Потери тепла за отопительный сезон допустимые значения. Как рассчитать теплопотери дома: особенности, рекомендации и программа
Расчет теплопотерь дома
Дом теряет тепло через ограждающие конструкции (стены, окна, крыша, фундамент), вентиляцию и канализацию. Основные потери тепла идут через ограждающие конструкции — 60-90% от всех теплопотерь.
Расчет теплопотерь дома нужен, как минимум, чтобы правильно подобрать котёл. Также можно прикинуть, сколько денег будет уходить на отопление в планируемом доме. Вот пример расчёта для газового котла и электрического . Также можно благодаря расчётам провести анализ финансовой эффективности утепления, т.е. понять окупятся ли затраты на монтаж утепления экономией топлива за срок службы утеплителя.
Теплопотери через ограждающие конструкции
Приведу пример расчета для внешних стен двухэтажного дома.
1) Вычисляем сопротивление теплопередаче стены , деля толщину материала на его коэффициент теплопроводности. Например, если стена построена из тёплой керамики толщиной 0,5 м с коэффициентом теплопроводности 0,16 Вт/(мx°C), то делим 0,5 на 0,16: 0,5 м / 0,16 Вт/(мx°C) = 3,125 м 2 x°C/Вт Коэффициенты теплопроводности строительных материалов можно взять . |
2) Вычисляем общую площадь внешних стен. Приведу упрощённый пример квадратного дома:
(10 м ширина x 7 м высота x 4 стороны) - (16 окон x 2,5 м 2) = 280 м 2 - 40 м 2 = 240 м 2 |
3) Делим единицу на сопротивление теплопередаче, тем самым получая теплопотери с одного квадратного метра стены на один градус разницы температуры. 1 / 3,125 м 2 x°C/Вт = 0,32 Вт / м 2 x°C |
4) Cчитаем теплопотери стен. Умножаем теплопотери с одного квадратного метра стены на площадь стен и на разницу температур внутри дома и снаружи. Например, если внутри +25°C, а снаружи -15°C, то разница 40°C. 0,32 Вт / м 2 x°C x 240 м 2 x 40 °C = 3072 Вт Вот это число и является теплопотерей стен. Измеряется теплопотеря в ваттах, т.е. это мощность теплопотери. |
5) В киловатт-часах удобнее понимать смысл теплопотерь. За 1 час через наши стены при разнице температур в 40°C уходит тепловой энергии: 3072 Вт x 1 ч = 3,072 кВтxч За 24 часа уходит энергии: 3072 Вт x 24 ч = 73,728 кВтxч |
Понятное дело, что за время отопительного периода погода разная, т.е. разница температур всё время меняется. Поэтому, чтобы вычислить теплопотери за весь отопительный период, нужно в пункте 4 умножать на среднюю разницу температур за все дни отопительного периода.
Например, за 7 месяцев отопительного периода средняя разница температур в помещении и на улице была 28 градусов, значит теплопотери через стены за эти 7 месяцев в киловатт-часах:
0,32 Вт / м 2 x°C x 240 м 2 x 28 °C x 7 мес x 30 дней x 24 ч = 10838016 Втxч = 10838 кВтxч
Число вполне «осязаемое». Например, если бы отопление было электрическое, то можно посчитать сколько бы ушло денег на отопление, умножив полученное число на стоимость кВтxч. Можно посчитать сколько ушло денег на отопление газом, вычислив стоимость кВтxч энергии от газового котла. Для этого нужно знать стоимость газа, теплоту сгорания газа и КПД котла.
Кстати, в последнем вычислении вместо средней разницы температур, количества месяцев и дней (но не часов, часы оставляем), можно было использовать градусо-сутки отопительного периода — ГСОП, некоторая информация . Можно найти уже посчитанные ГСОП для разных городов России и перемножать теплопотери с одного квадратного метра на площадь стен, на эти ГСОП и на 24 часа, получив теплопотери в кВт*ч.
Аналогично стенам нужно посчитать значения теплопотерь для окон, входной двери, крыши, фундамента. Потом всё просуммировать и получится значение теплопотерь через все ограждающие конструкции. Для окон, кстати, не нужно будет узнавать толщину и теплопроводность, обычно уже есть готовое посчитанное производителем сопротивление теплопередаче стеклопакета . Для пола (в случае плитного фундамента) разница температур не будет слишком большой, грунт под домом не такой холодный, как наружный воздух.
Теплопотери через вентиляцию
Примерный объем имеющегося воздуха в доме (объём внутренних стен и мебели не учитываю):10 м х10 м х 7 м = 700 м 3
Плотность воздуха при температуре +20°C 1,2047 кг/м 3 . Удельная теплоемкость воздуха 1,005 кДж/(кгx°C). Масса воздуха в доме:
700 м 3 x 1,2047 кг/м 3 = 843,29 кг
Допустим, весь воздух в доме меняется 5 раз в день (это примерное число). При средней разнице внутренней и наружной температур 28 °C за весь отопительный период на подогрев поступающего холодного воздуха будет в среднем в день тратится тепловой энергии:
5 x 28 °C x 843,29 кг x 1,005 кДж/(кгx°C) = 118650,903 кДж
118650,903 кДж = 32,96 кВтxч (1 кВтxч = 3600 кДж)
Т.е. во время отопительного периода при пятикратном замещении воздуха дом через вентиляцию будет терять в среднем в день 32,96 кВтxч тепловой энергии. За 7 месяцев отопительного периода потери энергии будут:
7 x 30 x 32,96 кВтxч = 6921,6 кВтxч
Теплопотери через канализацию
Во время отопительного периода поступающая в дом вода довольно холодная, допустим, она имеет среднюю температуру +7°C. Нагрев воды требуется, когда жильцы моют посуду, принимают ванны. Также частично нагревается вода от окружающего воздуха в бачке унитаза. Всё полученное водой тепло жильцы смывают в канализацию.Допустим, что семья в доме потребляет 15 м 3 воды в месяц. Удельная теплоёмкость воды 4,183 кДж/(кгx°C). Плотность воды 1000 кг/м 3 . Допустим, что в среднем поступающая в дом вода нагревается до +30°C, т.е. разница температур 23°C.
Соответственно в месяц теплопотери через канализацию составят:
1000 кг/м 3 x 15 м 3 x 23°C x 4,183 кДж/(кгx°C) = 1443135 кДж
1443135 кДж = 400,87 кВтxч
За 7 месяцев отопительного периода жильцы выливают в канализацию:
7 x 400,87 кВтxч = 2806,09 кВтxч
Заключение
В конце нужно сложить полученные числа теплопотерь через ограждающие конструкции, вентиляцию и канализацию. Получится примерное общее число теплопотерь дома.Надо сказать, что теплопотери через вентиляцию и канализацию довольно стабильные, их трудно уменьшить. Не будете же вы реже мыться под душем или плохо вентилировать дом . Хотя частично теплопотери через вентиляцию можно снизить с помощью рекуператора.
Если я где-то допустил ошибку, напишите в комментарии, но вроде всё перепроверил несколько раз. Надо сказать, что есть значительно более сложные методики расчета теплопотерь, там учитываются дополнительные коэффициенты, но их влияние незначительное.
Дополнение.
Расчет теплопотерь дома также можно сделать с помощью СП 50.13330.2012 (актуализированная редакция СНиП 23-02-2003). Там есть приложение Г «Расчет удельной характеристики расхода тепловой энергии на отопление и вентиляцию жилых и общественных зданий», сам расчет будет значительно сложнее, там используется больше факторов и коэффициентов.
Показаны 25 последних комментариев. Показать все комментарии (53).
Андрей Владимирович
(11.01.2018 14:52)
В целом все отлично для простых смертных. Единственное я бы посоветовал, для тех кто любит указывать на неточности, в начале статьи указать более полную формулу Q=S*(tвн-tнар)*(1+?v)*n/Rо и объяснить,что (1+?v)*n с учетом всех коэффициентов будет незначительно отличаться от 1 и не может грубо исказить расчет теплопотерь всей ограждающей конструкции, т.е. берем за основу формулу Q=S*(tвн-tнар)*1/Rо. С расчетом теплопотерь вентиляции не согласен, считаю по другому.Я бы высчитал общую теплоемкость всего объема, а затем умножил на реальную кратность. Удельную теплоемкость воздуха я бы все таки взял морозного (греть то будем уличный воздух), а она будет прилично выше. Да и теплоемкость воздушной смеси лучше взять сразу в Вт, равна 0.28 Вт / (кг °С). |
Вадим
(07.12.2018 09:00)
Спасибо, все конкретно и доходчиво! |
Выбор теплоизоляции, вариантов утепления стен, перекрытий и других огрождающих конструкций для большинства заказчиков-застройщиков задача сложная. Слишком много противоречивых проблем требуется решить одновременно. Данная страничка поможет Вам во всем этом разобраться.
В настоящее время теплосбережение энергоресурсов приобрело большое значение. Согласно СНиП 23-02-2003 «Тепловая защита зданий», сопротивление теплопередаче определяется по одному из двух альтернативных подходов:
- предписывающему (нормативные требования предьявляются к отдельным элементам теплозащиты здания: наружным стенам, полам над не отапливаемым пространствами, покрытиям и чердачным перекрытиям, окнам, входным дверям и т.п.)
- потребительскому (сопротивление теплопередачи ограждения может быть снижено по отношению к предписывающему уровню при условии, что проектный удельный расход тепловой энергии на отопление здания ниже нормативного).
Санитарно-гигиенические требования должны выполняться всегда.
К ним относятся
Требование, что бы перепад между температурами внутреннего воздуха и на поверхности огрождающих конструкций не превышали допустимых значений. Максимальные допустимые значения перепада для наружной стены 4°С, для покрытия и чердачного перекрытия 3°С и для перекрытия над подвалами и подпольями 2°С.
Требование, что бы температура на внутренней поверхности ограждения была выше температуры точки росы.
Для Москвы и ее области требуемое теплотехническое сопротивление стены по потребительскому подходу составляет 1,97 °С·м. кв./Вт, а по предписывающему подходу:
- для дома постоянного проживания 3,13 °С·м. кв./ Вт,
- для административных и других общественных зданий в т.ч. зданий сезонного проживания 2,55 °С·м. кв./ Вт.
Таблица толщин и термических сопротивление материалов для условий Москвы и ее области.
Наименование материала стены | Толщина стены и соответствующее ей термическое сопротивление | Необходимая толщина по потребительскому подходу (R=1,97 °С·м. кв./ Вт) и по предписывающему подходу (R=3,13 °С·м. кв./ Вт) |
---|---|---|
Полнотелый сплошной глиняный кирпич (плотность 1600 кг/м. куб) | 510 мм (кладка в два кирпича), R=0,73 °С·м. кв./Вт | 1380 мм 2190 мм |
Керамзитобетон (плотность 1200 кг/м. куб.) | 300 мм, R=0,58 °С·м. кв./Вт | 1025 мм 1630 мм |
Деревянный брус | 150 мм, R=0,83 °С·м. кв./Вт | 355 мм 565 мм |
Деревянный щит с заполнением минеральной ватой (толщины внутренней и наружной обшивки из досок по 25 мм) | 150 мм, R=1,84 °С·м. кв./Вт | 160 мм 235 мм |
Таблица требуемых сопротивлений теплопередаче огрождающих конструкций в домах Московской области.
Наружная стена | Окно, балконная дверь | Покрытие и перекрытия | Перекрытие чердачное и перекрытия над неотапливаемыми подвалами | Входной двери |
---|---|---|---|---|
По предписывающему подходу | ||||
3,13 | 0,54 | 3,74 | 3,30 | 0,83 |
По потребительскому подходу | ||||
1,97 | 0,51 | 4,67 | 4,12 | 0,79 |
Из этих таблиц видно, что большинство загородного жилья в Подмосковье не удовлетворяют требованиям по теплосбережению, при этом даже потребительский подход несоблюдается во многих вновь строящихся зданиях.
Поэтому, подбирая котел или обогревательные приборы только по указанным в их документации способности обогреть определенную площадь, Вы утверждаете, что Ваш дом построен со строгим учетом требований СНиП 23-02-2003.
Из вышеизложенного материала следует вывод. Для правильного выбора мощности котла и обогревательных приборов, необходимо рассчитать реальные теплопотери помещений Вашего дома.
Ниже мы покажем несложную методику расчета теплопотерь Вашего дома.
Дом теряет тепло через стену, крышу, сильные выбросы тепла идут через окна, в землю тоже уходит тепло, существенные потери тепла могут приходиться на вентиляцию.
Тепловые потери в основном зависят от:
- разницы температур в доме и на улице (чем разница больше, тем потери выше),
- теплозащитных свойств стен, окон, перекрытий, покрытий (или, как говорят ограждающих конструкций).
Ограждающие конструкции сопротивляются утечкам тепла, поэтому их теплозащитные свойства оценивают величиной, называемой сопротивлением теплопередачи.
Сопротивление теплопередачи показывает, какое количество тепла уйдет через квадратный метр ограждающей конструкции при заданном перепаде температур. Можно сказать и наоборот, какой перепад температур возникнет при прохождении определенного количества тепла через квадратный метр ограждений.
где q - это количество тепла, которое теряет квадратный метр ограждающей поверхности. Его измеряют в ваттах на квадратный метр (Вт/м. кв.); DT - это разница между температурой на улице и в комнате (°С) и, R - это сопротивление теплопередачи (°С/ Вт/м. кв. или °С·м. кв./ Вт).
Когда речь идет о многослойной конструкции, то сопротивление слоев просто складываются. Например, сопротивление стены из дерева, обложенного кирпичом, является суммой трех сопротивлений: кирпичной и деревянной стенки и воздушной прослойки между ними:
R(сумм.)= R(дерев.) + R(воз.) + R(кирп.).
Распределение температуры и пограничные слои воздуха при передаче тепла через стену
Расчет на теплопотери проводят для самого неблагоприятного периода, которым является самая морозная и ветреная неделя в году.
В строительных справочниках, как правило, указывают тепловое сопротивление материалов исходя из этого условия и климатического района (или наружной температуры), где находится Ваш дом.
Таблица - Сопротивление теплопередачи различных материалов при DT = 50 °С (Т нар. = -30 °С, Т внутр. = 20 °С.)
Материал и толщина стены | Сопротивление теплопередаче R m
, |
---|---|
Кирпичная стена толщиной в 3 кирпича (79 см) толщиной в 2,5 кирпича (67 см) толщиной в 2 кирпича (54 см) толщиной в 1 кирпич (25 см) |
0,592 0,502 0,405 0,187 |
Сруб из бревен ? 25 ? 20 |
0,550 0,440 |
Сруб из бруса толщиной 20 см |
0,806 0,353 |
Каркасная стена (доска + минвата + доска) 20 см |
0,703 |
Стена из пенобетона 20 см 30 см |
0,476 0,709 |
Штукатурка по кирпичу, бетону, пенобетону (2-3 см) |
0,035 |
Потолочное (чердачное) перекрытие | 1,43 |
Деревянные полы | 1,85 |
Двойные деревянные двери | 0,21 |
Таблица - Тепловые потери окон различной конструкции при DT = 50 °С (Т нар. = -30 °С, Т внутр. = 20 °С.)
Примечание
|
Как видно из предыдущей таблицы, современные стеклопакеты позволяют уменьшить теплопотери окна почти в два раза. Например, для десяти окон размером 1,0 м х 1,6 м экономия достигнет киловатта, что в месяц дает 720 киловатт-часов.
Для правильного выбора материалов и толщин ограждающих конструкций применим эти сведения к конкретному примеру.
В расчете тепловых потерь на один кв. метр участвуют две величины:
- перепад температур DT,
- сопротивления теплопередаче R.
Температуру в помещении определим в 20 °С, а наружную температуру примем равной -30 °С. Тогда перепад температур DT будет равным 50 °С. Стены выполнены из бруса толщиной 20 см, тогда R= 0,806 °С·м. кв./ Вт.
Тепловые потери составят 50 / 0,806 = 62 (Вт/м. кв.).
Для упрощения расчетов теплопотерь в строительных справочниках приводят теплопотери разного вида стен, перекрытий и т.д. для некоторых значений зимней температуры воздуха. В частности, даются разные цифры для угловых помещений (там влияет завихрение воздуха, отекающего дом) и неугловых, а также учитывается разная тепловая картина для помещений первого и верхнего этажа.
Таблица - Удельные теплопотери элементов ограждения здания (на 1 кв.м. по внутреннему контуру стен) в зависимости от средней температуры самой холодной недели в году.
Примечание
|
Таблица - Удельные теплопотери элементов ограждения здания (на 1 кв.м. по внутреннему контуру) в зависимости от средней температуры самой холодной недели в году.
Характеристика ограждения | Наружная температура, °С | Теплопотери, кВт |
---|---|---|
Окно с двойным остеклением | -24 -26 -28 -30 |
117 126 131 135 |
Сплошные деревянные двери (двойные) | -24 -26 -28 -30 |
204 219 228 234 |
Чердачное перекрытие | -24 -26 -28 -30 |
30 33 34 35 |
Деревянные полы над подвалом | -24 -26 -28 -30 |
22 25 26 26 |
Рассмотрим пример расчета тепловых потерь двух разных комнат одной площади с помощью таблиц.
Пример 1.
Угловая комната (первый этаж)
Характеристики комнаты:
- этаж первый,
- площадь комнаты - 16 кв.м. (5х3,2),
- высота потолка - 2,75 м,
- наружных стен - две,
- материал и толщина наружных стен - брус толщиной 18 см, обшит гипсокартонном и оклеен обоями,
- окна - два (высота 1,6 м, ширина 1,0 м) с двойным остеклением,
- полы - деревянные утепленные, снизу подвал,
- выше чердачное перекрытие,
- расчетная наружная температура -30 °С,
- требуемая температура в комнате +20 °С.
Площадь наружных стен за вычетом окон:
S стен (5+3,2)х2,7-2х1,0х1,6 = 18,94 кв. м.
Площадь окон:
S окон = 2х1,0х1,6 = 3,2 кв. м.
Площадь пола:
S пола = 5х3,2 = 16 кв. м.
Площадь потолка:
S потолка = 5х3,2 = 16 кв. м.
Площадь внутренних перегородок в расчете не участвует, так как через них тепло не уходит - ведь по обе стороны перегородки температура одинакова. Тоже относится и к внутренней двери.
Теперь вычислим теплопотери каждой из поверхностей:
Q суммарные = 3094 Вт.
Заметим, что через стены уходит тепла больше чем через окна, полы и потолок.
Результат расчета показывает теплопотери комнаты в самые морозные (Т нар.= -30 °С) дни года. Естественно, чем теплее на улице, тем меньше уйдет из комнаты тепла.
Пример 2
Комната под крышей (мансарда)
Характеристики комнаты:
- этаж верхний,
- площадь 16 кв.м. (3,8х4,2),
- высота потолка 2,4 м,
- наружные стены; два ската крыши (шифер, сплошная обрешетка, 10 см минваты, вагонка), фронтоны (брус толщиной 10 см, обшитый вагонкой) и боковые перегородки (каркасная стена с керамзитовым заполнением 10 см),
- окна - четыре (по два на каждом фронтоне), высотой 1,6 м и шириной 1,0 м с двойным остеклением,
- расчетная наружная температура -30°С,
- требуемая температура в комнате +20°С.
Рассчитаем площади теплоотдающих поверхностей.
Площадь торцевых наружных стен за вычетом окон:
S торц.стен = 2х(2,4х3,8-0,9х0,6-2х1,6х0,8) = 12 кв. м.
Площадь скатов крыши, ограничивающих комнату:
S скатов.стен = 2х1,0х4,2 = 8,4 кв. м.
Площадь боковых перегородок:
S бок.перегор = 2х1,5х4,2 = 12,6 кв. м.
Площадь окон:
S окон = 4х1,6х1,0 = 6,4 кв. м.
Площадь потолка:
S потолка = 2,6х4,2 = 10,92 кв. м.
Теперь рассчитаем тепловые потери этих поверхностей, при этом учтем, что через пол тепло не уходит (там теплое помещение). Теплопотери для стен и потолка мы считаем как для угловых помещений, а для потолка и боковых перегородок вводим 70-процентный коэффициент, так как за ними располагаются неотапливаемые помещения.
Суммарные теплопотери комнаты составят:
Q суммарные = 4504 Вт.
Как видим, теплая комната первого этажа теряет (или потребляет) значительно меньше тепла, чем мансардная комната с тонкими стенками и большой площадью остекления.
Чтобы такое помещение сделать пригодным для зимнего проживания, нужно в первую очередь утеплять стены, боковые перегородки и окна.
Любая ограждающая конструкция может быть представлена в виде многослойной стены, каждый слой которой имеет свое тепловое сопротивление и свое сопротивление прохождению воздуха. Сложив тепловое сопротивление всех слоев, получим тепловое сопротивление всей стены. Также суммируя сопротивление прохождению воздуха всех слоев, поймем, как дышит стена. Идеальная стена из бруса должна быть эквивалентна стене из бруса толщиной 15 - 20 см. Приведенная ниже таблица поможет в этом.
Таблица - Сопротивление теплопередаче и прохождению воздуха различных материалов DT=40 °С (Т нар. =-20 °С, Т внутр. =20 °С.)
Слой стены | Толщина слоя стены | Сопротивление теплопередаче слоя стены | Сопротивл. воздухопро- ницаемости эквивалентно брусовой стене толщиной (см) |
|
---|---|---|---|---|
Ro, | Эквивалент кирпичной кладке толщиной (см) |
|||
Кирпичная кладка из обычного глиняного кирпича толщиной: 12 см |
12 25 50 75 |
0,15 0,3 0,65 1,0 |
12 25 50 75 |
6 12 24 36 |
Кладка из керамзитобетонных блоков толщиной 39 см с плотностью: 1000 кг / куб м |
39 |
1,0 0,65 0,45 |
75 50 34 |
17 23 26 |
Пено- газобетон толщиной 30 см плотностью: 300 кг / куб м |
30 |
2,5 1,5 0,9 |
190 110 70 |
7 10 13 |
Брусовал стена толщиной (сосна) 10 см |
10 15 20 |
0,6 0,9 1,2 |
45 68 90 |
10 15 20 |
Для объективной картины теплопотерь всего дома необходимо учесть
- Потери тепла через контакт фундамента с мерзлым грунтом обычно принимают 15% от потерь тепла через стены первого этажа (с учетом сложности расчета).
- Потери тепла, связанные с вентиляцией. Эти потери рассчитываются с учетом строительных норм (СНиП). Для жилого дома требуется около одного воздухообмена в час, то есть за это время необходимо подать тот же обьем свежего воздуха. Таким образом, потери связанные с вентиляцией, составляют немногим меньше сумме теплопотерь приходящиеся на ограждающие конструкции. Получается, что потери тепла через стены и остекление составляет только 40%, а потери тепла на вентиляцию 50%. В европейских нормах вентиляции и утепления стен, соотношение тепловых потерь составляют 30% и 60%.
- Если стена «дышит», как стена из бруса или бревна толщиной 15 - 20 см, то происходит возврат тепла. Это позволяет снизить тепловые потери на 30%, поэтому полученную при расчете величину теплового сопротивления стены следует умножить на 1,3 (или соответственно уменьшить теплопотери).
Суммировав все теплопотери дома, Вы определите, какой мощности генератор тепла (котел) и отопительные приборы необходимы для комфортного обогрева дома в самые холодные и ветряные дни. Также, расчеты подобного рода покажут, где «слабое звено» и как его исключить с помощью дополнительной изоляции.
Рассчитать расход тепла можно и по укрупненным показателям. Так, в одно- и двухэтажных не сильно утепленных домах при наружной температуре -25 °С требуется 213 Вт на один квадратный метр общей площади, а при -30 °С - 230 Вт. Для хорошо утепленных домов - это: при -25 °С - 173 Вт на кв.м. общей площади, а при -30 °С - 177 Вт.
- Стоимость теплоизоляции относительно стоимости всего дома существенно мала, однако при эксплуатации здания основные затраты приходятся именно на отопление. На теплоизоляции ни в коем случае нельзя экономить, особенно при комфортном проживании на больших площадях. Цены на энергоносители во всем мире постоянно повышаются.
- Современные строительные материалы обладают более высоким термическим сопротивлением, чем материалы традиционные. Это позволяет делать стены тоньше, а значит, дешевле и легче. Все это хорошо, но у тонких стен меньше теплоемкость, то есть они хуже запасают тепло. Топить приходиться постоянно - стены быстро нагреваются и быстро остывают. В старых домах с толстыми стенами жарким летним днем прохладно, остывшие за ночь стены «накопили холод».
- Утепление необходимо рассматривать совместно с воздухопроницаемостью стен. Если увеличение теплового сопротивления стен связано со значительным уменьшением воздухопроницаемости, то не следует его применять. Идеальная стена по воздухопроницаемости эквивалентна стене из бруса толщиной 15…20 см.
- Очень часто, неправильное применение пароизоляции приводит к ухудшению санитарно-гигиенических свойств жилья. При правильно организованной вентиляции и «дышащих» стенах она излишня, а при плохо воздухопроницаемых стенах это ненужно. Основное ее назначение это предотвращение инфильтрации стен и защита утепления от ветра.
- Утепление стен снаружи существенно эффективнее внутреннего утепления.
- Не следует бесконечно утеплять стены. Эффективность такого подхода к энергосбережению - не высока.
- Вентиляция - вот основные резервы энергосбережения.
- Применив современные системы остекления (стеклопакеты, теплозащитное стекло и т.п.), низкотемпературные обогревающие системы, эффективную теплоизоляцию ограждающих конструкций, можно сократить затраты на отопление в 3 раза.
Варианты дополнительного утепления конструкций зданий на базе строительной теплоизоляции типа «ISOVER», при наличии в помещениях систем воздухообмена и вентиляции.
Теплопотери помещения, которые принимаются по СНиП за расчетные при выборе тепловой мощности системы отопления, определяют как сумму расчетных потерь тепла через все его наружные ограждения. Кроме того, учитываются потери или поступления тепла через внутренние ограждения, если температура воздуха в соседних помещениях ниже или выше температуры в данном помещении на 5 0 С и более.
Рассмотрим, как принимаются для различных ограждений показатели, входящие в формулу, при определении расчетных теплопотерь.
Коэффициенты теплопередачи для наружных стен и перекрытий принимают по теплотехническому расчету. Подбирают конструкцию окон и для нее по таблице определяют коэффициент теплопередачи. Для наружных дверей значение k берется в зависимости от конструкции по таблице.
Расчет потери тепла через пол. Передача тепла из помещения нижнего этажа через конструкцию пола является сложным процессом. Учитывая сравнительно небольшой удельный вес теплопотерь через пол в общих теплопотерях помещения, применяют упрощенную методику расчета. Теплопотери через пол, расположенный на грунте, рассчитываются по зонам. Для этого поверхность пола делят на полосы шириной 2 м, параллельные наружным стенам. Полосу, ближайшую к наружной стене, обозначают первой зоной, следующие две полосы - второй и третьей зоной, а остальную поверхность пола - четвертой зоной.
Теплопотери каждой зоны рассчитывают по формуле, принимая nivi=1. За величину Ro.np принимают условное сопротивление теплопередаче, которое для каждой зоны неутепленного пола равно: для I зоны R нп =2,15(2,5); для II зоны R нп =4,3(5); для III зоны R нп =8,6(10); для IV зоны R нп =14,2 К-м2/Вт (16,5 0 C-M 2 ч/ккал).
Если в конструкции пола, расположенной непосредственно на грунте, имеются слои материалов, коэффициенты теплопроводности которых меньше 1,163 (1), то такой пол называют утепленным. Термические сопротивления утепляющих слоев в каждой зоне прибавляют к сопротивлениям Rн.п; таким образом, условное сопротивление теплопередаче каждой зоны утепленного пола R у.п оказывается равным:
R у.п = R н.п +?(d у.с /l у.а);
где R н.п - сопротивление теплопередаче неутепленного пола соответствующей зоны;
d у.с и l у.а - толщины и коэффициенты теплопроводности утепляющих слоев.
Теплопотери через пол по лагам рассчитывают также по зонам, только условное сопротивление теплопередаче каждой зоны пола по лагам Rл принимают равным:
R л =1,18*R у.п.
где R у.п - величина, полученная по формуле с учетом утепляющих слоев. В качестве утепляющих слоев здесь дополнительно учитывают воздушную прослойку и настил пола по лагам.
Поверхность пола в первой зоне, примыкающая к наружному углу, имеет повышенные теплопотери, поэтому ее площадь размером 2X2 м дважды учитывается при определении общей площади первой зоны.
Подземные части наружных стен рассматриваются при расчете теплопотерь как продолжение пола Разбивка на полосы - зоны в этом случае делается от уровня земли по поверхности подземной части стен и далее по полу Условные сопротивления теплопередаче для зон в этом случае принимаются и рассчитываются так же, как для утепленного пола при наличии утепляющих слоев, которыми в данном случае являются слои конструкции стены.
Обмер площади наружных ограждений помещений. Площадь отдельных ограждений при подсчете потерь тепла через них должна определяться с соблюдением следующих правил обмера Эти правила по возможности учитывают сложность процесса теплопередачи через элементы ограждения и предусматривают условные увеличения и уменьшения площадей, когда фактические теплопотери могут быть соответственно больше или меньше подсчитанных по принятым простейшим формулам.
- Площади окон (О), дверей (Д) и фонарей измеряют по наименьшему строительному проему.
- Площади потолка (Пт) и пола (Пл) измеряют между осями внутренних стен и внутренней поверхностью наружной стены Площади зон пола по лагам и грунту определяют с условной их разбивкой на зоны, как указано выше.
- Площади наружных стен (H. с) измеряют:
- в плане - по внешнему периметру между наружным углом и осями внутренних стен,
- по высоте - в первом этаже (в зависимости от конструкции по-ла) от внешней поверхности пола по грунту, или от поверхности подготовки под конструкцию пола на лагах, или от нижней поверхности перекрытия над подпольем неотапливаемым подвальным помещением до чистого пола второго этажа, в средних этажах от поверхности пола до поверхности пола следующего этажа; в верхнем этаже от поверхности пола до верха конструкции чердачного перекрытия или бесчердачного покрытия При необходимости определения теплопотерь через внутренние ограждения площади принимают по внутреннему обмеру.
Добавочные теплопотери через ограждения. Основные теплопотери через ограждения, подсчитанные по формуле, при v 1 =1 часто оказываются меньше действительных теплопотерь, так как при этом не учитывается влияние на процесс некоторых факторов Потери тепла могут заметно изменяться под влиянием инфильтрации и эксфильтрации воздуха через толщу ограждений и щели в них, а также под действием облучения солнцем и противоизлучения внешней поверхности ограждений. Теплопотери в целом могут заметно возрасти за счет изменения температуры по высоте помещения, вследствие поступления холодного воздуха через открываемые проемы и пр.
Эти дополнительные потери тепла обычно учитывают добавками к основным теплопотерям Величина добавок и условное их деление по определяющим факторам следующие.
- Добавка на ориентацию по сторонам света принимается на все наружные вертикальные и наклонные ограждения (проекции на вертикаль) Величины добавок определяют по рисунку.
- Добавка на обдуваемость ограждений ветром. В районах, где расчетная зимняя скорость ветра не превышает 5 м/с, добавка принимается в размере 5% для ограждений, защищенных от ветра, и 10% для ограждений, не защищенных от ветра. Ограждение считают защищенным от ветра, если прикрывающее его строение выше верха ограждения больше чем на 2/3 расстояния между ними. В местностях со скоростью ветра более 5 и более 10 м/с приведенные величины добавок должны быть увеличены соответственно в 2 и 3 раза.
- Добавка на продуваемость угловых помещений и помещений, имеющих две и более наружных стен, принимается равной 5% для всех непосредственно обдуваемых ветром ограждений. Для жилых и тому подобных зданий эта добавка не вводится (учитывается повышением внутренней температуры на 20).
- Добавка на поступление холодного воздуха через наружные двери при их кратковременном открывании при N этажах в здании принимается равной 100 N % - при двойных дверях без тамбура, 80 N- то же, с тамбуром, 65 N% - при одинарных дверях.
Схема определения величины добавки к основным теплопотерям на ориентацию по странам света.
В промышленных помещениях добавка на поступление воздуха через ворота, которые не имеют тамбура и шлюза, если они открыты менее 15 мин в течение 1 ч, принимается равной 300%. В общественных зданиях частое открывание дверей также учитывается введением дополнительной добавки, равной 400-500%.
5. Добавка на высоту для помещений высотой более 4 м принимается в размере 2% на каждый метр высоты, стен более 4 м, но не более 15%. Эта добавка учитывает увеличение теплопотерь в верхней части помещения в результате повышения температуры воздуха с высотой. Для промышленных помещений делают специальный расчет распределения температуры по высоте, в соответствии с которым определяют теплопотери через стены и перекрытия. Для лестничных клеток добавка на высоту не принимается.
6. Добавка на этажность для многоэтажных зданий высотой в 3-8 этажей, учитывающая дополнительные затраты тепла на нагревание холодного воздуха, который при инфильтрации через ограждения проникает в помещение, принимается по СНиП.
- Коэффициент теплопередачи наружных стен, определенный по приведенному сопротивлению теплопередаче по наружному обмеру, k=1,01 Вт/(м2 К) .
- Коэффициент теплопередачи чердачного перекрытия принимаем равным k пт =0,78 Вт/(м 2 К) .
Полы первого этажа выполнены на лагах. Термическое сопротивление воздушной прослойки R в.п =0,172 К м 2 /Вт (0,2 0 С-м 2 ч/ккал); толщина дощатого настила d=0,04 м; l=0,175 Вт/(м К) . Теплопотери через пол по лагам определяются по зонам. Сопротивление теплопередаче утепляющих слоев конструкции пола равно:
R в.п + d/l=0,172+(0,04/0,175)=0,43 К*м 2 /Вт (0,5 0 С м2 ч/ккал).
Термическое сопротивление пола по лагам для I и II зон:
R л.II = 1,18(2.15+ 0,43)= 3,05 К*м 2 /Вт (3,54 0 С*м 2 *ч/ккал);
K I =0,328 Вт/м 2 *К) ;
R л.II =1,18(4,3+ 0.43) = 5,6(6,5);
K II =0,178(0,154).
Для неутепленного пола лестничной клетки
R н.п.I =2,15(2,5) .
R н.п.II =4,3(5) .
3. Для выбора конструкции окон определяем перепад температур наружного (t н5 =-26 0 С) и внутреннего (t п =18 0 С) воздуха:
t п - t н =18-(-26)=44 0 С.
Схема для расчета теплопотерь помещений
Требуемое термическое сопротивление окон жилого дома при Dt=44 0 С равно 0,31 к*м 2 /Вт (0,36 0 С*м 2 *ч/ккал). Принимаем окно с двойными раздельными деревянными переплетами; для этой конструкции k ок =3,15(2,7). Наружные двери двойные деревянные без тамбура; k дв =2,33 (2).Теплопотери через отдельные ограждения рассчитываем по формуле. Расчет сведен в таблицу.
Расчет теплопотерь через наружные ограждении помещении
№ пом. | Наим. пом. и его темпер. | Хар-ка ограждения | Коэффициент теплопередачи ограждения k Вт/(м 2 К) [ккал/(ч м 2 0 С)] | расч. разн. темп., Dt n | Основн. теплопот. через огражде., Вт (ккал/ч) | Добавочные теплопотери. % | Коэфф. v l | Теплопотери через ограждение Вт (ккал/ч) | |||||
Наим. | ор. по стор. света | разм., м | пл. F, м 2 | на ор. по стор. света | на обдув. ветр. | проч. | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
101 | Н.с. | ЮЗ | 4,66X3,7 | 17,2 | 1,02(0,87) | 46 | 800(688) | 0 | 10 | 0 | 1,10 | 880(755) | |
Н.с. | СЗ | 4,86X3,7 | 18,0 | 1,02(0,87) | 46 | 837(720) | 10 | 10 | 0 | 1,20 | 1090(865) | ||
Д.о. | СЗ | 1,5X1,2 | 1,8 | 3,15-1,02(2,7-0,87) | 46 | 176(152) | 10 | 10 | 0 | 1,20 | 211(182) | ||
Пл I | - | 8,2X2 | 16,4 | 0,328(0,282) | 46 | 247(212) | - | - | - | 1 | 247(212) | ||
Пл II | - | 2,2X2 | 4 | 0,179(0,154) | 46 | 37(32) | - | - | - | 1 | 37(32) | ||
2465(2046) | |||||||||||||
102 | Н.с. | СЗ | 3,2X3,7 | 11,8 | 1,02(0,87) | 44 | 625(452) | 10 | 10 | 0 | 1,2 | 630(542) | |
Д.о. | СЗ | 1,5X1,2 | 1,8 | 2,13(1,83) | 44 | 168(145) | 10 | 10 | 0 | 1,2 | 202(174) | ||
Пл I | - | 3,2X2 | 6,4 | 0,328(0,282) | 44 | 91(78) | - | - | - | 1 | 91(78) | ||
Пл II | - | 3,2X2 | 6,4 | 0,179(0,154) | 44 | 62(45) | - | - | - | 1 | 52(45) | ||
975(839) | |||||||||||||
201 | Жилая комната, угловая. t в =20 0 С | Н.с. | ЮЗ | 4,66X3,25 | 15,1 | 1,02(0,87) | 46 | 702(605) | 0 | 10 | 0 | 1,10 | 780(665) |
Н.с. | СЗ | 4.86X3,25 | 16,8 | 1,02(0,87) | 46 | 737(633) | 10 | 10 | 0 | 1,20 | 885(760) | ||
Д.о. | СЗ | 1.5X1,2 | 1,8 | 2,13(1,83) | 46 | 173(152) | 10 | 10 | 0 | 1,20 | 222(197) | ||
Пт | - | 4,2X4 | 16,8 | 0,78(0,67) | 46X0,9 | 547(472) | - | - | - | 1 | 547(472) | ||
2434(2094) | |||||||||||||
202 | Жилая комната, средняя. t в =18 0 С | Н.с. | ЮЗ | 3,2X3,25 | 10,4 | 1,02(0,87) | 44 | 460(397) | 10 | 10 | 0 | 1,2 | 575(494) |
Д.о. | СЗ | 1,5X1,2 | 1,8 | 2,13(1,83) | 44 | 168(145) | 10 | 10 | 0 | 1,2 | 202(174) | ||
Пт | СЗ | 3,2X4 | 12,8 | 0,78(0,67) | 44X0,9 | 400(343) | - | - | - | 1 | 400(343) | ||
1177(1011) | |||||||||||||
ЛкА | Лестн. клетка, t в =16 0 С | Н.с. | СЗ | 6,95x3,2-3,5 | 18,7 | 1,02(0,87) | 42 | 795(682) | 10 | 10 | 0 | 1,2 | 950(818) |
Д.о. | СЗ | 1,5X1,2 | 1,8 | 2,13(1,83) | 42 | 160(138) | 10 | 10 | 0 | 1,2 | 198(166) | ||
Н.д. | СЗ | 1,6X2,2 | 3,5 | 2,32(2,0) | 42 | 342(294) | 10 | 10 | 100X2 | 3,2 | 1090(940) | ||
Пл I | - | 3,2X2 | 6,4 | 0,465(0,4) | 42 | 124(107) | - | - | - | 1 | 124(107) | ||
Пл II | - | 3,2X2 | 6,4 | 0,232(0,2) | 42 | 62(53) | - | - | - | 1 | 62(53) | ||
Пт | - | 3,2X4 | 12,8 | 0,78(0,67) | 42X0,9 | 380(326) | - | - | - | 1 | 380(326) | ||
2799(2310) |
Примечания:
- Для наименований ограждений приняты условные обозначение: Н.с. - наружная стена; Д.о. - двойное окно; Пл I и Пл II - соответственно I и II зоны пола; Пт - потолок; Н.д. -наружная дверь.
- В графе 7 коэффициент теплопередачи для окон определен как разность коэффициентов теплопередачи окна и наружной стены, при этом площадь окна не вычитается из площади степы.
- Теплопотеря через наружную дверь определена отдельно (на площади стены в этом случае исключается площадь двери, так как добавки на дополнительные теплопотери у наружной стены и двери разные).
- Расчетная разность температур в графе 8 определена как (t в -t н)n.
- Основные теплопогери (графа 9) определены как kFDt n .
- Добавочные теплопотери даны в процентах к основным.
- Коэффициент v (графа 13) равен единице плюс добавочные теплопотеря, выраженные в долях единицы.
- Расчетные теплопотери через ограждения определены как kFDt n v i (графа 14).
Принято считать, что для средней полосы России мощность отопительных систем должна рассчитываться исходя из соотношения 1 кВт на 10 м 2 отапливаемой площади. Что говорится в СНиП и каковы реальные расчетные теплопотери домов, построенных из различных материалов?
СНиП указывает на то, какой дом можно считать, скажем так, правильным. Из него мы позаимствуем строительные нормы для Московского региона и сравним их с типичными домами, построенными из бруса, бревна, пенобетона, газобетона, кирпича и по каркасным технологиям.
Как должно быть по правилам (СНиП)
Однако взятые нами значения в 5400 градусо-суток для московского региона являются пограничными к значению 6000, по которому в соответствии со СНиПом сопротивление теплопередаче стен и кровли должно составлять 3,5 и 4,6 м 2 ·°С/Вт соответственно, что эквивалентно 130 и 170 мм минеральной ваты с коэффициентом теплопроводности lА=0,038 Вт/(м·°К).
Как в реальности
Зачастую люди строят «каркасники», бревенчатые, брусовые и каменные дома исходя из доступных материалов и технологий. Например, чтобы соответствовать СНиП, диаметр бревен сруба должен быть больше 70 см, но это абсурд! Потому чаще всего строят так, как удобнее или как больше нравится.
Для сравнительных расчетов мы воспользуемся удобным калькулятором теплопотерь, который расположен на сайте его автора. Для упрощения расчетов возьмем одноэтажное прямоугольное помещение со сторонами 10 х 10 метров. Одна стена глухая, на остальных по два небольших окна с двухкамерными стеклопакетами, плюс одна утепленная дверь. Крыша и потолок утеплены 150 мм каменной ваты, как наиболее типичный вариант.
Кроме теплопотерь через стены есть еще понятие инфильтрации – проникновения воздуха через стены, а также понятие бытового тепловыделения (от кухни, приборов и т.п.), которое по СНиП приравнивается к 21 Вт на м 2 . Но мы это учитывать сейчас не будем. Равно как и потери на вентиляцию, потому как это требует и вовсе отдельного разговора. Разница температур принята за 26 градусов (22 в помещении и -4 снаружи – как усредненное за отопительный сезон в московском регионе).
Итак, вот итоговая диаграмма сравнения теплопотерь домов из различных материалов :
Пиковые теплопотери рассчитаны для наружной температуры -25°С. Они показывают, какой максимальной мощности должна быть система отопления. «Дом по СНиП (3,5, 4,6, 0,6)» – это расчет исходя из более строгих требований СНиП к тепловому сопротивлению стен, кровли и пола, который применим к домам в чуть более северных регионах, нежели чем Московская область. Хотя, зачастую, могут применяться и к ней.
Главный вывод – если при строительстве вы руководствуетесь СНиП, то мощность отопления следует закладывать не 1 кВт на 10 м 2 , как принято считать, а на 25-30% меньше. И это еще без учета бытового тепловыделения. Однако соблюсти нормы не всегда получается, а детальный расчет отопительной системы лучше доверить квалифицированным инженерам.
Также вам может быть интересно
:
—
—
—