Технология оптоволокна как датчика температуры. Большая энциклопедия нефти и газа. Многомодовые дифракционные датчики
Оптические датчики являются устройствами, которые предназначены для осуществления контроля расстояния и положения, определения цветовых и контрастных меток, а также решения других технологических задач. Приборы в основном используются в промышленном оборудовании.
По способу функционирования оптические датчики подразделяются на три вида.
Устройства, отражающие от объекта, способны излучать и принимать свет, который отходит от предмета, расположенного в зоне их действия. Определенное отражается от цели и при попадании на датчик производит установку соответствующего логического уровня. Величина зоны срабатывания во многом зависит от вида устройства, размеров, цвета, кривизны и других параметров объекта. В своей конструкции приемник и излучатель присутсвуют в одном корпусе.
Оптические датчики, отражающие от световозвращателя, принимают и излучают свет, который исходит от специального рефлектора, и когда происходит прерывание луча объектом, на выходе появляется соответствующий сигнал. Область действия такого устройства зависит от состояния среды, которая окружает датчик и объект (туман, дым, пыль и др.). В данном приборе излучатель и приемник также размещаются в одном корпусе.
К третьему виду относятся оптические датчики, которые имеют раздельно расположенные приемник и источник света. Данные элементы устанавливаются друг напротив друга по одной оси. Предмет, попадающий в район вызывает его прерывание, а на выходе, соответственно, изменяется логический уровень.
Световые элементы устройств могут работать на разных к которым относятся инфракрасный или видимый (лазерный) свет, а также другие индикаторы цветовых меток.
В своей конструкции датчик оптический состоит из излучателя, генерирующего свет в различных диапазонах, а также приемника, который различает сигнал, испускаемый первым элементом. Обе составляющие устройства располагаются как в одном, так и в разных корпусах.
В основе работы приборов лежит изменение оптического излучения при появлении в зоне действия непрозрачного объекта. При включении устройства издается оптический луч, принимаемый через рефлектор или отраженный от объекта.
Затем на выходе датчика возникает цифровой или имеющий различную логику, который далее используется исполнительным устройством или схемой регистрации.
Волоконнооптические датчики имеют разную зону чувствительности, которая расположена в пределах от нескольких сантиметров до сотен метров.
Удобнее всего использовать диффузные устройства, которые самостоятельно срабатывают на объект. В своем большинстве оптические датчики позволяют изменять настройки чувствительности и индексации состояния выхода, производятся также самонастраиваемые модели.
На рынке устройства представлены многими производителями. Например, особой популярностью пользуются приборы, выпускаемые компанией AUTONICS. Они отличаются большим разнообразием, низкой ценой и высокой надежностью.
Перевод Ростислава Ливенцова
Волоконно-оптические датчики (так же часто именующиеся оптические волоконные датчики) это оптоволоконные устройства для детектирования некоторых величин, обычно температуры или механического напряжения, но иногда так же смещения, вибраций, давления, ускорения, вращения (измеряется с помощью оптических гироскопов на основе эффекте Саньяка), и концентрации химических веществ. Общий принцип таких устройств в том, что свет от лазера (чаще всего одномодового волоконного лазера) или суперлюминесцентного оптического источника передается через оптическое волокно, испытывая слабое изменение своих параметров в волокне или в одной или нескольких брэгговских решетках, и затем достигает схемы детектирования, которая оценивает эти изменения.
В сравнении с другими типами датчиков, волокно-оптические датчики обладают следующими преимуществами:
· Они состоят из электрически непроводящих материалов (не требуют электрических кабелей), что позволяет использовать их, например, в местах с высоким напряжением.
· Их можно безопасно использовать во взрывоопасной среде, потому, что нет риска возникновения электрической искры, даже в случае поломки.
· Они не подвержены электромагнитным помехам (EMI), даже вблизи разряда молнии, и сами по себе не электризуют другие устройства.
· Их материалы могут быть химически инертны, то есть не загрязняют окружающую среду, и не подвержены коррозии.
· Они имеют очень широкий диапазон рабочих температур (гораздо больше, чем у электронных устройств).
· Они имеют возможность мультиплексирования; несколько датчиков в одиночной волоконной линии может быть интегрировано с одним оптическим источником (см. ниже).
Сенсоры на основе брэгговских решеток
Волоконно-оптические датчики зачастую основаны на волоконных брэгговских решетках. Основной принцип многих волоконно-оптических датчиков в том, что брэгговская длина волны (т.е. длина волны максимального отражения) в решетке зависит не только от периода брэгговской решетки, но также от температуры и механических напряжений. Для кварцевых волокон изменение брэгговской длины волны на единицу деформации примерно на 20% меньше, чем растяжение, так как есть влияние деформации на уменьшение показателя преломления. Температурные эффекты близки к ожидаемым только при тепловом расширении. Температурные и деформационные эффекты могут различаться при использовании различных технических средств (например, при использовании эталонной решетки, которая не подвержена деформации, или применении различных типов волоконных решеток) так, что оба значения регистрируются одновременно. Для регистрирования только деформации, разрешающая способность достигает нескольких µe (т.е. относительное изменение длин порядка) при этом точность имеет тот же порядок малости. Для динамических измерений (например, акустический явлений), достигается чувствительность большая чем 1 me в 1 Hz полосы пропускания.
Распределенное зондирование
Другие оптоволоконные датчики не используют волоконные брэгговские решетки как сенсоры, используя в качестве сенсоров само волокно. Принцип зондирования в них основан на эффекте Рэлеевского рассеяния, Рамановского рассеяния или рассеяния Бриллюэна. Например, метод оптической рефлектометрии временной области , где положение области со слабым отражением может быть определено с использованием импульсного зондирующего сигнала. Этот метод используется также для определения других величин, например температуры или напряжения в зависимости от сдвига частоты Бриллюэна.
В некоторых случаях, измеряемая величина является средним значением по всей длине волокна. Этот метод характерен для некоторых температурных датчиков, а также для интерферометров, основанных на эффекте Саньяка, применяемых в качестве гироскопов. В других случаях измеряются позиционно-зависимые величины (например, температура или напряжение). Это называется распределенным зондированием.
Квази-распределенное зондирование
Определенные волокна могут содержать серию решеток сенсоров (см. выше) для мониторинга температуры и распределения деформации по всему волокну. Это называется квази-распределенным зондированием. Существуют различные технические решения для адресации только к одной решетке (и таким образом точного определения положения вдоль волокна)
В одном способе, называющимся мультиплексирование с разделением по всей длине волны (WDM), или оптической рефлектометрии в частотной области спектра (OFDR), решетки имеют немного различающуюся брэгговскую длину волны. Длина волны перестраиваемого лазера в блоке интегрирования может быть настроена на длину волны, принадлежащую к определенному типу решетки, а длина волны максимального отражения указывает на влияние деформации или, например температуры. Кроме того широкополосные источники света источники света (например суперлюминесцентные источники) могут быть использованы совместно со сканирующим длину волны фотодетектором (например на основе волоконного резонатора Фабри-Перо) или на основе CCD спектрометра. В любом случае, максимальное количество решеток, как правило, не превышает 10-50, что ограничено диапазоном настройки пропускной способности источника света и необходимой разностью длин волн в решётках волокна.
Другой метод, называемый временным разделением каналов (TDM), использует идентичные слабоотражающие решетки, в которые посылаются короткие световые импульсы. Отражение от различных решеток регистрируют посредством времени их поступления. Временное разделение каналов (TDM) часто используют вместе с разделением по всей длине волны (WDM) для того, чтобы умножить число различных каналов в сотни или даже тысячи раз.
Другие подходы
Помимо выше описанных подходов, есть много альтернативных методов. Вот некоторые из них:
· Волоконные брегговские решетки могут быть использованы в интерференционных оптических волокнах, где они используются только в качестве отражателей, и измеряют фазовый сдвиг, зависящий от расстояния между ними.
· Существуют лазерные брэгговские сенсоры, где датчик решетки располагается в последнем зеркале волоконно - оптического резонатора лазера, на основе волокна допированного эрбием, которое воспринимает свет накачки на длине волны 980 нм через волокно. Брэгговская длина волны, которая зависит, например, от температуры или механического напряжения, определяет длину волны генерации. Этот подход, который имеет много вариантов дальнейшего развития, обещает принести высокие результаты из-за узкой полосы спектральной области, которая характерная для волоконного лазера, и высокой чувствительности.
· В некоторых случаях, пары брэгговских решеток используются в качестве волокна для интерферометров Фабри-Перо, которые могут реагировать особо чувствительно на внешние воздействия. Интерферометр Фабри-Перо можно изготовить так же другим способом, например, используя переменный воздушный зазор в волокне.
· Длиннопериодные решетки особенно интересны для зондирования нескольких параметров одновременно (например, температуры и напряжения) или иначе, для альтернативного определения деформации при очень низкой чувствительности к температурным изменениям.
Области применения
Даже по прошествии нескольких лет развития, волоконно-оптические датчики до сих пор не пользуются большим коммерческим успехом, так как трудно заменить применяемые сейчас технологии, даже если они имеют определенные ограничения. Хотя в некоторых областях применения, волоконно-оптические датчики получают все большее признание, как технология с большим потенциалом интересных возможностей. Это, например, работа в жестких условиях, таких как зондирование в устройствах с высоким напряжением, или в СВЧ печах. Сенсоры на основе брэгговских решеток могут также быть использованы, например, для мониторинга условий, внутри крыльев самолетов, в ветровых турбинах, мостах, больших плотинах, нефтяных скважинах, и трубопроводах. Здания с встроенными волоконно-оптическими датчиками иногда называют «умными конструкциями», датчики в них осуществляют контроль деформации внутри различных частей конструкции, и получают данные об этих изменениях, например износе, вибрации и.т.д. Умные конструкции являются основной движущей силой для развития волоконно-оптических датчиков.
Под волоконно-оптическим измерением температуры (английский вариант DTS = Distributed Temperature Sensing) понимают применение оптоэлектронных приборов для измерения температуры, при которой стеклянные волокна используются в качестве линейных датчиков. Типичными случаями применения линейных волоконных температурных датчиков являются сферы, связанные с безопасностью, например, системы пожарного оповещения в автомобильных, железнодорожных или сервисных туннелях; термический контроль силовых кабелей и воздушных линий передач для оптимизации производственных отношений; повышение эффективности нефтяных и газовых скважин; обеспечение безопасного рабочего состояния промышленных индукционных плавильных печей; контроль герметичности контейнеров с сжиженным природным газом на судах в разгрузочных терминалах; обнаружение утечек на плотинах и запрудах; контроль температуры при химических процессах; обнаружение утечек в трубопроводах.
Принцип работы оптоволоконного датчика
Физические воздействия на оптоволокно, такие как: температура, давление, сила натяжения - локально изменяют характеристики пропускания света и как следствие, приводят к изменению характеристик сигнала обратного отражения. В основе измерительных систем на основе оптоволоконных датчиков используется сравнение спектров и интенсивностей исходного лазерного излучения и излучения, рассеянного в обратном направлении, после прохождения по оптоволокну.
Обратное световое рассеяние при температурном воздействии
Оптические волокна изготовлены из легированного кварцевого стекла. Кварцевое стекло представляет собой разновидность двуокиси кремния (SiO2) с аморфной твердотельной структурой. Температурные воздействия инициируют вибрации в молекулярной решетке. Когда свет попадает на термически возбужденные молекулы, происходит взаимодействие между световыми частицами (фотонами) и электронами. Таким образом, в оптическом волокне происходит световое рассеяние, так же известное, как рамановское рассеяние.
Обратное световое рассеяние состоит из нескольких спектральных составляющих:
. Рэлеевское рассеяние, с длиной волны аналогичной, используемой в лазерном источнике;
. Стоксовы компоненты Рамановского рассеяния с длиной волны большей, чем у используемого лазерного источника, при которых испускаются фотоны;
. Антистоксовы компоненты Рамановского рассеяния с меньшей длиной волны, по сравнению с рэлеевским рассеянием, при которых фотоны поглощаются.
Интенсивность рассеяния так называемого антистоксова диапазона зависит от температуры, в то время как, стоксов диапазон от температуры практически не зависит. Локальная температура оптического волокна выводится из отношения антистоксовой и стоксовой интенсивностей света.
Бриллюэновские линии, которые более интенсивные чем Стоксовы, но имеют меньший спектральный сдвиг Этот спектральный сдвиг вызван акустическими колебаниями кристаллической решетки волокна и несет в себе информацию о механических напряжениях и температурах, воздействующих на волокно. Воздействие механических напряжений и температур приводит к изменению положения Бриллюэновской линии на шкале длин волн.
Датчики температуры на основе Рамановских линий
Самым современным оборудованием в системе мониторинга распределения температуры, например в трубопроводах, является распределенный оптоволоконный датчик температуры на основе Рамановских линий. Принципом работы датчика является то, что интенсивность Стоксовой Рамановской компоненты рассеянного излучения практически не зависит от температуры, а интенсивность Антистоксовой линии сильно связана с температурой. Это позволяет, определяя отношение интенсивности Антистоксовой линии и Стоксовой линии, определять значение температуры. Данный подход позволяет избавиться от погрешности, связанной с возможными флуктуациями мощности зондирующего лазерного импульса. Системы этого типа могут работать на расстояниях в несколько километров. Пространственное разрешение может достигать 0,5 м.
Метод измерения
Самым известным методом обратного рассеивания является метод OTDR (= Optical Time Domain Reflectometry = оптическая рефлектометрия временной области). В его основе заложен импульсно-акустический метод (импульсы и эхо), в результате разницы времени распространения между временем передачи и обнаружения световых импульсов можно определить уровень и место рассеивания. Соотношение излучаемого рассеивания света с эффектом Рамана, сигнал обратного рассеивания при измерении комбинационного рассеянного света составляет коэффициент 1000. Поэтому локально распределенный датчик температуры Рамана с техникой OTDR может быть реализован только с помощью мощных (дорогих) импульсных лазеров (обычно лазеров с твердым рабочим веществом) и быстрой, также дорогостоящей, техникой передачи сигналов.
Разработанный компанией «LIOS Technology GmbH» температурный датчик Рамана OFDR (OFDR, Optical Frequency Domain Reflectometry = рефлектометрия частотной области) работает не во временном диапазоне, как техника OTDR, а в частотном. При методе OFDR получают информацию о локальном изменении температуры, если сигнал обратного рассеивания, обнаруженный на протяжении всего времени измерения, измеряется как функция частоты и в комплексе (комплексная передаточная функция), а затем подвергается преобразованию Фурье. Существенными преимуществами техники OFDR являются режим квазинепрерывного излучения лазера и узкополосное обнаружение оптического сигнала обратного рассеивания, вследствие чего, достигается значительно более высокое отношение сигнал / шум, чем при использовании импульсной техники. Данное техническое преимущество позволяет использовать недорогие полупроводниковые лазерные диоды и недорогостоящие электронные блоки для передачи сигналов. Им противопоставляется технически сложное измерение комбинационного рассеиваемого света (комплексное измерение в соответствии с величиной и фазой) и высокая затратная часть из-за БПФ (блока преобразования Фурье), необходимого для обработки сигнала и с более высокими требованиями к линейности электронных блоков и компонентов.
Структура измерительной системы
Схематическая структура волоконно-оптической системы измерения температуры состоит из блока формирования сигнала с частотным генератором, лазера, оптического модуля, приемного блока и блока микропроцессора, а также световодного кабеля (кварцевое стеклянное волокно) в качестве линейного температурного датчика. В соответствии с методом OFDR интенсивность лазера в течение интервала времени измерения модулируются синусообразно, а частота — в виде линейной частотной модуляции. Отклонение частоты является прямой причиной для локального срабатывания рефлектометра. Частотномодулированный свет лазера направляется в световод. В любой точке вдоль волокна возникает комбинационный рассеянный свет, излучаемый во всех направлениях. Часть комбинационного рассеянного света движется в обратном направлении к блоку формирования сигнала. Затем выполняется спектральная фильтрация света обратного рассеивания, его преобразование в измерительных каналах в электрические сигналы, усиление и электронная обработка. Микропроцессор проводит расчет преобразования Фурье. В качестве промежуточного результата получают кривые комбинационного обратного рассеивания как функцию длины кабеля. Амплитуда кривых обратного рассеивания пропорциональна интенсивности соответствующего комбинационного рассеивания. Из отношения кривых обратного рассеивания получают температуру волокна вдоль световодного кабеля. Технические спецификации системы измерения температуры Рамана могут быть оптимизированы посредством настройки параметров прибора (дальность действия, локальное разрешение, точность температуры, время измерения). Возможна также регулировка световодного кабеля в соответствии с возможностями конкретного случая применения. Термическая стойкость стекловолоконного покрытия ограничивает максимальный диапазон температуры световодного кабеля. Стандартные волокна для передачи данных располагают акриловым покрытием или покрытием, затвердевшим в результате УФ (ультрафиолетового) излучения, и пригодны для диапазона температур до 80 °C. Стекловолокно с полиамидным покрытием может использоваться до максимальной температуры 400 °C.
Бриллюэновские системы (информация с сайта www.vodosfera.com)
Как отмечено ранее, спектральный сдвиг Бриллюэновской линии вызван акустическими колебаниями кристаллической решетки волокна и несет в себе информацию о механических напряжениях и температурах, воздействующих на оптоволокно. Созданные к настоящему времени алгоритмы обработки сигналов таких систем позволяют разделить информацию о температуре и о механических воздействиях.
Для Бриллюэновской системы мониторинга типичны следующие характеристики: расстояние, на которое может работать единичная система - 40 - 50 км при пространственном разрешении 1 - 2 метра.
К недостаткам Бриллюэновских систем мониторинга следует отнести сложность их устройства, которая обуславливает высокую стоимость. Преимуществом Бриллюэновских систем является возможность работы с сенсорными кабелями на основе обычного дешевого связного волокна. Время получения сигнала с таких систем составляет ориентировочно 1 - 2 минуты. При работе с более длинными линиями время измерений возрастает.
Для повышения чувствительности и значительного сокращения времени измерений используется метод, основанный на стимулированном Бриллюэновском рассеянии. Он отличается от систем на спонтанном рассеянии тем, что в волокно направляются одновременно непрерывное «пробное» лазерное излучение и мощный импульс накачки
Системы мониторинга на основе стимулированного Бриллюэновского рассеяния обеспечивают работу на расстояние порядка 50 км (возможны большие расстояния) с пространственным разрешением от 0,5 м. Минимальная частота получения измерительной информации может составлять значения порядка одного Герца.
Система термомониторинга кабельной линии с использованием оптоволоконного датчика
Материал предоставлен компанией «Инверсия-Сенсор»
Из-за своей большой стоимости и высокой технологической значимости аварийный выход из строя силовых высоковольтных кабельных линий является чрезвычайным происшествием, требующим срочного и дорогостоящего ремонта. Во многих случаях причиной аварийности кабельной линии являются локальные перегревы, которые могут быть вызваны повышением токовой нагрузки в линии, ухудшением условий охлаждения кабеля по длине, или же являются результатом возникновения некоторых дефектов в изоляции кабеля и муфт.
Своевременное выявление зон перегрева кабеля и муфт возможно при использовании систем температурного мониторинга с применением оптического волокна, интегрированного в конструкцию кабеля. Подобные системы измерения распределения температуры вдоль кабельной линии, проводимого с использованием эффекта рассеивания лазерного импульса в оптическом кабеле, называемого рамановским, сейчас интенсивно внедряются на практике.
Оптоволоконная система «ASTRO» отечественного производства (компания «Инверсия-Сенсор») предназначена для оперативного контроля профиля температуры высоковольтных кабельных линий в процессе эксплуатации.
Оптическое волокно, интегрировано в конструкцию кабельной линии и расположено, обычно, в зоне экрана, под внешней оболочкой. В него лазером периодически излучаются диагностические импульсы и при помощи измерительного прибора регистрируется обратный отраженный поток света.
При изменении параметров встроенного в кабель оптического волокна, возникающих под воздействием температуры, для каждого конкретного участка кабельной линии определяется величина локальной температуры.
Локальная температура на каждом конкретном участке кабельной линии рассчитывается с использованием разницы во времени между моментом времени получения отраженного от каждого участка импульса и моментом излучения лазерного импульса в оптическое волокно. Зная скорость распространения света в измерительном оптоволокне, можно с высокой точностью рассчитать место, которому соответствует спектр отраженного оптического сигнала.
Оперативное определение температурного профиля кабельной линии позволяет обслуживающему персоналу эффективно эксплуатировать линию, используя:
- Метод контроля температуры по оптическому рассеянию в отраженных сигналах, позволяет проводить оперативное измерение температурного профиля на кабелях, имеющих большие длины, до 16 км. Это дает возможность при помощи одного прибора контролировать протяженные объекты или несколько объектов сразу, включив их последовательно.
- Знание температурного профиля кабельной линии позволяет оптимизировать ее загрузку, рационально учитывать реальные климатические условия и локальные особенности пролегания всех участков кабельной линии.
- Поскольку оптоволоконной системой производится измерение температуры под оболочкой кабельной линии, в программном обеспечении мониторинга производится перерасчет на температуру токоведущей жилы кабеля, определяется переходный процесс нагрева при скачке нагрузки. Особенно важно это для определения технической возможности передачи по кабельной линии дополнительной мощности, с учетом наиболее нагретого участка кабеля.
- При помощи системы «ASTRO» можно определять места возникновения и оценивать степень развития дефектов, сопровождающихся локальным разогревом отдельных участков контролируемой кабельной линии.
- Можно оперативно проводить определение мест обрыва кабельной линии после возникновения фатальных дефектов или аварийных динамических воздействий на кабель.
Система температурного мониторинга кабельных линий конструктивно состоит из двух основных элементов - оптического волокна, проложенного вдоль кабельной линии, являющегося распределенным датчиком температуры, и измерительного прибора со средствами обработки и анализа первичной информации, установленного в защитном шкафу.
Если кабельная линия была изначально рассчитана на использование с системой температурного мониторинга, то оптическое волокно заранее устанавливается под оболочкой кабеля еще на этапе его изготовления.
Если же система температурного мониторинга устанавливается на уже эксплуатируемой кабельной линии, внутри которой отсутствует измерительное оптическое волокно, то тогда оно прокладывается снаружи и фиксируется максимально близко к контролируемому кабелю. Наружный способ прокладки оптического волокна-датчика температуры менее предпочтителен, так как имеет существенно меньшую точность и более подвержен влиянию внешних температурных воздействий.
Шкаф системы температурного мониторинга кабельной линии включает в себя непосредственно измерительный прибор марки «ASTRO», промышленный компьютер со специализированным программным обеспечением для обработки информации, оценки состояния и прогнозирования возможного увеличения нагрузки кабельной линии. Также в шкафу монтируется источник бесперебойного питания и все необходимые технические средства для коммуникации с верхним уровнем АСУ-ТП.
Климатическое исполнение защитного шкафа системы мониторинга определяется параметрами технического задания на создание системы. Сам шкаф может быть установлен рядом с концевой муфтой контролируемой кабельной линии или располагаться на удалении до нескольких километров, в зависимости от длины линии. При наружной установке шкаф снабжается системой внутреннего температурного кондиционирования.
Система температурного мониторинга высоковольтной кабельной линии марки «ASTRO» работает полностью в автоматическом режиме, в соответствии с внутренними расчетными и экспертными алгоритмами и заданными локальными настройками для каждого объекта контроля.
Информация о текущем температурном режиме работы контролируемой кабельной линии и результаты проведения экспертной диагностики постоянно отображаются на экране встроенного промышленного компьютера. Полная информация о состоянии линии передается в систему АСУ-ТП более высокого уровня по оптическому волокну с использованием стандартного протокола МЭК 61850.
Технические параметры системы «ASTRO»
Диапазон измерения температуры, °C |
|
Время измерения температуры, сек |
|
Точность измерения, °C |
|
Пространственное разрешение, м |
|
Длина чувствительного элемента (оптоволокна), км |
до 8, опция до 16 |
Количество измерительных каналов |
|
Длина волны излучения, нм |
|
Тип волокна |
|
Температура эксплуатации, °C |
|
Влажность окружающей среды, % |
|
Напряжение питания, В |
|
Потребляемая мощность, Вт |
|
Размеры прибора, мм |
|
Вес измерительного прибора, кг |
Принцип действия оптоволоконных датчиков основан на преобразовании измеряемых физических величин в модулированный световой сигнал с последующими его передачей по оптоволоконной линии связи, расшифровкой и использованием. Свет, генерируемый лазером, светоизлучающим диодом или другим устройством, может модулироваться по амплитуде, фазе, частоте, ширине импульсов и поляризации. При необходимости модулированные световые сигналы усиливаются или ослабляются, передаются на расстояние, преобразуются из оптических в цифровую и обратно. По характеру использования характеристик оптического волокна оптоволоконные датчики можно разделить на два класса – внешние и внутренние.
Внешние датчики используют волоконные линии лишь в качестве массивного элемента для передачи оптического сигнала из одного пункта в другой, от источника света к датчику и от датчика – детектору. Результат оценки измеряемых величин или характеристик явления, воспринимаемый внешними оптоволоконными устройствами, сам по себе не зависит от особенностей волокна, так как измерительную информацию несут следующие явления: прерывание светового потока, отражение света, фильтрация длины волны света и передача на разных длинах волн, изменение энергии излучения, подаваемого на оптоволоконную линию. Датчики, использующие прерывание светового потока, передаваемого между двумя участками оптоволоконной линии, являются весьма распространенными и достаточно гибкими в применении устройствами. Работа датчиков основана на принципе блокировки светового луча. Пример датчиков этого типа – счетчик деталей, подаваемых на сборочный конвейер или упаковку.
Датчик, который воздействует на интенсивность света, попадающего в оптическое волокно, в принципе, способен влиять на цветовой или частотный спектр сигнала, передаваемого в оптоволоконную линию. Такие модуляторы спектрального являются основой систем измерения, связанных с фильтрацией длины волны света и передачей на разных длинах волн. С их помощью определяют наличие и количественное соотношение различных составляющих в жидкостных смесях, появление цветного дыма в замкнутых объемах, цветные составляющие в стеклах и смолах, а также измеряют температуру, при которой изменяется цвет некоторых сред, например кристаллов.
Датчики для измерения интенсивности света или оптической мощности могут быть использованы для распознавания положения детали или компонента радиоэлектронной аппаратуры на конвейере или захвате. На недостаточную освещенность детектора или неправильную освещенность одной или двух щелей датчик реагирует и сигнализирует о необходимости коррекции положения детали. Подобные приборы широко используют в робототизированных линиях сборки. Поскольку они реагируют на относительное изменение освещенности, точность их показаний не зависит от изменения интенсивности света, генерируемого его источником.
Во внутренних датчиках активным элементом является само оптическое волокно, изменяющее свои передающие характеристики. Оптическая линия (или её участок) одновременно являются датчиками. Измеряемый параметр тем или иным образом воздействует на характеристики волокна, а, следовательно, и на характеристики передающего по нему светового луча. При этом могут изменяться групповая или фазовая скорость распространения, оптическая мощность, поглощаемая в оптоволоконной линии.
Принцип действия датчиков, фиксирующих изменение угла поляризации света после его прохождения по оптоволоконной линии, основан на явлении вращения плоскости поляризации вследствие модификации оптической индикатрисы оптического волокна при воздействии электромагнитного поля. С этой целью используется магнитооптический эффект Фарадея, возникающий во многих стекловидных материалах.
Для роботов, автоматических линий сборки требуется весьма чувствительный датчик касания, который должен быть простым, дешевым, малогабаритным, обладать малым кодом, стабильностью характеристики во времени и устойчивостью к электромагнитным полям. В одном из таких датчиков луч света от источника, пройдя через расщепитель, оптоволоконный котел и поляризатор поступает на датчик, измеряющий при минимальном нажатии (касании) спектральный состав света. С датчика при помощи зеркала свет, имеющий измеренный спектральный состав, возвращается по оптоволоконному кабелю и расщепителю на фильтр, с него – на чувствительный элемент и приемник выходного сигнала. Оптическая чувствительность прибора зависит от давления и материала. При измерении температуры в качестве дискретного оптического датчика может быть использован измерительный элемент на полупроводниковом приборе, представляющем собой тонкую полупроводниковую пластинку, заключенную между отрезками стекловолокна, по которым передается световой сигнал. Весь датчик заключен в трубку из нержавеющей стали. Свет подводится к датчику и отводится от него по многомодовому оптическому волокну. Диапазон значений длины волны, в котором осуществляется передача энергии полупроводниковой пластинкой, линейно растет. Датчик рассчитан на измерение температур от 243 до 573 К.
Библиографический список
- Прикладная оптика: Учеб. пособие / Л.Г.Бобчук, Ю.В.Богачев, Н.П.Заказнов и др.; Под общ. ред. Н.П.Заказнова. М.: Машиностроение, 1988. -312 c.
- Системы технического зрения (принципиальные основы, аппаратное и математическое обеспечение) / А.Н.Писаревский, А.Ф.Чернявский, Г.А.Афанасьев и др.; Под общ. ред. А.Н.Писаревского, А.Ф.Чернявского. Л.: Машиностроение. Ленингр. отд-ние, 1988. 424 с.
Знания о наличии деталей в машинах, работе осветительной арматуры, наличии деталей на – один из важнейших компонентов промышленной автоматизации. Последовательность ошибок при сборке деталей и управлении процессами часто необходимо для выявления причины отказа. Во многих случаях ошибка происходит из-за отсутствия детали, необходимой для сборки, или ее плохого качества. Для избегания этого устанавливается датчик, который выполняет функцию проверки наличия необходимых деталей.
Существует огромное количество различных типов датчиков – индуктивные, магнитные, фотоэлектрические. Каждый из них имеет свои сильные и слабые стороны в зависимости от области применения. Тем не менее, фотоэлектрические датчики имеют наиболее широкое предложение различных технологий и типов, а также самый широкий спектр применения.
Фотоэлектрические датчики бывают с различными типами светового излучения (инфракрасного, видимого красного, класс лазера 1 и 2), чувствительных технологий (диффузных, подавление фона, светоотражающих, однолучевой) и с различными конфигурациями корпуса (фото глаз (photo eye) или волоконно-оптические). В данной статье рассматриваются определение и применение волоконно-оптических датчиков (или как их еще называют оптоволоконные датчики), которые предлагают расширенные возможности и параметры конфигурации, и прекрасно подходят для узких мест, которые слишком малы для датчика фото глаз (photo eye).
Оптоволоконная технология
Оптоволоконные датчики включают в себя два устройства, которые обычно указываются отдельно: усилитель, который часто называют электронным или волоконно-фотоэлектрическим усилителем; и оптоволоконный кабель, который включает в себя оптическую головку и волоконно-оптический кабель, пропускающий свет от усилителя.
Принцип работы всех фотоэлектрических датчиков довольно прост. Каждый прибор имеет излучатель световых волн и приемник, который обнаруживает этот сигнал. При этом существует множество технологий для обнаружения и измерения световых волн, поступающих на приемник. Например, датчики подавления фона отслеживают угол, под которым возвращается световая волна, в то время как стандартные фотоизмерители отслеживают количество света, возвращаемого к датчику. Другие разновидности фотоизмерительных устройств контролируют время возврата световой волны, тем самым обеспечивая измерение расстояния.
Пара источник-приемник может устанавливаться как в одной оптической головке (при использовании диффузных и отражательных единиц), так и в двух оптических головках (использование однолучевых единиц). Волоконно-оптические датчики помещают в один корпус всю электронику с оптическими головками для излучателя и приемника световых волн, в котором приемник отделен от подключенной к корпусу электроники оптоволоконным кабелем. Излучаемые и получаемые волны проходят через этот кабель так же, как и при высокоскоростной передачи данных в волоконно-оптических сетях.
Одним из преимуществ такого разделения является то, что головка измерителя должна устанавливаться на измеряемом объекте. Интегрированный волоконно-оптический кабель прокладывается и подключается к усилителю, который может быть установлен в безопасном месте (как правило, шкаф управления), защищая его от часто жесткой производственной среды.
Разнообразие вариантов, доступных для обоих усилителей и волоконно-оптических кабелей просто огромен. Усилители варьируются от примитивных до сложных, а машиностроители продолжают требовать больше функций, в том числе логических и коммуникационных возможностей.
Усилители для оптоволоконных датчиков
Волоконно-оптические усилители варьируются от имеющих базовую комплектацию электронных компонентов и функциональности, до устройств типа «подключи и работай», для моделей с полностью настраиваемой электроникой. У некоторых даже есть электронные блоки, которые могут обрабатывать до 15 входов волокон в конфигурации коллекторного типа. Индикация выхода крайне желательна, поскольку он показывает, работает ли датчик корректно, но другие основные функции (таблица ниже) также должны быть указаны:
Формат вывода и подключения к усилителям имеют важное значение, поскольку они определяют интерфейс к контроллеру, так как установка и сброс настроек является неотъемлемой частью конфигурации усилителя.
Типы выходов могут быть либо нормально открытыми (NO), либо нормально закрытыми (NC), а подключение может осуществляться по типу sinking, sourcing или push-pull. Параметры электрического соединения предварительно монтируются, как правило, с кабелем длиной 2 метра или quick disconnect со стандартным многоконтактным разъемом M8 или M12. Установки переключателей программируются с помощью потенциометра или в цифровом виде, с помощью кнопок.
Помимо основных, расширенные возможности усилителей обеспечивают существенную гибкость с такими функциями как: импульсные выходы, задержки включения / отключения, а также возможность исключить прерывистые сигналы. Эти передовые элементы современной электроники дают машиностроителям возможность детализировать и корректировать параметры усилителя в соответствии с требованиями установки.
Большинство моделей снабжены светодиодами выходного состояния, в то время как некоторые предлагают дисплеи, на которых представлены сведения о силе сигнала и состояния выхода. Более продвинутые блоки имеют многострочные OLED дисплеи с настраиваемыми функциями диагностики и возможностью программирования.
Фильтрация сигнала часто требует увеличения частоты дискретизации, так как это обеспечивает более устойчивое измерение при изменяющихся условиях окружающей среды. Это усиливает сигнал, но заставляет блок работать на более низких частотах коммутации. Импульсные выходы позволяют растягивать входной сигнал, что может быть полезно в случае слишком большой частоты для входа программируемого логического контроллера ПЛК. Задержки включения/отключения позволяют потребителям устанавливать необходимые времена задержки выходных и входных сигналов.
Дополнительные блоки обеспечивают больше возможностей программирования, например, настройка чувствительности. С помощью данных опций пользователи могут подгонять чувствительность измерительного элемента для работы со сложными материалами, такими как стекло. Данная функция обучения устраняет или уменьшает необходимость в программировании контроллера для выполнения данных функций. Они также могут запрограммировать выход для включения/отключения между двух точек переключения. Например, для позиционирования деталей, переключатель включается в одном положении и отключается в другом, отслеживая при этом положение детали в пространстве.
Видимость света оптоволоконного кабеля
Волоконно-оптические кабели не проводят электрический ток — они пропускают свет. Они изготавливаются с различными конфигурациями и из различного материала, а также имеют различные типы чувствительной головки. В таблице ниже приведены некоторые из основных параметров оптоволоконных кабелей:
Диффузные волоконно-оптические кабели состоят из двух шпон – одна для соединения с усилителем, а вторая с чувствительной головкой. При чем с чувствительной головкой соединяют два кабеля – тот который подключается к источнику света, и тот который подключается к измерительному элементу. Однолучевые волоконно-оптические кабели имеют два отдельных идентичных кабеля, которые подключаются к усилителю и каждый имеет свою оптическую головку. Один кабель передает свет – другой его принимает. Частая ошибка при работе с однолучевыми кабелями – это заказ только одного кабеля из двух. Это связано с тем, что некоторые поставщики могут поставлять только одну часть системы по номеру детали, поэтому при выборе однолучевых кабелей будьте внимательны.
Волоконные материалы, как правило, состоят из пластика или стекла. Пластиковые блоки тоньше, дешевле, обеспечивают большие радиусы изгиба. Стеклянные блоки более прочные и имеют более высокие рабочие температуры. Пластиковые волокна можно отрезать до нужной длины с помощью специального резака, в то время как стеклянные обрезаются только раз – при изготовлении и поставляются нужной длины. Оболочка волоконного материала может варьироваться от экструдированного пластика до оплетки из нержавеющей стали, для работы в самых неблагоприятных условиях.
Выбор оптической головки – самый важный этап в выборе оптоволоконного датчика. Это связано с тем, что именно чувствительность головки влияет на обнаружение небольших неподвижных или подвижных частей. Выбор головки зависит от того, под каким углом излучатель и приемник расположены к измеряемому объекту, а также от дисперсии. Головки могут иметь округлые пучки волокна для создания кругового луча или протяженные, для создания горизонтальных проекций.
Круглые пучки в диффузионной головке могут быть строго разветвлены со всеми волокнами источника на одной половине, и с волокнами приемника на другой половине. Такая конструкция встречается часто, но она может приводить к запаздыванию считывания информации с части, движущейся перпендикулярно к бифуркационной линии. Существует вариант с равномерным распределением волокон источника и приемника сигнала для получения более равномерных лучей. Равномерное распределение позволяет выравнивать воздействия при отправке и получении световых волн, что обеспечивает обнаружение независимо от направления движения.
На расстояние срабатывания волоконной оптики будет оказывать влияние усилитель, тип оптической головки, длина волокна кабеля. Исходя из этих трех параметров, влияющих на работу датчика, точную оценку точности и диапазона срабатывания дать трудно, но производители, как правило, приводят эти данные. Однолучевой датчик имеет больший диапазон, чем диффузный. Чем длиннее волокна кабеля, тем короче диапазон, а также стоит отметить, усовершенствованные усилители обычно имеют более сильные излучающие сигналы и более длинные диапазоны.
Подключение волоконно-оптических датчиков
Использование распределенного ввода / вывода и распределенных интеллектуальных систем растет во всей промышленной автоматизации, и волоконно-оптические датчики не являются исключением. Подключение нескольких волоконно-оптических кабелей датчиков к одному электронному коллектору имеет свои преимущества.
Волоконно-оптические усилители, как правило, одноканальные автономные устройства. С тонкими корпусами и креплением на DIN-рейку, они легко могут быть вмонтированы в панели управления. Один из недостатков может касаться маршрутизации электрических соединений для каждого отдельного усилителя.
Другой вариант заключается в использовании волоконно-оптический коллектора, который группирует множественные каналы волокна в одном центре управления:
Эти волоконно-оптические коллекторы обычно оснащены дисплеем OLED с меню, чтобы позволить программирование каждого канала волокна. Каждый оптоволоконный канал может быть сконфигурирован отдельно, например, установка на свет или затемнение, или гистерезис переключения. Этот централизованный контроль также позволяет группировку выходов через И / ИЛИ логику, которая может сократить и упростить выходной сигнал в ПЛК.
Применения и основные вопросы
Волоконная оптика работает довольно хорошо и обычно используется в системах со значительными электрическими шумами. Волокно кабеля не восприимчиво к электрическому шуму, а усилитель (восприимчив к шумам) может устанавливаться вдали от источника шума (например, в шкафу управления).
Другой, весьма распространённой область применения, являются небольшие сборочные линии. Операции на этих линиях, как правило, полностью автоматизированные и требуют наличия датчиков обнаружения детали на конвейере или в сборочном механизме, чтобы подтвердить сборочную операцию.
Оптоволоконные решения могут быть различными – размеры оптических головок, иметь различную ориентацию и дисперсию для обеспечения минимальных и максимально точных фокусов света для каждого приложения независимо от размера корпуса. С помощью логики на плате управления и использовании двухканального датчика один канал может использоваться для определения наличия детали в месте сборки, а второй канал может использоваться для подтверждения окончания операции сборки.
Общей проблемой всех видов оптоволоконных систем является чрезмерное сгибание волокон. Кабели и пучки отдельных волокон довольно податливы, чем позволяют монтажнику легко согнуть их больше, чем это допускает максимальный радиус изгиба. Это может привести к непоправимой пластической деформации волокон, что значительно снизит пропускание световых волн, или вовсе приведет к разрыву волокна и невозможности пропускать сигнал. Максимальный радиус изгиба варьируется в зависимости от типа волоконного материала, размеров, дисперсии волокон в пучке, и он должен выполнятся при любых условиях.
Вне зависимости от применения, потребители должны выбрать подходящую технологию датчиков. Волоконно-оптические датчики, усилители и волоконно-оптические головки должны быть тщательно отобраны для приложения, чтобы обеспечить надежную производительность измерения.