа, в результате чего давление газа в полости редуктора начнет повышаться. Это приведет к перемещению мембраны, которая потянет за собой конец рычага, соединенный с нею. Второй конец рычага с закрепленным на нем клапанам так же переместится и прикроет отверстие для прохода газа. В результате этого давление газа в полости редуктора будет практически на постоянном уровне, так как ход клапана крайне мал и усилие установочной пружины при перемещении мембраны изменится незначительно.

Регулятор будет обеспечивать пропуск требуемого расхода газа при постоянном значении давления перед горелками.

Регулятор расхода

Рисунок 7. Регулятор
расхода
прямого действия
с соединительными
фланцами.

Работает регулятор расхода аналогично регулятору уровня, поддерживая постоянный перепад давления на некотором дросселирующем устройстве, например, диафрагме или регулируемом сопле. Так как коэффициент местного сопротивления дросселирующего устройства не изменяется, постоянный перепад давления означает, что скорость потока через дроссель постоянна и, следовательно, постоянен расход. Некоторые регуляторы имеют дроссель, конструкция которого позволяет регулировать его сопротивление, подстраивая регулятор на требуемое значение расхода. Чаще, однако, сопротивление дросселирующего устройства оставляют постоянным, а изменяют сжатие установочной пружины, что позволяет регулировать перепад давления на дросселе и, следовательно, расход через регулятор.

В регуляторах важным принципом является разгрузка клапана от одностороннего давления рабочей среды, что позволяет значительно уменьшить усилия, требуемые на перемещение рабочего органа. Наиболее совершенным видом разгрузки является двухседельная конструкция клапана, когда усилия, действующие на две тарелки, противоположны по направлению и взаимно компенсируются. Однако в такой конструкции корпус сложнее изготовить корпус и тяжелее обеспечить полную герметичность закрытия двух клапанов одновременно. Несмотря на такие трудности, эта конструкция очень широко применяется в современных регуляторах.

Заключение

Важное значение в надежности функционирования трубопровода имеет не только арматура, но и , например, .

Выполнение одних и тех же функций может осуществляться различными типами арматуры, обладающими различными принципами конструкции затвора. Основные типы трубопроводной арматуры по принципу затвора — задвижки, клапаны, заслонки, краны, мембранные клапаны, шланговые клапаны, регуляторы давления, расхода и уровня, конденсатоотводчики — были кратко освещены в этой статье.

Список литературы

  1. Промышленная трубопроводная арматура: Каталог, ч. I / Сост. Иванова О. Н., Устинова Е. И., Свердлов А. И. - М. : ЦИНТИхимнефтемаш, 1979. - 190 c.
  2. Промышленная трубопроводная арматура: Каталог, ч. II / Сост. Иванова О. Н., Устинова Е. И., Свердлов А. И. - М. : ЦИНТИхимнефтемаш, 1977. - 120 c.
  3. Арматура энергетическая: Каталог-справочник / Сост. Матвеев А. В., Закалин Ю. Н., Беляев В. Г., Филатов И. Г... - М. : НИИЭинформэнергомаш, 1978. - 172 c.

Получив доступ к данной странице, Вы автоматически принимаете

Запорная арматура используется при устройстве газопроводных и канализационных систем. Такие приспособления заметны на разных видах труб, их прямое предназначение — перекрытие любых потоков (водных или газовых). Кран и клапан относятся к основным механизмам данного типа.
Исходя из характеристик данных механизмов, выбирается определенный тип приспособлений. Чтобы сделать верный выбор, необходимо знать, что и как работает.
В чем разница между краном и клапаном?

Главное отличие — предназначение в работе, их функции. Главная задача клапана — обеспечение процесса плавной регулирование напора газа за счет конструктивных особенностей. Безусловно, такую работу способен выполнять и кран, он имеет способность регулировать поток жидкостей и газов, но из-за специальных условий использования неполное перекрывание строго запрещено.

Необходимо сказать, что ни кран, ни клапан не могут изменить направления потоков, они применяются только при необходимости частичного или полного перекрывания потока. При установке кранов и клапанов в трубопроводную систему необходимо посмотреть на стрелку — она показывает верное направление движения. Неправильный монтаж способствует возникновению лишнего гидравлического сопротивления, это повлияет на срок службы, может привести к неправильной работе и неисправностям. Структура клапана включает в себя грун-буксы что позволяет герметично садится на седло отверстия.

Существуют и визуальные отличия. Рукоятки данных запорных приспособлений различны — клапан имеет «барашек», который необходим для плавного регулирования потока, кран же имеет простую рукоятку, которая крепится к штоку

Ответа на вопрос «что лучше: кран или клапан?» нет. Дать такой ответ невозможно, так как каждый тип запорной арматуры предназначен для выполнения определенных задач. Кран, в отличие от клапана, имеет конструктивные особенности, которые способствуют его работе при необходимости быстрого перекрытия потока. Это происходит из-за более простого строения рукоятки, так как на заворачивание «барашка» клапана тратится больше времени. По сроку работы клапан уступает крану, в его конструкции предполагаются уплотнительные элементы, которые периодически ломаются и нуждаются в починке или замене. Однако по ремонтопригодности преимущества у клапана, так как в его строении возможна замена деталей, вышедших из строя. При деформации крана необходима полная замена.

Расслабься и не дай змейке разюиться ?

Для управления используй стрелки на клавиатуре ?

Любой трубопровод не обходится без специальной арматуры . Она предназначена для открытия и закрытия потока рабочей среды(жидкости, газа, порошкообразных веществ). Также с ее помощью можно регулировать температуру, давление, расход. По назначению различают такие типы арматуры, как регулирующая, приводная, предохранительная и запорная. Все устройства также отличаются по конструкции. Рассмотрим и сравним шаровые краны с запорными клапанами.

Первым делом нужно дать четкое определение каждого из устройств. Краном называется приводная арматура с вращающимся перпендикулярно рабочей среде затворным элементом. Самый простой кран состоит из двух компонентов - корпус и движущаяся вокруг своей оси пробка. Запорный клапан - это тип арматуры, в котором запорный элемент движется в направлении рабочей среды, опускаясь при этом в седло. Он состоит из корпуса, шпинделя, бугельного узла и золотника.

На сегодняшний день и запорные клапаны, и шаровые краны практически универсальны и могут применяться в любых условиях. Но все же принципиальные отличия между двумя этими устройствами существуют. Каждый из них обладает определенными преимуществами в определенном применении. Первым и основным отличием является более сложная конструкция запорного клапана по сравнению с шаровым краном . Он также может работать в частично открытом положении. Вентиль может управлять потоком, что невозможно в применении крана.

Такие особенности напрямую зависят от конструкции устройств. Шаровые краны оборудованы сферическим запорным элементом, который при неполном повороте изменяет напор, а вентили оснащены грун-буксой, шток который выкручивается и закручивается. Таким образом, в последней системе клапан при подъеме или опускании перекрывает или открывает поток рабочей среды. Наиболее подходящим применением запорного клапана являются системы с ручным регулированием расхода. Но в сравнении с шаровым краном в нем происходят большие потери напора, а поток движется только в одном направлении, что приводит к обрыву золотника. Запорные клапаны характеризуются более сложной конструкцией и меньшей надежностью в эксплуатации. Они также несколько дешевле остальных типов запирающей арматуры, уплотнители в них изнашиваются медленнее. Шаровые краны в свою очередь могут использоваться дольше без возникновения аварийных ситуаций.

Наши специалисты могут помочь в подборе оборудования. Для этого необходимо отправить сообщение на эл. почту info@сайт Будем рады вашим комментариям, заказам через сайт и заявкам на почту!