Непрерывный и дискретный подходы к описанию действительности. §2. пороговая концепция. проблема дискретности- непрерывности в классической психофизике. Непрерывная и дискретная информация

НЕПРЕРЫВНОСТЬ И ПРЕРЫВНОСТЬ - филос. категории, характеризующие как структуру материи, так и процесс её развития. Прерывность означает «зернистость», дискретность пространственно-временного строения и состояния материи, составляющих её элементов, видов и форм существования, процесса движения, развития. Она основывается на делимости и определ. степени внутр. дифференцированности материи в её развитии, а также на относительно самостоят. существовании составляющих её устойчивых элементов, качественно определ. структур, напр. элементарных частиц, ядер, атомов, молекул, кристаллов, организмов, планет, общественно-экономич. формаций и т.д. Непрерывность, напротив, выражает единство, взаимосвязь и взаимообусловленность элементов, составляющих ту или иную систему. Непрерывность основывается на относит. устойчивости и неделимости объекта как качественно определённого целого. Именно единство частей целого и обеспечивает возможность самого факта существования и развития объекта как целого. Т.о., структура к.-л. предмета, процесса раскрывается как единство Н. и п. Напр., совр. физика показала, что свет одновременно обладает и волновыми (непрерывными) и корпускулярными (прерывными) свойствами. Прерывность обеспечивает возможность сложного, внутренне дифференцированного, разнородного строения вещей, явлений; «зернистость», отделёниость того или иного объекта составляет необходимое условие для того, чтобы элемент данной структуры выполнял определ. функцию в составе целого. Вместе с тем прерывность обусловливает возможность дополнения, а также замены и взаимозамены отд. элементов системы. Единство Н. и п. характеризует и процесс развития явлений. Непрерывность в развитии системы выражает её относит. устойчивость, пребывание в рамках данной меры. Прерывность же выражает переход системы в новое качество. Одностороннее подчёркивание только прерывности в развитии означает утверждение полного разрыва моментов и тем самым потерю связи. Признание только непрерывности в развитии ведёт к отрицанию к.-л. качеств. сдвигов и по существу к исчезновению самого понятия развития. Для метафизич. способа мышления характерно обособление Н. и п. Диалектич. материализм подчёркивает не только противоположность, но и связь, единство Н. и п., что подтверждается всей историей науки и обществ. практики.

НЕПРЕРЫВНОСТЬ И ПРЕРЫВНОСТЬ – категории, характеризующие бытие и мышление; прерывность (дискретност ь) описывает определенную структурность объекта, его «зернистость», его внутреннюю «сложность»; непрерывность выражает целостный характер объекта, взаимосвязь и однородность его частей (элементов) и состояний. В силу этого категории непрерывности и прерывности являются взаимодополняющими при любом исчерпывающем описании объекта. Важную роль категории непрерывности и прерывности играют также при описании развития, где они превращаются соответственно в скачок и преемственность.


В силу своей философской фундаментальности категории непрерывности и прерывности подробно обсуждаются уже в греческой античности. Факт движения связывает воедино проблемы непрерывности и прерывности пространства, времени и самого движения. В 5 в. до н.э. Зенон Элейский формулирует основные апории, связанные как с дискретной, так и с непрерывной моделями движения. Зенон показал, что континуум не может состоять из бесконечно малых неделимых (из точек), т.к. тогда величина бы складывалась из невеличин, из «нулей», что непонятно, ни из конечных, имеющих величину неделимых, т.к. в этом случае, поскольку неделимых должно быть бесконечное множество (между любыми двумя точками найдется точка), это бесконечное множество конечных величин давало бы бесконечную величину. Проблема структуры континуума представляет собой тот проблемный узел, в котором неразрывно связаны категории непрерывности и прерывности. Причем то или иное понимание континуума в античности обычно истолковывается онтологически и соотносится с космологией.

Античные атомисты (Демокрит, Левкипп, Лукреций и др.) стремятся мыслить всю сферу сущего как своеобразную смесь дискретных элементов (атомов). Но довольно быстро происходит разделение точек зрения физических атомистов, мыслящих атомы неделимыми конечными элементами, и математических атомистов, для которых неделимые не имеют величины (точки). Последний подход успешно использует, в частности, Архимед для нахождения площадей и кубатур тел, ограниченных кривыми и неплоскими поверхностями. Абстрактно математический и физикалистский подходы еще не слишком рельефно разделены в античной мысли. Так, вопрос о природе треугольника, из которых в «Тимее» Платона складываются многогранники элементов, остается дискуссионным (проблема в том, что здесь из плоскостей складываются трехмерные элементы, т.е., вероятно, имеет место математический атомизм). Для Аристотеля непрерывное не может состоять из неделимых частей. Аристотель различает следующее по порядку, соприкасающееся и непрерывное. Каждое следующее в этом ряду оказывается спецификацией предыдущего. Существует следующее по порядку, но не соприкасающееся, напр. ряд натуральных чисел; соприкасающееся, но не непрерывное, напр. воздух над поверхностью воды. Для непрерывности необходимо, чтобы границы соприкасающихся совпадали. Для Аристотеля «все непрерывное делимо на части, всегда делимые» (Физика VI, 231b 15–17).

Еще острее вопрос о природе континуума обсуждается в средневековой схоластике. Рассматривая его в онтологической плоскости, сторонники и противники континуальной космологии относят другую возможность истолкования в сферу субъективного, только мыслимого (или чувственного). Так, Генрих Гентский утверждал, что существует собственно лишь континуум, а все дискретное, и прежде всего число, получается «отрицанием», через проведение границ в континууме. Николай из Отрекура, наоборот, считал, что хотя чувственно данный континуум и делим до бесконечности, в действительности же континуум состоит из бесконечного числа неделимых частей. Укреплению аристотелевского подхода к континууму служили дискуссии средневековых номиналистов (У. Оккам, Григорий из Римини, Ж.Буридан и др.). «Реалисты» понимали точку как онтологическую реальность, лежащую в основе всего сущего (Роберт Гроссетест).

Традицию физического атомизма – «линию Демокрита» – подхватывает в 16 в. Дж.Бруно. Атомистика же Галилея в 17 в. носит явно математический характер («линия Архимеда»). Тела у Галилея состоят из бесконечно малых атомов и бесконечно малых промежутков между ними, линии строятся из точек, поверхности – из линий и т.д. В философии зрелого Лейбница была дана оригинальная интерпретация соотношения непрерывности и прерывности. Лейбниц разводит непрерывность и прерывность по разным онтологическим сферам. Действительное бытие – дискретно и состоит из неделимых метафизических субстанций – монад. Мир монад не дан непосредственному чувственному восприятию и открывается только размышлением. Непрерывное же является основной характеристикой лишь феноменального образа Универсума, т.к. он наличествует в представлении монады. В действительности части – «единицы бытия», монады – предшествуют целому. В представлениях же, данных в модусе пространства и времени, целое предшествует частям, на которые это целое можно бесконечно делить. Мир непрерывного не есть мир действительного бытия, а мир лишь возможных отношений. Непрерывны пространство, время и движение. Более того, принцип непрерывности является одним из фундаментальных начал сущего. Лейбниц формулирует принцип непрерывности следующим образом: «Когда случаи (или данные) непрерывно приближаются друг к другу так, что наконец один переходит в другой, то необходимо, чтобы и в соответствующих следствиях или выводах (или в искомых) происходило то же самое» (Лейбниц Г.В. Соч. в 4 т., т. 1. М., 1982, с. 203– 204). Лейбниц показывает применение этого принципа в математике, физике, теоретической биологии, психологии. Проблему структуры континуума Лейбниц уподоблял проблеме свободы воли («два лабиринта»). При обсуждении обоих мышление сталкивается с бесконечностью: в бесконечность уходит процесс нахождения общей меры для несоизмеримых отрезков (по алгоритму Евклида) и в бесконечность же простирается цепь детерминации лишь по видимости случайных (но на самом деле подчиняющихся совершенной божественной воле) истин факта. Лейбницевской онтологизации границы между непрерывностью и прерывностью не суждено было стать господствующей точкой зрения. Уже X.Вольф и его ученики опять начинают дискуссии о построении континуума из точек. Кант, полностью поддерживая лейбницевский тезис о феноменальности пространства и времени, строит тем не менее континуалистскую динамическую теорию материи. Последняя существенно повлияла на Шеллинга и Гегеля, которые также выдвигали ее против атомистических представлений.

В русской философии на рубеже 19–20 вв. возникает противостояние «культу непрерывности», связанное с именем математика и философа Н.В.Бугаева. Бугаев разработал систему миросозерцания, основанную на принципе разрывности как фундаментальном принципе мироздания (аритмология). В математике этому принципу соответствует теория разрывных функций, в философии – особый тип монадологии, развитый Бугаевым. Аритмологическое мировоззрение отрицает мир как сплошность, зависящую только от самой себя и постижимую в понятиях непрерывности и детерминизма. В мире есть свобода, откровение, творчество, разрывы непрерывности – как раз те «зияния», которые отвергает принцип непрерывности Лейбница. В социологии аритмология в противовес «аналитическому мировоззрению», видящему во всем только эволюцию, подчеркивает катастрофические аспекты исторического процесса: революции, перевороты в личной и общественной жизни. Вслед за Бугаевым подобные взгляды развивал П.А.Флоренский.

Феномен науки [Кибернетический подход к эволюции] Турчин Валентин Фёдорович

1.4. Дискретные и непрерывные системы

Состояние системы определяется через совокупность состояний всех ее подсистем, т. е. в конечном счете элементарных подсистем. Элементарные подсистемы бывают двух типов: с конечным и бесконечным числом возможных состояний. Подсистемы первого типа называют также подсистемами с дискретными состояниями, второго типа - с непрерывными состояниями. Примером подсистемы с дискретными состояниями может служить колесико арифмометра или счетчика в такси. Нормально это колесико находится в одном из десяти положений, соответствующих десяти цифрам от 0 до 9. Время от времени оно поворачивается и переходит из одного состояния в другое. Этот процесс поворота нас мало интересует. Правильная работа системы (арифмометра, счетчика) зависит только от того, как связаны между собой «нормальные» положения колесиков, а как происходит переход из одного положения (состояния) в другое - несущественно. Поэтому мы и можем рассматривать арифмометр как систему, элементарные подсистемы которой могут находиться только в дискретных состояниях. Современная быстродействующая цифровая вычислительная машина также состоит из подсистем (триггерных схем) с дискретными состояниями. Все, что мы знаем в настоящее время о нервной системе животных и человека, указывает на то, что решающую роль в ее работе играет взаимодействие подсистем (нейронов) с дискретными состояниями.

С другой стороны, человек, катящийся на велосипеде, или аналогичная вычислительная машина дают нам примеры систем, которые описываются как состоящие из подсистем с непрерывными состояниями. В случае велосипедиста таковыми являются все движущиеся друг относительно друга части велосипеда и человеческого тела: колеса, педали, руль, ноги, руки и т. д. Их состояния - это их положения в пространстве, описывающиеся координатами (числами), которые могут принимать непрерывные множества значений.

Если система состоит исключительно из подсистем с дискретными состояниями, то и сама она может находиться лишь в конечном числе состояний, т. е. является системой с дискретными состояниями. Такие системы мы будем называть просто дискретными системами, а системы с непрерывным множеством состояний - непрерывными . Дискретные системы во многих отношениях проще для анализа, чем непрерывные. В частности, пересчет числа возможных состояний системы, который играет важную роль в кибернетике, требует в дискретном случае лишь знания элементарной арифметики. Пусть дискретная система A состоит из двух подсистем a 1 и a 2 , причем подсистема a 1 может иметь n 2 , а подсистема a 2 - n 2 возможных состояний. Допуская, что каждое состояние системы a 1 может сочетаться с каждым состоянием системы a 2 , мы находим, что число N возможных состояний системы A есть n 1 n 2 . Если система A состоит из m подсистем a i , где i = 1, 2, ..., m , то

N = n 1 n 2 ...n m .

В дальнейшем мы будем рассматривать только дискретные системы. Кроме того прагматического соображения, что они принципиально проще, чем непрерывные системы, существует еще два довода в пользу целесообразности такого ограничения.

Во-первых, все непрерывные системы можно, в принципе, рассматривать как дискретные системы с чрезвычайно большим числом состояний. В свете тех знаний, которые дала нам квантовая физика, такой подход даже следует рассматривать как теоретически более правильный. Причина, по которой непрерывные системы все же не исчезают из кибернетики, - это наличие весьма совершенного аппарата - математического анализа и, в первую очередь, дифференциальных уравнений для рассмотрения таких систем.

Во-вторых, самые сложные кибернетические системы, как возникшие естественным путем, так и созданные руками человека, неизменно оказываются дискретными. Особенно наглядно это видно на примере животных. Относительно простые биохимические механизмы, регулирующие температуру тела, содержание в крови различных веществ и т.п., являются непрерывными, но нервная система устроена по дискретному принципу.

Из книги Пилотируемые полеты на Луну автора Шунейко Иван Иванович

ЭВМ системы связи В части секундных интервалов процесса связи с Центром пилотируемых полетов NASA ведется «разговор» с одним или двумя космическими кораблями одновременно. Скоростные ЭВМ на базах связи передают команды или принимают данные о давлении в кабине, команды

Из книги ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ВСТРОЕННЫХ СИСТЕМ. Общие требования к разработке и документированию автора Госстандарт России

5.4 Проектирование системы Разработчик должен принимать участие в проектировании системы. Если систему разрабатывают для нескольких различных построений, то ее проект не может быть полностью определен до завершения всех построений. Разработчик должен идентифицировать

Из книги Правила технической эксплуатации тепловых энергоустановок в вопросах и ответах. Пособие для изучения и подготовки к проверке знаний автора

9.3. Системы отопления Технические требования Вопрос 336. Какие устройства должны иметь отопительные приборы?Ответ. Должны иметь устройства для регулирования теплоотдачи. В жилых и общественных зданиях отопительные приборы, как правило, оборудуются автоматическими

Из книги Правила устройства электроустановок в вопросах и ответах [Пособие для изучения и подготовки к проверке знаний] автора Красник Валентин Викторович

Системы возбуждения Вопрос. Что называется системой возбуждения?Ответ. Называется совокупность оборудования, аппаратов и устройств, объединенных соответствующими цепями, которая обеспечивает необходимое возбуждение автоматически регулируемым постоянным током

Из книги Работы по металлу автора Коршевер Наталья Гавриловна

Трубопроводные системы Кран на кухне вышел из строя, лопнула труба центрального отопления, на дачном участке возникла необходимость проложить водопроводную систему орошения… Ремонт и замена элементов различных действующих трубопроводных систем, а тем более

Из книги Создаем робота-андроида своими руками автора Ловин Джон

Подструктура системы Мы будем конструировать нашего робота на основе модели радиоуправляемого автомобиля. В идеальном случае модель должна иметь систему пропорционального управления ходом и поворотами автомобиля. В нашем прототипе используется именно такая модель

Из книги Феномен науки [Кибернетический подход к эволюции] автора Турчин Валентин Фёдорович

Из книги Сертификация сложных технических систем автора Смирнов Владимир

7.8. Две системы Мы имеем перед собой две кибернетические системы. Первая система - человеческий мозг. Ее функционирование - индивидуальное человеческое мышление. Ее задача - координация действий отдельных частей организма в целях сохранения его существования. Эта

Из книги Мир Авиации 1993 04 автора Автор неизвестен

4.3.2. Системы сертификации В соответствии с действующими положениями в промышленности и в Авиарегистре (последние обязательны для промышленности и гражданской авиации) система сертификации предусматривает постоянный (непрерывный) и поэтапный контроль соответствия

Из книги Мир Авиации 1994 02 автора Автор неизвестен

Рабы системы Максимилиан САУККЕМоскваПамяти заключенных спецтюрьмы ЦКБ-29 НКВДЖурнальный вариант главы из рукописи "Неизвестный Туполев"Шла вторая половина 1937 г. Главный инженер ГУАП и руководитель ведущего ОКБ по самолетостроению Андрей Николаевич Туполев был полон

Из книги История электротехники автора Коллектив авторов

Рабы Системы Продолжение. Начало см. «Мир Авиации» № 4,1993 г., № 1, 1994 г.Памяти заключенных спецтюрьмы ЦКБ-29 НКВДМаксимилиан САУККЕ МоскваВетер перемен 1985 г. позволил слегка приоткрыть завесу секретности над истиной. Центральный архив КГБ разрешил знакомиться с делами

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

8.2.1. ЭЛЕКТРОЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ Электроэнергетические системы (ЭЭС) современных гражданских судов и военных кораблей являются сложными комплексными системами, в которых нашли применение новейшие достижения практически во всех областях науки и техники

Из книги автора

8.3.1. СИСТЕМЫ ЗАЖИГАНИЯ Низковольтная магнитоэлектрическая машина, названная впоследствии «магнето низкого напряжения», была впервые применена для зажигания двигателей внутреннего сгорания (ДВС) в 1875 г. От магнето осуществлялось зажигание на отрыв - внутри цилиндра ДВС

Из книги автора

8.3.2. СИСТЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ Тип системы электроснабжения в значительной мере зависит от наличия на подвижном объекте аккумуляторной батареи, т.е. в конечном итоге от наличия электростартерного пуска.Если электропуск отсутствует, то используется система

Из книги автора

8.3.3. СИСТЕМЫ ПУСКА В систему пуска традиционно включают аккумуляторную батарею, электростартер, аппаратуру управления пуском и устройства, облегчающие пуск ДВС.Применение аккумуляторной батареи на автомобиле в широких масштабах началось после 1911 г. с введением

Из книги автора

22. Система с неограниченной растворимостью в жидком и твердом состояниях; системы эвтектического, перитектического и монотектического типа. Системы с полиморфизмом компонентов и эвтектоидным превращением Полная взаимная растворимость в твердом состоянии возможна

Чтобы понять суть противопоставления дискретного и непрерывного , сначала нужно определить, что означают эти понятия. Несмотря на то, что они имеют четкое математическое определение, они интуитивно понятны, и их легко продемонстрировать примерами из повседневной жизни. Противопоставление непрерывного и дискретного имеет некоторое сходство с противопоставлением потенциальной и актуальной бесконечности, поэтому неудивительно, что в обоих случаях дискуссия имеет больше философский смысл.

Ключевой вопрос дискуссии: дискретен или непрерывен наш мир? Этот вопрос очень тесно связан с нашими ощущениями и, как следствие, лежит в плоскости теории познания. В начале XX века физики и математики, будучи далеки от философских размышлений и психологических интерпретаций, без колебаний сделали свой выбор в пользу концепции дискретного мира с появлением квантовой механики и так называемой дискретной математики .

Толковый словарь русского языка дает слову «дискретный» такое определение: «прерывистый, дробный, состоящий из отдельных частей». Лучше всего понять смысл дискретности можно через ее противопоставление непрерывности . Например, время течет непрерывно с 9 утра до 9 вечера. Но если мы посмотрим на расписание поездов, которые отправляются с 9 утра до 9 вечера, то увидим дискретное множество значений. Если один поезд отправляется в 10 утра, а следующий - в 11, то между этими двумя значениями, 10 и 11, нет никакого другого, поэтому эти значения называют дискретными. Напротив, течение времени между 10 и 11 часами непрерывно, и время может равняться, например, 10 часам 25 минутам и 0,34628761720041244474 секунды. Если мы составим список европейских столиц и укажем для каждой из них число жителей, то получим дискретное множество значений. Напротив, уровень воды в водохранилище изменяется непрерывно между некими максимальным и минимальным значениями. Также никому не придет в голову сказать, что объем воды в обычном кувшине вместимостью, например, два литра, может принимать только дискретные значения, например только литр, пол-литра или 257 кубических сантиметров. Скорость автомобиля также изменяется непрерывно, что показывает стрелка спидометра, которая движется плавно, а не скачкообразно. Показания счетчика пробега, напротив, являются дискретными.

Как мы уже говорили, концепции дискретности и непрерывности являются интуитивно понятными и поэтому кажутся простыми. Тем не менее, вокруг них на протяжении многих лет кипят жаркие споры, и вопрос нельзя считать закрытым. Отчасти это происходит потому, что, как мы увидим позднее, интуиция не всегда хороший советчик. Иногда одно и то же явление кажется непрерывным или дискретным в зависимости от выбранного масштаба. Как бы то ни было, ответ на этот вопрос влияет на наше восприятие мира, поэтому интересует не только математиков, но и философов. Эти две точки зрения очень тесно связаны между собой. Французский математик Жан-Шарль де Борда (1733-1799) как-то сказал: «Без математики нельзя глубоко проникнуть в суть философии, без философии нельзя глубоко проникнуть в суть математики, а без того и другого нельзя понять суть чего бы то ни было».

Поставив проблему измерений ощущений, Г.Фехнер предполагал, что человек не способен непосредственно количественно оценивать их величины. Он предложил косвенный способ измерения — в единицах физической величины стимула. Величина ощущения — это сумма едва заметных его приращений над исходной точкой. Для ее обозначения Г.Фехнер ввел понятие порога ощущения, измеряемого в единицах стимула.

Абсолютный порог — это та минимальная величина стимула, превышение которой вызывает осознанное ощущение этого стимула.

Порог различения (дифференциальный порог) — это та минимальная величина различия двух стимулов, превышение которой вызывает осознанные ощущения различия стимулов.

Абсолютный порог ощущений определяет уровень абсолютной чувствительности данного анализатора. Между абсолютной чувствительностью и величиной порога существует обратно пропорциональная зависимость: чем меньше величина порога, тем выше чувствительность данного анализатора. Это отношение находит выражение в формуле: Е = 1/ Р, где Е — чувствительность, Р — пороговая величина раздражителя.

Абсолютная чувствительность анализатора ограничивается не только нижним, но и верхним порогом ощущения. Верхний абсолютный порог — это максимальная величина стимула, при которой еще возникает адекватное действующему раздражителю ощущение. Дальнейшее увеличение силы стимула вызывает в них лишь болевое ощущение (например, сверхгромкий звук, слепящая яркость). Величина абсолютных порогов изменяется в зависимости от различных условий: характера деятельности и возраста человека, функционального состояния рецептора, силы и длительности действия стимула.

Запороговый диапазон стимулов — это значительное изменение силы сильных стимулов, не вызывающих никаких изменений в уже имеющихся ощущениях.

Допороговый диапазон стимулов — это изменение силы стимулов, которые не вызывают никаких ощущений.

Этот факт можно подтвердить образованием условных рефлексов под влиянием допороговых сигналов.

Человек, находящийся в павловской «башне молчания», полностью изолирован от внешнего мира. Как только через электроды, которые держал в руках исследуемый, пропускали ток, руки отдергивались, так как возникало ощущение боли. Каждый раз перед включением тока специальный аппарат подавал очень слабый, подпороговый звук. Так как слухового ощущения не возникало, человеку казалось, что в камере стоит тишина. После ряда сочетаний «неслышного» звука и тока стали включать один только звук, не подкрепляя его током.

У исследуемого наступала такая же реакция, как при действии тока. Значит на допороговый звук — звук, который испытуемый не слышал, возник условный рефлекс и соответствующие реакции организма.

Пороговая концепция Г.Фехнера постулировала реальность существования сенсорного порога, делящего все стимулы на ощущаемые и неощущаемые. Таким образом, ряд ощущений представлялся дискретным: постепенное увеличение стимуляции вначале не производит эффекта и должно достичь некоторой величины, чтобы вызвать появление ощущения. Это была первая концепция дискретности работы сенсорной системы человека.

Оппонент Г.Фехнера рассуждал следующим образом: если бы существовал абсолютный порог в самом прямом смысле этого слова, то в результате мы получили бы график, представленный на рис.5.

Если бы эти теоретические данные существовали бы в реальной действительности, то существовал бы и ряд интен- сивностей звука, на которые испытуемый никогда не давал бы ответа, а при некоторой пороговой интенсивности наблюдался бы резкий переход к постоянным ответам, когда все предъявленные раздражители оказались бы воспринятыми.

Однако результаты этого типа никогда не встречаются в реальном эксперименте. Вместо этого по мере нарастания интенсивности стимула происходит постепенное увеличение вероятности положительного ответа испытуемого. Обычно кривая роста вероятности имеет S-образную форму (рис.6.)

S 025, S 075 — величина стимулов, дающая 25 и 75 % правильных ответов.

Md — среднее значение функции, соответствующее абсолютному порогу, если определить порог абсолютный как уровень стимуляции, при котором обнаружение происходит в 50 % случаев.

Г.Фехнер объяснил плавный характер кривой тем, что порог флуктуирует во времени, а его оппоненты (Т.Мюллер, Дж.Ястров и др.) — отсутствием порога в сенсорной системе.

Был развит классический принцип непрерывности сенсорного ряда. Наиболее последовательно принцип непрерывности реализует теория обнаружения сигнала (см. ниже).

Поставленная более ста лет назад проблема дискретности-непрерывности и сегодня продолжает оставаться центральной проблемой психофизики — I.

Выделение – достаточно простое понятие, однако стоит обсудить два его основных варианта. Поскольку обычно, говоря о выделении, под" разумевают выделение объектов, эти варианты возникают на основе двух обширных категорий выделяемых данных.

В некоторых случаях данные представлены в виде отдельных визуаль" ных объектов, каждым из которых можно манипулировать независи" мо от остальных. Пиктограммы на рабочем столе и векторные объекты в графических приложениях представляют собой как раз такие дан" ные. Выделяются эти объекты обычно независимо от того, как они со" относятся друг с другом в пространстве. Они представляют собой дис- кретные данные , и их выделение также дискретно . Дискретные дан" ные не обязательно однородны, и дискретное выделение не обязатель" но является непрерывным.

С другой стороны, некоторые приложения представляют свои данные в виде матрицы, состоящей из большого количества непрерывных фрагментов данных. Текст в текстовом редакторе или ячейки элек" тронной таблицы состоят из сотен и тысяч схожих небольших объек" тов, образующих единое целое. Эти объекты часто выделяются смеж" ными группами, и мы называем их непрерывными данными , а соот" ветствующее выделение – непрерывным .

Как непрерывное, так и дискретное выделение поддерживают выделе" ние в один щелчок и выделение перетаскиванием. При одиночном щелчке обычно выделяется минимально возможный дискретный эле" мент, а щелчок с перетаскиванием позволяет выделить большее коли" чество элементов, однако есть и другие существенные различия.

Смежные (непрерывные) элементы данных, из которых состоит текст в документе текстового редактора, обладают естественным порядком. Нарушение порядка следования букв уничтожает смысл документа. Символы следуют один за другим, образуя осмысленный континуум, и выделение слова или абзаца имеет смысл в контексте данных, тогда


как случайное, несвязное выделение в общем случае лишено смысла. Хотя теоретически возможно разрешить дискретное выделение, на" пример выделение нескольких абзацев, разбросанных по тексту, их визуализация и необходимость защититься от непреднамеренных не" желательных операций над ними породят проблем больше, чем прине" сут пользы.

С другой стороны, у дискретных данных нет присущего им порядка. И хотя дискретные объекты можно упорядочить многими различны" ми осмысленными способами (скажем, файлы можно отсортировать по дате их изменения), отсутствие сквозного внутреннего связующего признака означает, что пользователи, вероятно, захотят выполнять дискретное выделение (например, удерживая клавишу , вразно" бой выбирать файлы из списка). Разумеется, пользователям может по" надобиться и непрерывное выделение по тому или иному организую" щему признаку (например, выбор старых файлов из конца списка, упорядоченного по времени). Полезность обоих подходов особенно оче" видна в приложениях для работы с векторной графикой (Illustrator или PowerPoint). В одних случаях пользователю требуется выполнить непрерывное выделение объектов, расположенных рядом, в других нужно выделить лишь один объект.



Взаимное исключение

Обычно при выделении предыдущее выделение снимается. Такое по" ведение называется взаимным исключением , поскольку одно выделе" ние исключает другое. Как правило, пользователь щелкает по объек" ту, тот становится выделенным и остается таковым, пока пользова" тель не выделит что"нибудь еще. Взаимное исключение – правило как для дискретного, так и для непрерывного выделения.

Некоторые приложения позволяют снять выделение с объекта повтор" ным щелчком по нему. Это может привести к курьезной ситуации, ко" гда ничего не выделено и при этом отсутствует точка ввода. Вы сами должны решить, приемлема ли подобная ситуация в вашем продукте.

Кумулятивное выделение

Взаимное исключение часто уместно в операциях непрерывного выде" ления, потому что в противном случае пользователь рискует не уви" деть результат своих действий, если выделение окажется прокручено за пределы экрана. Представьте себе, что можно выделить несколько независимых абзацев текста в разных местах большого документа. Та" кая возможность может быть полезной, но окажется практически не" контролируемой: пользователям будет легко попасть в ситуацию, ко" гда они изменяют данные непреднамеренно, поскольку не видят всего набора данных, участвующих в операции. Проблему создает прокрут" ка, а не непрерывное выделение, однако большинство программ, обра" батывающих недискретные данные, позволяет их прокручивать.


А вот в дискретном выделении от взаимного исключения можно отка" заться. Пользователь может выделить несколько независимых объек" тов, последовательно щелкая по ним. Это называется кумулятивным выделением . Например, список позволяет пользователю выделить столько элементов, сколько потребуется. Чтобы снять выделение с объ" екта, следует щелкнуть по нему еще раз. После того как все нужные объекты выделены, по завершающему глаголу выполняется действие над ними.

В большинстве систем с дискретным выделением по умолчанию реали" зовано взаимное исключение, а кумулятивное выделение можно вы" полнить только с помощью служебной клавиши. В Windows для не" прерывного выделения применяется в основном клавиша , тогда как применяется для дискретного выделения. Например, в гра" фических редакторах, щелкнув по объекту и выделив его, можно доба" вить к выделению еще один объект. Для этого необходимо щелкнуть по нему, удерживая нажатой клавишу .

Интерфейсы, поддерживающие непрерывное выделение, в общем слу" чае не должны допускать кумулятивное выделение (либо обязаны пре" доставлять средство обзора, делающее кумулятивное выделение управляемым), однако должны позволять расширять существующее выделение. Для этих целей, опять же, применяются служебные кла" виши. В редакторе Word можно выделить фрагмент текста, если уста" новить курсор в начальную точку, а затем, удерживая клавишу , щелкнуть в конечной точке.

В некоторых списках, а также в Проводнике системы Windows (в обо" их примерах данные дискретны) кумулятивное выделение выглядит несколько странно. Для выполнения «нормального» дискретного вы" деления задействуется клавиша , но затем для расширения выде" ления используется , словно это не дискретные, а непрерывные данные. В большинстве случаев такой выбор сбивает пользователя с толку, поскольку конфликтует с общепринятой идиомой дискретно" го кумулятивного выделения.

Групповое выделение

Операция щелчок"перетаскивание также является основой для груп" пового выделения. В случае непрерывных данных она приводит к рас" ширению выделения от точки, где пользователь нажал кнопку мыши, до точки, где он ее отпустил. Эта операция тоже может быть модифи" цирована служебными клавишами. Например, в редакторе Word щел" чок при нажатой клавише выделяет целое предложение, так что перетаскивание при нажатой клавише расширяет выделение предложениями. Монопольные приложения должны обогащать взаи" модействие такими вариантами выделения, когда это уместно. Опыт" ные пользователи в конце концов запоминают и применяют такие приемы, если они достаточно просты в исполнении.


В случае набора дискретных объектов щелчок и перетаскивание обыч" но означают перемещение объекта. Однако если щелкнуть в области между объектами, а не по какому"то конкретному объекту, такой щел" чок будет иметь специальный смысл – он создаст рамку выделения , изображенную на рис. 19.5.


Рис. 19.5. Если в момент нажатия на кнопку мыши указатель мыши не был расположен на конкретном объекте, щелчок и перетаскивание обычно порождают рамку выделения: все захваченные этой рамкой объекты выделяются, когда пользователь отпускает кнопку мыши.

Эта идиома знакома пользователям всех графических и многих текстовых редакторов. Пример на этом рисунке взят из Проводника. Рамка была протянута из левого верхнего угла вправо вниз

Рамка выделения динамически изменяет свой размер; ее верхний ле" вый угол находится в точке, где пользователь нажал на кнопку мыши, а правый нижний – в точке, где он отпустил кнопку. Когда пользова" тель отпускает кнопку мыши, все объекты, захваченные рамкой, вы" деляются как единая группа.

Вставка и замещение

Как мы установили, выделение показывает, какими объектами будет оперировать выполняемая далее функция. Если выполнение этой функции приводит к созданию или вставке новых объектов или данных (посредством клавиатурных сокращений или команды Вставить), эти но" вые объекты или данные каким"то образом добавляются к выделен" ным. При дискретном выделении, когда выделен один или несколько объектов, поступающие данные передаются выделенным объектам, ко" торые обрабатывают их соответствующим образом. Это может привести к замещению , при котором новые данные заменяют собой выделенный объект. В других случаях выделенный объект может воспринимать по" ступающие данные как входную информацию для некоторой заданной функции. Например, в PowerPoint, если выделена фигура, ввод с кла" виатуры означает создание текстовой аннотации к этой фигуре.

В то же время в непрерывном выделении поступающие данные всегда замещают выделенные. Когда вы набираете текст в редакторе или в поле ввода, вводимый текст заменяет выделенный. Непрерывное вы" деление обладает уникальной особенностью: оно может просто указы"


вать на место между двумя элементами непрерывных данных, а не на какой"то конкретный элемент. Это место называется точкой вставки .

В текстовом редакторе знак вставки (как правило, вертикальный ми" гающий отрезок, обозначающий, куда будет введен следующий сим" вол) отмечает позицию между двумя символами в тексте, но не выде" ляет ни один из них. Поместив курсор мыши в другую точку текста и щелкнув, можно перенести знак вставки в эту точку, но если перета" щить указатель мыши, расширяя выделение, то знак вставки исчез" нет и заменится непрерывным выделением текста.

В электронных таблицах также применяется непрерывное выделение, но реализовано оно немного иначе, чем в текстовых редакторах. Выде" ление является непрерывным, поскольку ячейки таблицы образуют матрицу данных, однако понятие места между двумя ячейками отсутст" вует. Один щелчок выделяет одну ячейку целиком. В настоящее время понятие точки вставки для электронной таблицы отсутствует, однако открывающиеся здесь для проектировщика интерфейса возможности весьма интересны (например, выделив горизонтальную линию между ячейками, пользователь мог бы начать ввод с клавиатуры, что приводи" ло бы к созданию новой строки и заполнению ячейки за одну операцию).

Вполне возможна комбинация этих двух идиом. Так, сортировщик слайдов1 в PowerPoint позволяет выделять как точку вставки, так и от" дельный слайд. Щелчок по слайду выделяет его, а щелчок между слай" дами приводит к появлению между ними мигающего знака вставки.

Если программа поддерживает точку вставки, объекты должны выде" ляться щелчком с перетаскиванием. Чтобы выделить хотя бы один символ в текстовом редакторе, пользователь должен протащить указа" тель мыши по этому символу. В результате пользователь выполняет много щелчков и операций перетаскивания в процессе нормальной ра" боты с программой. Побочный эффект этого – затрудняется передача любой идиомы перетаскивания. Это легко увидеть на примере редак" тора Word, где перетаскивание текста включает в себя первоначаль" ный щелчок и перетаскивание указателя мыши для выделения фраг" мента, перемещение указателя мыши внутрь выделенного фрагмента и последующий щелчок с перетаскиванием фрагмента на новое место. Чтобы выполнить аналогичную операцию в Excel, вам предстоит сна" чала найти специальную активную область (один"два пиксела шири" ной) на границе выделенной ячейки. Для перемещения дискретного выделения пользователь щелкает по объекту и перетаскивает его еди" ным движением. Чтобы облегчить бремя перетаскивания при выделе" нии, в текстовых редакторах часто предусмотрены альтернативные пути непосредственного манипулирования, например двойной щел" чок, выделяющий целое слово.


1 Представление документа, вызываемое в PowerPoint командой Сортировщик слайдов меню Вид.– Примеч. ред.