По температуре подземные воды бывают. Виды воды в подземной гидросфере. Забор подземных вод

Запасы подземных вод

количество, объём (масса) подземных вод, содержащихся в водоносном горизонте. Различают статические (естественные, ёмкостные, вековые) З. п. в., которые характеризуют общее количество воды в водоносном пласте и выражаются в объёмных единицах, и упругие З. п. в., под которыми понимается количество воды, высвобождающееся при вскрытии водоносного пласта и снижении пластового давления в нём (при откачке или самоизливе) за счёт объёмного расширения воды и уменьшения пористости самого пласта.

В практике гидрогеологических исследований для целей водоснабжения обычно производят оценку естественных и эксплуатационных ресурсов подземных вод. Под естественными ресурсами (динамическими запасами) понимается (по Б. И. Куделину) обеспеченный питанием расход подземного потока. Естественные ресурсы подземных вод непрерывно возобновляются в процессе влагооборота на Земле и в среднемноголетнем разрезе эквивалентны подземному стоку. Они характеризуют естественную производительность водоносных горизонтов. Эксплуатационные ресурсы соответствуют количеству воды, которое может добываться в единицу времени из водоносного пласта рациональным в технико-экономическом отношении водозабором, без прогрессирующего снижения производительности и динамических уровней и ухудшения качества воды в течение всего периода эксплуатации. При оценке эксплуатационных ресурсов учитывается возможность использования статических и упругих запасов, притока вод со стороны и др. факторы.

В СССР проводится определение эксплуатационных ресурсов подземных вод для конкретных потребителей (города, завода и пр.) и оценка естественных и эксплуатационных ресурсов подземных вод крупных территорий и страны в целом (региональная оценка).

З. п. в. оцениваются по категориям А, В, C 1 и С 2 , утверждаемым Государственной Комиссией по запасам полезных ископаемых (ГКЗ). К категории А принадлежат З. п. в., разведанные и изученные с детальностью, обеспечивающей полное выяснение геологического строения, условий залегания и питания водоносных горизонтов, напоров, фильтрационных свойств, связи используемых вод с водами др. водоносных горизонтов и поверхностными водами, а также возможность восполнения эксплуатационных запасов. Категория В включает запасы, разведанные и изученные с детальностью, обеспечивающей выяснение лишь основных особенностей залегания, строения и питания водоносных горизонтов. При определении З. п. в. категории C 1 выясняются только общие черты строения, условий залегания и распространения водоносного горизонта. Запасы категории 02 устанавливаются на основании общих геолого-гидрогеологических данных, подтвержденных опробованием водоносных горизонтов в отдельных точках, либо по аналогии с изученными или разведанными участками.

Лит.: Биндеман Н. Н., Оценка эксплуатационных запасов подземных вод, М., 1963; Бочевер Ф. М., Теория и практические методы гидрогеологических расчетов эксплуатационных запасов подземных вод, М., 1968; Карта модулей прогнозных эксплуатационных ресурсов пресных и солоноватых подземных вод СССР масштаба 1: 5 000 000, М., 1964; Карта подземного стока СССР масштаба 1: 5 000 000, М., 1964; Куделин Б. И., Принципы региональной оценки естественных ресурсов подземных вод, М., 1960; Справочное руководство гидрогеолога, под ред. В. М. Максимова, 2 изд., т. 1, Л., 1967.

И. С. Зекцер.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Запасы подземных вод" в других словарях:

    Количество гравитационной воды, которое находится в порах, пустотах и трещинах водоносных г. п. Различают: З. п. в. геол., вековые, общие, статические, динамические, эксплуатационные, возобновляемые, невозобновляемые, упругие, регулировочные,… … Геологическая энциклопедия

    запасы подземных вод - Общий объем воды в месторождении подземных вод … Словарь по географии

    ЗАПАСЫ ПОДЗЕМНЫХ ВОД - См. Ресурсы подземных вод … Словарь по гидрогеологии и инженерной геологии

    Равны естественному расходу потока подземных вод; их определяют по формулам расхода подземного потока или косвенно по величине питания подземных вод. Син.: запасы подземных вод возобновляемые. Геологический словарь: в 2 х томах. М.: Недра. Под… … Геологическая энциклопедия

    Объем подземных вод, участвующих в подземном стоке и заполняющих поровое пространство зоны насыщения литосферы; включают все формы подземных вод, кроме прочно связанной. Различаются запасы динамические, статические, упругие. Геологический словарь … Геологическая энциклопедия

    Суммарные статические и динамические запасы подземных вод. См. Ресурсы подземных вод естественные. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

    Запасы напорных вод, высвобождающихся при вскрытии водоносного пласта и снижении пластового давления в нем при откачке (или самоизливе) за счет объемного расширения воды и уменьшения порового пространства самого пласта, в связи с уменьшением… … Геологическая энциклопедия

В гидрогеологической практике оценочных работ количества подземных вод выделяют естественные запасы подземных вод, естественные ресурсы подземных вод и эксплуатационные запасы месторождений подземных вод.
Существуют месторождения подземных вод, содержащих большое количество воды, но питание ничтожное. При отборе воды такое месторождение быстро истощится. С другой стороны существуют месторождения подземных вод, содержащих небольшое количество воды, но обладающих обильным питанием. Отбор воды из такого месторождения будет существенно больше, чем из месторождения первого типа. Поэтому для учета таких особенностей месторождений подземных вод вводят понятия – естественные ресурсы месторождений подземных вод, естественные запасы месторождений подземных вод.
Естественными ресурсами месторождения подземных вод является объем воды, фильтрующийся в водоносный пласт за счет различных источников: инфильтрации, перетекания вод из смежных водоносных горизонтов (залегающих выше и ниже эксплуатируемого), поступления воды из рек и озер. Естественные ресурсы месторождений подземных вод измеряются в величине объем деленный на время поступления в водоносный горизонт. Наиболее часто употребляется величина м3/сут. Естественные ресурсы месторождений подземных вод рассчитываются расходу воды в реки и озера, перетеканию в смежные водоносные горизонты, испарению. Величина естественных ресурсов изменяется в течение года. Обычно весной и осенью величина выше, чем летом и зимой. Замечено, что при эксплуатации подземных вод, часто происходит улучшение их питания.
Естественные запасы месторождений и горизонтов подземных вод – это объем подземных вод, который находится в данном месторождении ПВ или водоносном горизонте, заполняет поры и трещины, зависит не от баланса и поступления воды, а от емкостных свойств этого водоносного горизонта или месторождения. Единицы измерения естественных запасов – объемные. Обычно используются м3 или тыс. м3, в зависимости от размеров месторождения и водоносных горизонтов. При напорном режиме фильтрации необходимо учитывать упругие естественные запасы месторождений подземных вод, дополнительное количество воды, появляющееся при вскрытии водоносного горизонта, за счет уменьшения внутрипластового давления в результате расширения объема воды и снижения порового пространства самого водоносного горизонта.
Естественные запасы при отборе подземных вод из месторождений ПВ уменьшаются. В безнапорных водоносных горизонтах на водозаборах всегда происходит понижения уровня воды и как следствие уменьшение емкости водоносного горизонта. В напорных условиях происходит понижение уровня напорных вод, как следствие этого, потеря упругих запасов подземных вод в результате снижения давления внутри пласта.

Эксплуатационные запасы подземных вод

Основным критерием максимально возможной добычи подземных вод эксплуатационные запасы. Сущностью эксплуатационных запасов месторождений подземных вод является объем воды в единицу времени, который может быть добыт из водоносного горизонта водозаборными сооружениями (скважинами, каптажами, колодцами) при определенном режиме эксплуатации водоносного горизонта и качестве воды, согласно проектным требованиям. Эксплуатационные запасы пресных вод оцениваются только для участка водозаборов. Единицей измерения эксплуатационных запасов подземных вод являются объемные величины. Обычно используются м3.
Существуют аналитические методы подсчета эксплуатационных запасов месторождений подземных вод и численное моделирование условий и определения запасов подземных вод. Основным аналитическим методом оценки эксплуатационных ресурсов является гидродинамический метод. Метод основан на аналитических зависимостях и схематизации гидрогеологических условий. Несколько водозаборных сооружений – каптажей, скважин, аппроксимируются, как один источник водопонижения – «большой колодец». Максимально допустимое снижение уровней подземных вод рассчитывается для центра «большого колодца». Гидрогеологические условия схематизируются, выделяются граничные условия, составляется предварительный проект расположения водозаборных скважин. Данный метод преимущественно используется для простых гидрогеологических условий и используется совместно с другими методами оценки.
Гидравлический метод оценки основан на опытно-фильтрационных исследованиях водоносного горизонта. Данный метод обычно применяют для месторождений со сложными условиями. Определение характеристик с помощью этого метода требует значительных денежных вложений.
Суть балансового метода заключается в определении расхода подземных вод на проектируемом водозаборе. Баланс учитывает статьи притока воды и расхода. Балансовым методом удобно оценивать роль каждого отдельного элемента общего баланса. Минусом метода является невозможность определения производительность скважины. Балансовый метод дает среднепрогнозную величину снижения уровней подземных вод.
Численные методы моделирования используются в настоящее время как основной инструмент определения эксплуатационных запасов месторождения ПВ. С помощью численных программных комплексов, основанных на уравнении неразрывности потока, строится схематичная модель месторождения с учетом геологических и гидрогеологических условий на основании ранее проведенных и опытных опробований. Численные комплексы считают перетоки воды между элементарными ячейками и схематическими слоями, которыми разбит весь изучаемый массив. В модель вводятся данные характеризующие фильтрационные характеристики, указываются граничные условия. Строится модель стационарного жесткого режима фильтрации, в модели отображаются существующие природные условия. После этого в модель вводятся данные характеризующие емкостные свойства водоносного горизонта. Модель становится стационарной упругого режима фильтрации. После этого в модели фильтрации указывают скважину или предполагаемый водоотбор из заданного водоносного горизонта. Модель рассчитывает положение уровней и структуру потока при нарушенной, нестационарной фильтрации с учетом емкости водоносного горизонта. При варьировании дебита скважины можно подобрать оптимальное сочетание расходов скважины и понижения уровня подземных вод.

Различные методы оценки лучше всего применять комбинированно. Делать оценку численными методами, делать проверку или калибровку модели, аналитическими.
На основе расчетов проектируются водозаборные сооружения, которые будут снабжать водой поселки, города, предприятия. Поэтому задача оценки и определения ресурсов и запасов месторождений подземных вод является очень ответственной.

- Химический состав подземных вод. - Минеральные воды. - Происхождение подземных вод. Образование подземных вод. - Добыча подземных вод. Лицензия на подземные воды.

Подземные воды – запасы подземных вод, ресурсы подземных вод.

Подземные воды являются частью гидросферы планеты (2 % от объема) и участвуют в общем круговороте воды в природе. Запасы подземных вод еще до конца не разведаны. Сейчас в официальных данных фигурирует цифра в 60 млн кубических километров, но гидрогеологи уверены в том, что в недрах Земли находятся колоссальные неразведанные месторождения подземных вод и общее количество воды в них может исчисляться сотнями миллионами кубометров.

Подземные воды встречаются в буровых скважинах на глубине до нескольких километров. В зависимости от условий, в которых залегают подземные воды (таких как температура, давление, виды горных пород и т.п.), они могут быть в твердом, жидком и газообразном состоянии. По данным В.И. Вернадского, подземные воды могут существовать до глубины 60 км в связи с тем, что молекулы воды даже при температуре 2000 о С диссоциированы всего на 2%.

  • О запасах подземной воды читайте: Океаны воды под землей. Сколько же воды на Земле?

При оценке подземных вод, кроме понятия «запасы подземных вод» используется термин «ресурсы подземных вод», характеризующий питание водоносного горизонта.

Классификация запасов и ресурсов подземных вод:

1. Естественные запасы – объем гравитационной воды, заключенной в порах и трещинах водовмещающих пород. Естественные ресурсы – количество подземных вод, поступающих в водоносный горизонт в естественных условиях путем инфильтрации атмосферных осадков, фильтрации из рек , перетекания из выше- и нижерасположенных водоносных горизонтов.

2. Искусственные запасы - это объем подземных вод в пласте, сформировавшийся в результате орошения, фильтрации из водохранилищ, искусственного пополнения подземных вод. Искусственные ресурсы – это расход воды, поступающей в водоносный горизонт при фильтрации из каналов и водохранилищ, на орошаемых площадях.

3. Привлекаемые ресурсы – это расход воды, поступающей в водоносный пласт при усилении питания подземных вод, вызванном эксплуатацией водозаборных сооружений.

4. Понятия эксплуатационные запасы и эксплуатационные ресурсы являются, в сущности, синонимами. Под ними понимается то количество подземных вод, которое может быть получено рациональными в технико-экономическом отношении водозаборными сооружениями при заданном режиме эксплуатации и при качестве воды, удовлетворяющем требованиям в течение всего расчетного срока водопотребления.

По степени общей минерализации выделяют воды (по В.И. Вернадскому):

  • пресные (до 1 г/л),
  • соло­новатые (1 -10 г/л),
  • соленые (10-50 г/л),
  • рассолы (более 50 г/л) - в ряде классификаций принято значение 36 г/л, соответствующее средней солёности вод Мирового океана.

В бассейнах Восточно-Европейской платформы мощность зоны пресных подземных вод варьирует от 25 до 350 м, солёных вод - от 50 до 600 м, рассолов - от 400 до 3000 м.

Приведенная классификация указывает на значительные изменения в минерализации воды – от десятков миллиграммов до сотен граммов на 1 литр воды. Максимальная величина минерализации, достигающая 500 – 600 г/л, встречена в последнее время в Иркутском бассейне.

Более подробно о химическом составе подземных вод, химических свойствах подземных вод, классификации по химическому составу, факторах, влияющих на химический состав подземных вод, и других аспектах читайте в отдельной статье: Химический состав подземных вод.

Подземные воды - происхождение и образование подземных вод.

В зависимости от происхождения подземные воды бывают:

  • 1) инфильтрационные,
  • 2) конденсационные,
  • 3) седиментогенные,
  • 4) «ювенильные» (или магмогенные),
  • 5) искусственные,
  • 6) метаморфогенные.

Подземные воды - температура подземных вод.

По температуре подземные воды подразделяются на холодные (до +20 °С) и термальные (от +20 до +1000 °С). Термальные воды обычно отличаются высоким содержанием различных солей, кислот, металлов, радиоактивных и редкоземельных элементов.

По температуре подземные воды бывают:

Холодные подземные воды подразделяются на:

  • переохлажденные (ниже 0°С),
  • хо­лодные (от 0 до 20 °С)

Термальные подземные воды подразделяются на:

  • теплые (20 – 37 °С),
  • горячие (37 – 50 °С),
  • очень горячие (50 – 100 °С),
  • перегретые (свыше 100 °С).

Температура подземных вод зависит также и от глубины залегания водоносных пластов:

1. Грунтовые воды и неглубоко залегающие межпластовые воды испытывают сезонные колебания температуры.
2. Подземные воды, залегающие на уровне пояса постоянных температур , сохраняют неизменную температуру в течение всего года, равную среднегодовой температуре местности.

  • Там, где средние годовые температуры отрицательные , подземные воды в поясе постоянных температур круглый год находится в виде льда. Так образуется многолетняя мерзлота («вечная мерзлота»).
  • В районах, где среднегодовая температура положительная , подземные воды пояса постоянных температур, наоборот, не замерзают даже зимой.

3. Подземные воды, циркулирующие ниже пояса постоянной температуры , нагреты выше среднегодовой температуры местности и за счёт эндогенного тепла. Температура вод в данном случае определяется величиной геотермического градиента и достигает максимальных значений в областях современного вулканизма (Камчатка, Исландия и др.), в зонах срединно-океанических хребтов, достигая температур 300-4000С. Высокотермальные подземные воды в районах современного вулканизма (Исландия, Камчат­ка) используются для отопления жилищ, стро­ительства геотермальных электростанций, теп­личного теплоснабжения и т. д.

Подземные воды - методы поиска подземных вод.

  • геоморфологическая оценка местности,
  • геотермические исследования,
  • радонометрия,
  • бурение разведочных скважин,
  • изучение керна, извлечённого из скважин, в лабораторных условиях,
  • опытные откачки из скважин,
  • наземная разведочная геофизика (сейсморазведка и электроразведка) и каротаж скважин

Подземные воды – добыча подземных вод.

Важной особенностью подземных вод как полезного ископаемого является непрерывный характер водопотребления, что вызывает необходимость постоянного отбора воды из недр в заданном количестве.

При определении целесообразности и рациональности добычи подземных вод учитываются следующие факторы:

  • Общие запасы подземных вод,
  • Ежегодное поступление воды в водоносные горизонты,
  • Фильтрационные свойства водовмещающих пород,
  • Глубина залегания уровня,
  • Технические условия эксплуатации.

Таким образом, даже при условии больших запасов подземной воды и значительном ежегодном ее поступлении в водоносные горизонты, добыча подземных вод не всегда является рациональной с экономической точки зрения.

Например, нерациональным будет добыча подземных вод в следующих случаях:

  • очень маленькие дебиты скважин;
  • сложность эксплуатации в техническом отношении (пескование, солеотложение в скважинах и др.);
  • отсутствие необходимого насосного оборудования (например, при эксплуатации агрессивных промышленных или термальных вод).

Высокотермальные подземные воды в районах современного вулканизма (Исландия, Камчат­ка) используются для отопления жилищ, стро­ительства геотермальных электростанций, теп­личного теплоснабжения и т. д.

В этой статье мы рассмотрели тему Подземные воды: общая характеристика. Далее читайте: История изучения подземных вод.

Водную оболочку Земли — гидросферу — формируют подземные воды, атмосферная влага, ледники и поверхностные водоемы, в том числе океаны, моря, озера, реки, болота. Все воды гидросферы взаимосвязаны между собой и находятся в беспрерывном круговороте.

Основной состав гидросферы — соленые воды. На пресную воду приходится менее 3% всего объема. Цифры условны, так как в расчетах учтены только разведанные запасы. Между тем, по предположениям гидрогеологов, в глубинных слоях Земли находятся колоссальные хранилища подземных вод, месторождения которых еще предстоит открыть.

Подземные воды как часть водных ресурсов планеты

Подземные воды — воды, содержащиеся в водовмещающих осадочных породах, слагающих верхний слой земной коры. В зависимости от окружающих условий, таких как температура, давление, виды горных пород, воды находятся в твердом, жидком или парообразном состоянии. Классификация подземных вод прямым образом зависит от грунтов, слагающих земную кору, их влагоемкости и глубины залегания. Слои водонасыщенных пород носят название «водоносные горизонты».

Водоносные горизонты с пресной водой считаются одним из важнейших стратегических ресурсов.

Характеристики и свойства подземных вод

Различают безнапорные водоносные горизонты, ограниченные пластом водонепроницаемых пород снизу и называемые грунтовыми водами, и напорные, расположенные между двумя водоупорными пластами. Классификация подземных вод по типу водонасыщенных грунтов:

  • поровые, залегающие в песках;
  • трещинные, наполняющие пустоты твердых скальных пород;
  • карстовые, находящиеся в известняках, гипсах и подобных им водорастворимых породах.

Вода, универсальный растворитель, активно поглощает вещества, входящие в состав пород, и насыщается солями и минералами. В зависимости от концентрации растворенных в воде веществ различают пресную, солоноватую, соленую воду и рассолы.

Виды воды в подземной гидросфере

Вода под землей находится в свободном или связанном состоянии. К свободным подземным водам относятся напорные и безнапорные воды, способные перемещаться под действием гравитационных сил. В числе связанных вод:

  • кристаллизационная вода, химически входящая в кристаллическую структуру минералов;
  • гигроскопическая и пленочная вода, физически связанная с поверхностью частичек минералов;
  • вода, находящаяся в твердом состоянии.

Запасы подземных вод

На подземные воды приходится около 2 % от объема всей гидросферы планеты. Под термином «запасы подземных вод» подразумевается:

  • Количество воды, содержащееся в водонасыщенном слое грунта — естественные запасы. Пополнение водоносных горизонтов происходит за счет рек, атмосферных осадков, перетока воды из других водонасыщенных пластов. При оценке запасов подземных вод учитывается среднегодовой объем подземного стока.
  • Объем воды, который может быть использован при вскрытии водоносного горизонта — упругие запасы.

Еще один термин — «ресурсы» — обозначает эксплуатационные запасы подземных вод или объем воды заданного качества, который возможно добыть из водоносного горизонта в единицу времени.

Загрязнение подземных вод

Эксперты классифицируют состав и вид загрязнения подземных вод следующим образом:

Химические загрязнения

Неочищенные жидкие стоки и твердые отходы предприятий индустрии и сельского хозяйства содержат различные органические и неорганические вещества, в том числе тяжелые металлы, нефтепродукты, токсичные ядохимикаты, почвенные удобрения, дорожные реагенты. Химические вещества проникают в водоносные горизонты через грунтовые воды и неправильно изолированные от смежных водонасыщенных пластов скважины. Химические загрязнения подземных вод отличаются широким распространением.

Биологические загрязнения

Неочищенные хозяйственно-бытовые стоки, неисправные канализационные магистрали и поля фильтрации, расположенные вблизи водозаборных скважин, могут стать источниками заражения водоносных горизонтов болезнетворными микроорганизмами. Чем выше фильтрационная способность грунтов, тем медленнее распространяется биологического загрязнение подземных вод.

Решение проблемы загрязнения подземных вод

Учитывая, что причины загрязнения подземных вод носят антропогенный характер, мероприятия по охране подземных водных ресурсов от загрязнения должны включать мониторинг бытовых и промышленных стоков, модернизацию систем очистки и утилизации сточных вод, ограничение сбросов стоков в поверхностные водоемы, создание водоохранных зон, усовершенствование технологий производства.

Санкт- Петербургский государственный университет

Факультет географии и геоэкологии

Ресурсы подземных вод

Студентки II курса

Кафедры геоэкологии и

природопользования

Губогло Н.В.

Санкт- Петербург

Подземные воды.

Подземные воды – ценный природный ресурс, который используют в различных областях человеческой деятельности. Загрязнение поверхностных вод стало причиной увеличения интереса к возможности использования подземных месторождений вод, к которым относится скопление воды определенного качества, которое можно извлекать для водоснабжения различных объектов в нужном количестве и в течение заданного срока эксплуатации.

Выделяют воды используемые для:

    Воды питьевого и хозяйственного водоснабжения

Распределение ресурсов пресных подземных вод в недрах земли подчиняется широтной зональности. Особенно эффективным фактором является климат. В районах с гумидным климатом пресных вод чаще всего бывает достаточно для хозяйственно- питьевого водоснабжения или наблюдается их избыток, в то время как в аридных или полуаридных областях пресных подземных вод не хватает.

Большое значение в распространении пресных подземных вод имеет геологическое строение территории. Наибольшими их запасами обладают предгорные и межгорные впадины, в особенности аллювиальные отложения в их пределах, а также конусы выноса и предгорные шлейфы, сложенные преимущественно песчано-галечным материалом, где модули стока достигают нескольких десятков литров в секунду с 1 квадратного километра. Весьма значительны ресурсы пресных подземных вод в артезианских бассейнах платформенного типа, находящихся в гумидной зоне.

    Минеральные подземные воды

В настоящее время минеральными лечебными водами принято считать только те воды, использование которых возможно в бальнеологических или питьевых целях. Современная медицина насчитывает несколько десятков типов лечебных минеральных вод, каждый из которых может формироваться только в определенных гидрогеологических условиях и определенной физико-химической обстановке. При этом все лечебные воды подразделяются на две группы: питьевые (лечебные и лечебно- столовые) и бальнеологические (наружное применение: ванны, душ и т. д.).

    Промышленные подземные воды

Промышленные подземные воды - это воды, из которых можно извлекать промышленно ценные компоненты; такие воды можно назвать жидкими рудами. В настоящее время из подземных вод извлекают большую часть мировых запасов брома и йода. Кроме того, из подземных вод можно извлекать каменную соль, соду, бор, литий, цезий, рубидий, стронций, радий и ряд других компонентов.

    Гидротермальные ресурсы

Ресурсы подземных вод в Российской Федерации.

Прогнозированные ресурсы подземных вод составляют более 869 млн. м3/сут и в основном формируются в бассейнах Волги (116,46 млн. м3/сут) и Оби (282, 35 млн. м3/сут) - около 46% от общего количества по России. Свыше 77% (670 млн. м3/сут) сосредоточено в Северо-Западном, Уральском, Сибирском и Дальневосточном федеральных округах, при этом наибольшая часть (29%) - на территории Сибирского федерального округа.

На территории Российской Федерации разведано 4483 месторождения подземных вод, в эксплуатации находится 1990. Общее количество разведанных эксплуатационных запасов подземных вод, пригодных для хозяйственно-питьевого, производственно-технического водоснабжения, орошения земель и обводнения пастбищ составляет 89,4 млн. м3/сут, в том числе подготовленных для промышленного освоения (по категориям А+В+С1) - 80,4 млн. м3/сут. Общая добыча подземных вод составляет 28,15 млн. м3/сут, в том числе на участках с разведанными запасами - 15,32 млн. м3/сут, или 54,4%, на неутвержденных запасах подземных вод - 12,83 млн. м3/сут.

Наибольшим количеством разведанных месторождений и эксплуатационных запасов подземных вод располагает Центральный федеральный округ - 1119 (25%) и 26,12 млн. м3/сут (29%) соответственно. По федеральным округам (рис. 1.1) количество разведанных месторождений варьирует от 416 (Северо-Западный) до 749 млн. м3/сут (Сибирский федеральный округ), эксплуатационные запасы - от 4,5 (Северо-Западный) до 15,9 млн. м3/сут (Приволжский федеральный округ).

Наибольшим количеством разведанных запасов подземных вод располагают, млн. м3/сут: Московская область - 8,67; Краснодарский край - 4,39; Самарская область - 2,82; Нижегородская область - 2,67; Республика Башкортостан - 2,43; Алтайский край - 2,28; Иркутская область - 2,05; Оренбургская область - 1,98; Хабаровский край - 1,84; Владимирская область - 1,83; Ставропольский край - 1,81; Кемеровская область - 1,70; Воронежская область - 1,68; Новосибирская область - 1,66; Красноярский край - 1,65; Республика Северная Осетия - Алания - 1,62; Волгоградская область - 1,52. Суммарная величина запасов по этим 17 субъектам Российской Федерации составляет 42,60 млн. м3/сут, или 47,7% от общего по России.

Наибольшее количество запасов подземных вод разведано в бассейнах, млн. м3/сут: Волги - 33,03, Оби - 10,77, Дона - 7,68, Енисея - 5,13, Амура - 4,91 и Кубани - 3,32 (табл. 1.6). Суммарная величина разведанных эксплуатационных запасов по 7 этим речным бассейнам составляет 64,84 млн. м3/сут (72,5%).

Таблица 1. Прогнозные ресурсы и эксплуатационные запасы подземных вод Российской Федерации по речным бассейнам

При оценке обеспеченности населения ресурсами подземных вод по условиям их защищенности выделены:

    надежно защищенные (напорные водоносные горизонты, перекрытые выдержанны ми слабопроницаемыми отложениями, на участках, расположенных вне зон селитебной застройки и промышленных зон);

    защищенные (напорные горизонты на участках в пределах указанных выше зон и без напорные горизонты при мощности зоны аэрации более 8-10 м и наличии в ее составе слабопроницаемых прослоев мощностью не менее 3 м);

    практически незащищенные (безнапорные горизонты с небольшой мощностью зоны аэрации, а также водоносные горизонты, эксплуатируемые инфильтрационными водозаборами при непосредственной взаимосвязи поверхностных и подземных вод).

Наибольшее количество - около 40% - составляют защищенные месторождения. Практически не защищено около 37% месторождений, причем в ряде регионов (Мурманская, Ленинградская, Ивановская, Воронежская, Липецкая, Белгородская, Волгоградская, Самарская, Ростовская, Оренбургская, Свердловская области, республики Башкортостан, Бурятия, Хакасия, Приморский край) они преобладают. Однако даже на месторождениях, относящихся к этой категории, защищенность подземных вод, как правило, значительно выше, чем поверхностных, что существенно повышает их ценность, особенно в чрезвычайных ситуациях.

Большинство административных районов субъектов Российской Федерации относятся к обеспеченным и надежно обеспеченным подземными водами. Это означает, что все потребители (в том числе и крупные) могут быть обеспечены ресурсами подземных вод, формирующимися на территории района.

В то же время, в связи с неравномерностью распределения прогнозных ресурсов, отсутствием на отдельных площадях подземных вод кондиционного качества, в ряде субъектов выделяются недостаточно обеспеченные районы, где за счет местных ресурсов подземных вод не могут быть удовлетворены потребности рассредоточенных водопотребителей. Больше всего таких районов находится в республиках Калмыкия, Дагестан, Якутия и Удмуртской, в Ростовской, Астраханской, Волгоградской, Саратовской, Новосибирской, Омской, Тюменской, Ленинградской и Новгородской областях, Ставропольском крае и некоторых других субъектах Российской Федерации.

В ряде административных районов при полном удовлетворении рассредоточенных водопотребителей выделяются отдельные крупные водопотребители, не обеспеченные местными ресурсами подземных вод. К таким территориям относятся центральные и восточные районы Московской области, отдельные районы Владимирской, Ивановской, Тульской, Ярославской, Тамбовской, Новосибирской, Омской, Мурманской, Ульяновской, Челябинской, Свердловской, Иркутской, Курганской, Сахалинской областей, Ненецкого автономного округа, Ставропольского края, республик Карелия, Коми, Чувашской и некоторые другие.

С точки зрения использования подземных вод для питьевого водоснабжения на территории России выделяются три группы районов, отличающихся различным качеством вод:

    районы, в гидрогеологическом разрезе которых выделяются водоносные горизонты с пресными водами, качество которых по макро и микрокомпонентному составу в естественных условиях полностью отвечают требованиям, установленным для питьевых вод;

    районы, где содержание каких-либо микрокомпонентов в пресных подземных водах отдельных водоносных горизонтов превышает установленные предельно допустимые концентрации; на территории России выделено несколько гидрогеохимических провинций, подземные воды которых характеризуются повышенным содержанием таких нормируемых компонентов, как железо, фтор, стабильный стронций, селен, реже с повышенным содержанием марганца, мышьяка, бериллия; на отдельных участках отмечается повышение содержания бора, брома, кадмия, лития;

    районы практического отсутствия пресных подземных вод, где распространены подземные воды повышенной минерализации, либо районы, в которых при минерализации, не превышающей установленные требования, подземные воды характеризуются повышенным содержанием хлоридов, сульфатов, а также повышенной общей жесткостью.

Повышенное содержание в подземных водах железа, марганца либо повышенная минерализация и общая жесткость, а также пониженное содержание фтора в целом не являются препятствием к использованию таких вод, так как с применением хорошо разработанных методов водоподготовки качество воды может быть доведено до требуемой кондиции. В то же время для ряда микрокомпонентов подобная технология не разработана.

Россия обладает огромной ресурсной базой питьевых и технических подземных вод, в том числе значительной величиной разведанных запасов: ресурсный потенциал оценивается в 869 млн.м3/сут (316 км3/год), разведанные запасы - 89,9 млн.м3/сут, количество разведанных и включенных в государственный учет месторождений подземных вод - 4624.

Фактически введено в эксплуатацию (полностью или частично) - 2142 месторождений, добыча питьевых подземных вод на которых составляет 14,6 млн.м3/сут. Степень использования разведанных запасов в среднем составляет 16-18 %, а на введенных в эксплуатацию месторождениях - 30-32 %.

Вместе с тем, при низком уровне использования разведанных запасов подземных вод для хозяйственно-питьевого водоснабжения в значительных масштабах осуществляется добыча подземных вод водозаборами, созданными на участках, где не производились разведочные работы, не осуществлялся подсчет эксплуатационных запасов, их государственная экспертиза и постановка на госучет (баланс). В целом на территории Российской Федерации действует около 2300 групповых водозаборов с водоотбором более 1 тыс.м3/сут, из которых (совместно с отбором из одиночных скважин) суммарная добыча составляет 12,5 млн.м3/сут, что соизмеримо с водоотбором на участках с разведанными запасами.

Общая добыча подземных вод составляет 31,1 млн.м3/сут, из них 19,5 млн.м3/сут используется на хозяйственно-питьевое водоснабжение населения; 5,6 млн.м3/сут - на производственно-техническое водоснабжение; 0,55 млн.м3/сут - на орошение земель. Величина потерь и сброса вод без использования составляет 5,5 млн.м3/сут и, в основном, приходится на шахтный и карьерный водоотливы.

В пределах федеральных округов больше всего разведано запасов подземных вод (в млн.м3/сут): в Центральном - 26,57; Приволжском - 15,87; Южном - 15,39 и Сибирском - 14,93. В этих четырех округах сосредоточено 72,76 млн.м3/сут или 81 % от всех запасов Российской Федерации.

Наибольшее количество подземных вод добывается и извлекается в пределах Центрального федерального округа - 9,68 млн.м3/сут или 31 % от общей величины по Российской Федерации, от 14 до 18 % приходится на долю трех округов: Сибирского - 5,37 (17 %), Приволжского - 5,68 (18 %) и Южного - 4,39 (14 %). По остальным трем округам суммарная величина добычи и извлечения подземных вод составляет 6,02 м3/сут или 19 % от общего количества по России.

Основная часть подземных вод используется на хозяйственно-питьевое водоснабжение. Самое крупное потребление на хозяйственно-питьевые цели отмечается (млн.м3/сут) в Центральном - 6,83; Приволжском - 3,86; Южном - 2,98 и Сибирском - 2,95 федеральных округах. В этих четырех округах на хозяйственно-питьевое водоснабжение населения используется 16,62 млн.м3/сут или 85,2 %.

Больше всего расходуются подземные воды на производственно-техническое водоснабжение (млн.м3/сут) в Центральном - 2,04; Приволжском - 1,15 и Сибирском - 0,91 федеральных округах. Суммарный расход по этим трем округам равен 4,10 млн.м3/сут или 73,6 % от общей величины использования на эти нужды по Российской Федерации.

На орошение земель наибольшее количество подземных вод используется в Сибирском федеральном округе - 325,5 тыс.м3/сут.

Необходимо отметить, что не по всем месторождениям качество подземных вод отвечает современным требованиям государственных стандартов хотя бы по одному показателю. Так, признаки несоответствия качества подземных вод отмечены в 62 % разрабатываемых и 51 % не разрабатываемых месторождениях, а также в 50 % водозаборах, расположенных на участках с неоцененными запасами. При этом в 83-90 % такое несоответствие связано с природными условиями формирования качества подземных вод и примерно в 24 % - с техногенным их загрязнением. Поэтому на 445 водозаборах, сооруженных на месторождениях, и 15 водозаборах, расположенных на участках с неоцененными запасами, производится специальная водоподготовка.

Загрязнение подземных вод, в основном первого от поверхности водоносного горизонта, не являющегося в большинстве случаев источником централизованного водоснабжения, происходит на территории расположения накопителей отходов и сточных вод, нефтепромыслов, нефтебаз, складов горючесмазочных материалов на промплощадках, в районах крупных свалок твердых бытовых отходов. Участки с таким типом загрязнения выявлены в 25 субъектах Российской Федерации, где источниками загрязнения, в основном, являются предприятия химической, энергетической, нефтехимической, нефтедобывающей и машиностроительной отраслей промышленности.

На территории России выявлено около 1000 водозаборов подземных вод, включая рассредоточенные одиночные скважины, в которых отмечено постоянное или эпизодическое загрязнение подземных вод. При этом на 120 водозаборах производительность составляет более 1 тыс.м3/ сут. В большинстве водозаборов (80%) загрязнение подземных вод отмечается лишь в отдельных скважинах и по интенсивности (в основном 1-10 ПДК) относятся к незначительно загрязненным подземным водам.

По экспертным оценкам общая добыча загрязненных подземных вод не превышает 5- 8% от общего водоотбора.

Главным достоинством подземных вод для питьевого водоснабжения является существенно более высокая степень их защищенности от загрязнения по сравнению с поверхностными водами.