Как узнать высоту трапеции если известны основания. Все варианты того, как найти площадь трапеции
Площадь трапеции. Приветствую вас! В этой публикации мы рассмотрим указанную формулу. Почему она именно такая и как её понять. Если будет понимание, то и учить её вам нет необходимости. Если же вы просто хотите посмотреть эту формулу и при чём срочно, то сразу можете прокрутить страницу вниз))
Теперь подробно и по порядку.
Трапеция это четырёхугольник, две стороны этого четырёхугольника параллельны, две другие нет. Те, что не параллельны – это основания трапеции. Две другие называются боковыми сторонами.
Если боковые стороны равны, то трапеция называется равнобедренной. Если одна из боковых сторон перпендикулярна основаниям, то такая трапеция называется прямоугольной.
В классическом виде трапецию изображают следующим образом – большее основание находится внизу, соответственно меньшее вверху. Но никто не запрещает изображать её и наоборот. Вот эскизы:
Следующее важное понятие.
Средняя линия трапеции это отрезок, который соединяет середины боковых сторон. Средняя линия параллельна основаниям трапеции и равна их полусумме.
Теперь давайте вникнем глубже. Почему именно так?
Рассмотрим трапецию с основаниями a и b и со средней линией l , и выполним некоторые дополнительные построения: через основания проведём прямые, а через концы средней линии перпендикуляры до пересечения с основаниями:
*Буквенные обозначения вершин и других точек не введены умышленно, чтобы избежать лишних обозначений.
Посмотрите, треугольники 1 и 2 равны по второму признаку равенства треугольников, треугольники 3 и 4 тоже самое. Из равенства треугольников следует равенство элементов, а именно катетов (они обозначены соответственно синим и красным цветом).
Теперь внимание! Если мы мысленно «отрежем» от нижнего основания синий и красный отрезок, то у нас останется отрезок (это сторона прямоугольника) равный средней линии. Далее, если мы «приклеим» отрезанные синий и красный отрезок к верхнему основанию трапеции, то у нас получится также отрезок (это тоже сторона прямоугольника) равный средней линии трапеции.
Уловили? Получается, что сумма оснований будет равна двум средним линиям трапеции:
Посмотреть ещё одно объяснение
Сделаем следующее – построим прямую проходящую через нижнее основание трапеции и прямую, которая пройдёт через точки А и В:
Получим треугольники 1 и 2, они равны по стороне и прилегающим к ней углам (второй признак равенства треугольников). Это означает что полученный отрезок (на эскизе он обозначен синим) равен верхнему основанию трапеции.
Теперь рассмотрим треугольник:
*Средняя линия данной трапеции и средняя линия треугольника совпадают.
Известно, что треугольника равна половине параллельного ей основания, то есть:
Хорошо, разобрались. Теперь о площади трапеции.
Площадь трапеции формула:
Говорят: площадь трапеции равна произведению полусуммы её оснований и высоты.
То есть, получается, что она равна произведению средней линии и высоты:
Вы, наверное, уже заметили, что это очевидно. Геометрически это можно выразить так: если мы мысленно отрежем от трапеции треугольники 2 и 4 и положим их соответственно на треугольники 1 и 3:
То у нас получится прямоугольник по площади равный площади нашей трапеции. Площадь этого прямоугольника будет равна произведению средней линии и высоты, то есть можем записать:
Но дело тут не в записи, конечно, а в понимании.
Скачать (посмотреть) материал статьи в формате *pdf
На этом всё. Успеха вам!
С уважением, Александр.
Трапецией именуется рельефный четырёхугольник, у которого параллельны две противоположные стороны и непараллельны две другие. Если все противоположные стороны четырёхугольника попарно параллельны, то это параллелограмм.
Вам понадобится
- – все стороны трапеции (AB, BC, CD, DA).
Инструкция
1. Непараллельные стороны трапеции именуются боковыми сторонами, а параллельные – основаниями. Линия между основаниями, перпендикулярная к ним – высота трапеции . Если боковые стороны трапеции равны, то она именуется равнобедренной. Вначале разглядим решение для трапеции , которая не является равнобедренной.
2. Проведите отрезок BE из точки B к нижнему основанию AD параллельно боковой стороне трапеции CD. От того что BE и CD параллельны и проведены между параллельными основаниями трапеции BC и DA, то BCDE – параллелограмм, и его противоположные стороны BE и CD равны. BE=CD.
3. Разглядите треугольник ABE. Вычислите сторону AE. AE=AD-ED. Основания трапеции BC и AD вестимы, а в параллелограмме BCDE противолежащие стороны ED и BC равны. ED=BC, значит, AE=AD-BC.
4. Сейчас узнайте площадь треугольника ABE по формуле Герона, вычислив полупериметр. S=корень(p*(p-AB)*(p-BE)*(p-AE)). В этой формуле p – полупериметр треугольника ABE. p=1/2*(AB+BE+AE). Для вычисления площади вам знамениты все нужные данные: AB, BE=CD, AE=AD-BC.
6. Выразите из этой формулы высоту треугольника, которая является и высотой трапеции . BH=2*S/AE. Вычислите её.
7. Если трапеция равнобедренная, решение дозволено исполнить по-иному. Разглядите треугольник ABH. Он прямоугольный, потому что один из углов, BHA, прямой.
8. Проведите из вершины C высоту CF.
9. Изучите фигуру HBCF. HBCF прямоугольник, от того что две его стороны – высоты, а другие две являются основаниями трапеции , то есть углы прямые, а противолежащие стороны параллельны. Это значит, что BC=HF.
10. Посмотрите на прямоугольные треугольники ABH и FCD. Углы при высотах BHA и CFD прямые, а углы при боковых стороны х BAH и CDF равны, потому что трапеция ABCD равнобедренная, значит, треугольники подобны. Потому что высоты BH и CF равны либо боковые стороны равнобедренной трапеции AB и CD равны, то и сходственные треугольники равны. Значит, их стороны AH и FD тоже равны.
11. Обнаружьте AH. AH+FD=AD-HF. Потому что из параллелограмма HF=BC, а из треугольников AH=FD, то AH=(AD-BC)*1/2.
Трапеция – геометрическая фигура, представляющая собой четырехугольник, у которого две стороны, которые именуются основаниями, параллельны, а две другие – не параллельны. Их называют боковыми сторонами трапеции . Проведенный через середины боковых сторон отрезок именуется средней линией трапеции . Трапеция может иметь различные длины боковых сторон либо идентичные, в этом случае она именуется равнобокой. Если одна из сторон – перпендикулярна к основанию, то трапеция будет прямоугольной. Но куда практичнее знать, как обнаружить площадь трапеции .
Вам понадобится
- Линейка с миллиметровыми делениями
Инструкция
1. Измерьте все стороны трапеции : AB, BC, CD и DA. Запишите итоги своих измерений.
2. На отрезке AB подметьте середину – точку K. На отрезке DA подметьте точку L, которая тоже находится на середине отрезка AD. Объедините точки K и L, полученный отрезок KL будет являться средней линией трапеции ABCD. Измерьте отрезок KL.
3. Из вершины трапеции – тоски С опустите перпендикуляр на ее основание AD о отрезок СЕ. Он будет являться высотой трапеции ABCD. Измерьте отрезок СЕ.
4. Назовем отрезок KL буквой m, а отрезок СЕ – буквой h, тогда площадь S трапеции ABCD вычислите по формуле: S=m*h, где m – средняя линия трапеции ABCD , h – высота трапеции ABCD.
5. Есть еще одна формула, дозволяющая рассчитать площадь трапеции ABCD. Нижнее основание трапеции – AD назовем буквой b, а верхнее основание BC – буквой а. Площадь определим по формуле S=1/2*(a+b)*h, где a и b – основания трапеции , h – высота трапеции .
Видео по теме
Совет 3: Как обнаружить высоту трапеции, если вестима площадь
Под трапецией подразумевается четырехугольник, у которого две из четырех его сторон параллельны между собой. Параллельные стороны являются основаниями данной трапеции , две другие же являются боковыми сторонами данной трапеции . Обнаружить высоту трапеции , если вестима ее площадь, будет дюже легко.
Инструкция
1. Нужно разобраться, как дозволено вычислить площадь начальной трапеции . Для этого существуют несколько формул, в зависимости от начальных данных:S = ((a+b)*h)/2, где a и b – длины оснований трапеции , а h – ее высота (Высота трапеции – перпендикуляр, опущенный от одного основания трапеции к иному);S = m*h, где m – средняя линяя трапеции (Средняя линяя – отрезок, параллельный основаниями трапеции и соединяющий середины ее боковых сторон).
2. Сейчас, зная формулы для исчисления площади трапеции , дозволено из них вывести новые, для нахождения высоты трапеции :h = (2*S)/(a+b);h = S/m.
3. Для того, дабы было внятнее, как решать сходственные задачи, дозволено разглядеть примеры:Пример 1: Дана трапеция, у которой площадь равна 68 см?, средняя линяя которой равна 8 см, требуется обнаружить высоту данной трапеции . Для того, дабы решить данную задачу, требуется воспользоваться ранее выведенной формулой:h = 68/8 = 8.5 смОтвет: высота данной трапеции составляет 8.5 смПример 2: Пускай у трапеции площадь равняется 120 см?, длины оснований данной трапеции равны 8 см и 12 см соответственно, требуется обнаружить высоту этой трапеции . Для этого нужно применить одну из выведенных формул:h = (2*120)/(8+12) = 240/20 = 12 смОтвет: высота заданной трапеции равна 12 см
Видео по теме
Обратите внимание!
Любая трапеция владеет рядом свойств:- средняя линяя трапеции равна полусумме ее оснований;- отрезок, тот, что соединяет между собой диагонали трапеции, равен половине разности его оснований;- если через середины оснований провести прямую, то она пересечет точку пересечения диагоналей трапеции;- в трапецию дозволено вписать окружность в том случае, если сумма оснований данной трапеции равна сумме ее боковых сторон.Пользуйтесь этими свойствами при решении задач.
Совет 4: Как обнаружить высоту треугольника, если даны координаты точек
Высотой в треугольнике называют отрезок прямой линии, соединяющий вершину фигуры с противолежащей стороной. Данный отрезок непременно должен быть перпендикулярен стороне, следственно из всякой вершины дозволено провести лишь одну высоту . От того что вершин в этой фигуре три, высот в нем столько же. Если треугольник задан координатами своих вершин, вычисление длины всякой из высот дозволено произвести, скажем, воспользовавшись формулой нахождения площади и рассчитав длины сторон.
Инструкция
1. Исходите в расчетах из того, что площадь треугольника равна половине произведения длины всякий из его сторон на длину высоты, опущенной на эту сторону. Из этого определения вытекает, что для нахождения высоты надобно знать площадь фигуры и длину стороны.
2. Начните с вычисления длин сторон треугольника . Обозначьте координаты вершин фигуры так: A(X?,Y?,Z?), B(X?,Y?,Z?) и C(X?,Y?,Z?). Тогда длину стороны AB вы сумеете рассчитать по формуле AB = ?((X?-X?)? + (Y?-Y?)? + (Z?-Z?)?). Для 2-х других сторон эти формулы будут выглядеть так: BC = ?((X?-X?)? + (Y?-Y?)? + (Z?-Z?)?) и AC = ?((X?-X?)? + (Y?-Y?)? + (Z?-Z?)?). Скажем, для треугольника с координатами A(3,5,7), B(16,14,19) и C(1,2,13) длина стороны AB составит?((3-16)? + (5-14)? + (7-19)?) = ?(-13? + (-9?) + (-12?)) = ?(169 + 81 + 144) = ?394 ? 19,85. Длины сторон BC и AC, рассчитанные таким же методом, будут равны?(15? + 12? + 6?) = ?405 ? 20,12 и?(2? + 3? + (-6?)) = ?49 = 7.
3. Умения длин 3 сторон, полученных на предыдущем шагу, довольно для вычисления площади треугольника (S) по формуле Герона: S = ? * ?((AB+BC+CA) * (BC+CA-AB) * (AB+CA-BC) * (AB+BC-CA)). Скажем, позже подстановки в эту формулу значений, полученных из координат треугольника -примера из предыдущего шага, эта формула даст такое значение: S = ?*?((19,85+20,12+7) * (20,12+7-19,85) * (19,85+7-20,12) * (19,85+20,12-7)) = ?*?(46,97 * 7,27 * 6,73 * 32,97) ? ?*?75768,55 ? ?*275,26 = 68,815.
4. Исходя из площади треугольника , рассчитанной на предыдущем шаге, и длин сторон, полученных на втором шаге, вычислите высоты для всякой из сторон. Потому что площадь равна половине произведения высоты на длину стороны, к которой она проведена, для нахождения высоты разделяете удвоенную площадь на длину надобной стороны: H = 2*S/a. Для использованного выше примера высота, опущенная на сторону AB составит 2*68,815/16,09 ? 8,55, высота к стороне ВС будет иметь длину 2*68,815/20,12 ? 6,84, а для стороны АС эта величина будет равна 2*68,815/7 ? 19,66.
Трапецией называется такой четырехугольник, две стороны у которого параллельны (это основания трапеции, обозначенные на рисунке a и b), а другие две - нет (на рисунке АД и CB). Высота трапеции - это отрезок h, проведенный перпендикулярно к основаниям.
Как найти высоту трапеции при известных величинах площади трапеции и длин оснований?
Для вычисления площади S трапеции ABCD, воспользуемся формулой:
S = ((a+b) x h)/2.
Здесь отрезки a и b - это основания трапеции, h - это высота трапеции.
Преобразуя эту формулу, можем записать:
Используя эту формулу, получим значение h, если известны величина площади S и величины длин оснований a и b.
Пример
Если известно, что площадь трапеции S равна 50 см?, длина основания a составляет 4 см, длина основания b составляет 6 см, то, чтобы найти высоту h, используем формулу:
Подставляем в формулу известные величины.
h = (2 x 50)/(4+6) = 100/10 = 10 см
Ответ: высота трапеции составляет 10 см.
Как находить высоту трапеции, если даны величины площади трапеции и длина средней линии?
Воспользуемся формулой вычисления площади трапеции:
Здесь m - средняя линия, h - высота трапеции.
Если возникает вопрос, как найти высоту трапеции, формула:
h = S/m, будет ответом.
Таким образом, можем найти величину высоты трапеции h, имея известные величины площади S и отрезка средней линии m.
Пример
Известна длина средней линии трапеции m, которая составляет 20 см, и площадь S, которая равна 200 см?. Найдем значение величины высоты трапеции h.
Подставив значения S и m, получим:
h = 200/20 = 10 см
Ответ: высота трапеции составляет 10 см
Как найти высоту прямоугольной трапеции?
Если трапеция - это четырехугольник, с двумя параллельными сторонами (основаниями) трапеции. То диагональ - это отрезок, который соединяющий две противоположные вершины углов трапеции (отрезок АС на рисунке). Если трапеция прямоугольная, с помощью диагонали, найдем величину высоты трапеции h.
Прямоугольной трапецией называется такая трапеция, где одна из боковых сторон перпендикулярна основаниям. В этом случае ее длина (АД) совпадает с высотой h.
Итак, рассмотрим прямоугольную трапецию ABCD, где AD - это высота, DC - это основание, AC - это диагональ. Воспользуемся теоремой Пифагора. Квадрат гипотенузы AC прямоугольного треугольника ADC равен сумме квадратов его катетов AB и BC.
Тогда можно записать:
AC? = AD? + DC?.
AD - это катет треугольника, боковая сторона трапеции и, в то же время, ее высота. Ведь отрезок АД перпендикулярен основаниям. Его длина составит:
AD = ?(AC? - DC?)
Итак, имеем формулу для вычисления высоты трапеции h = AD
Пример
Если длина основания прямоугольной трапеции(DC) равна 14 см, а диагональ (AC) составляет 15 см, для получения значения высоты(AD -боковой стороны) воспользуемся теоремой Пифагора.
Пусть х - это неизвестный катет прямоугольного треугольника(AD), тогда
AC? = AD? + DC? можно записать
15? = 14? + х?,
х = ?(15?-14?) = ?(225-196) = ?29 см
Ответ: высота прямоугольной трапеции (АВ) составит ?29 см, что приблизительно составит, 5.385 см
Как найти высоту равнобедренной трапеции?
Равнобедренной трапецией, называют трапецию, у которой длины боковых сторон равны между собой. Прямая, проведенная через середины оснований такой трапеции будет осью симметрии. Частным случаем является трапеция, диагонали которой перпендикулярны друг другу, тогда высота h, будет равна полусумме оснований.
Рассмотрим случай, если диагонали не перпендикулярны друг другу. В равнобочной (равнобедренной) трапеции равны углы при основаниях и длины диагоналей равны. Также известно, что все вершины равнобокой трапеции касаются линии окружности, проведенной вокруг этой трапеции.
Рассмотрим рисунок. ABCD- равнобедренная трапеция. Известно, что основания трапеции параллельны, значит, BC = b параллельно AD = a, сторона AB = CD = c, значит, углы при основаниях соответственно равны, можно записать угол BAQ = CDS = a, и угол ABC = BCD = v. Таким образом, делаем вывод о равенстве треугольника ABQ треугольнику SCD, значит, отрезок
AQ = SD = (AD - BC)/2 = (a - b)/2.
Имея по условию задачи величины оснований a и b, и длину боковой стороны с, найдем высоту трапеции h, равную отрезку BQ.
Рассмотрим прямоугольный треугольник ABQ. ВО - высота трапеции, перпендикулярна основанию AD, значит и отрезку AQ. Сторону AQ треугольника ABQ, найдем, воспользовавшись выведенной нами ранее формулой:
Имея значения двух катетов прямоугольного треугольника, найдем гипотенузу BQ= h. Используем теорему Пифагора.
AB?= AQ? + BQ?
Подставим данные задачи:
c? = AQ? + h?.
Получим формулу для нахождения высоты равнобедренной трапеции:
h = ?(c?-AQ?).
Пример
Дана равнобедренная трапеция ABCD, где основание AD = a = 10см, основание BC = b = 4см, а боковая сторона AB = c = 12см. При таких условиях, рассмотрим на примере, как найти трапеции высоту, равнобедренной трапеции АВСД.
Найдем сторону AQ треугольника ABQ, подставив известные данные:
AQ = (a - b)/2 = (10-4)/2=3см.
Теперь подставим значения сторон треугольника в формулу теоремы Пифагора.
h = ?(c?- AQ?) = ?(12?- 3?) = ?135 = 11.6см.
Ответ. Высота h равнобедренной трапеции ABCD составляет 11.6 см.
В математике известно несколько видов четырехугольников: квадрат, прямоугольник, ромб, параллелограмм. Среди них и трапеция - вид выпуклого четырехугольника, у которого две стороны параллельны, а две другие нет. Параллельные противоположные стороны называются основаниями, а две другие – боковыми сторонами трапеции. Отрезок, который соединяет середины боковых сторон, называется средней линией. Существует несколько видов трапеций: равнобедренная, прямоугольная, криволинейная. Для каждого вида трапеции есть формулы для нахождения площади.
Площадь трапеции
Чтобы найти площадь трапеции, нужно знать длину ее оснований и высоту. Высота трапеции - это отрезок, перпендикулярный основаниям. Пусть верхнее основание - a, нижнее основание - b, а высота - h. Тогда вычислить площадь S можно по формуле:
S = 1/2 * (a+b) * h
т.е. взять полусумму оснований, умноженную на высоту.
Также удастся вычислить площадь трапеции, если известно значение высоты и средней линии. Обозначим среднюю линию - m. Тогда
Решим задачу посложнее: известны длины четырех сторон трапеции - a, b, c, d. Тогда площадь отыщется по формуле:
Если известны длины диагоналей и угол между ними, то площадь ищется так:
S = 1/2 * d1 * d2 * sin a
где d с индексами 1 и 2 - диагонали. В данной формуле в расчете приводится синус угла.
При известных длинах оснований a и b и двух углах при нижнем основании площадь вычисляется так:
S = 1/2 * (b2 - a2) * (sin a * sin v / sin(a + v))
Площадь равнобедренной трапеции
Равнобедренная трапеция - это частный случай трапеции. Ее отличие в том, что такая трапеция - это выпуклый четырехугольник с осью симметрии, проходящей через середины двух противоположных сторон. Ее боковые стороны равны.
Найти площадь равнобедренной трапеции можно несколькими способами.
- Через длины трех сторон. В этом случае длины боковых сторон будут совпадать, поэтому обозначены одной величиной - с, а и b - длины оснований:
- Если известна длина верхнего основания, боковой стороны и величина угла при нижнем основании, то площадь вычисляется так:
S = c * sin a * (a + c * cos a)
где а - верхнее основание, с - боковая сторона.
- Если вместо верхнего основания известна длина нижнего – b, площадь рассчитывается по формуле:
S = c * sin a * (b – c * cos a)
- Если когда известны два основания и угол при нижнем основании, площадь вычисляется через тангенс угла:
S = 1/2 * (b2 – a2) * tg a
- Также площадь рассчитывается через диагонали и угол между ними. В этом случае диагонали по длине равны, поэтому каждую обозначаем буквой d без индексов:
S = 1/2 * d2 * sin a
- Вычислим площадь трапеции, зная длину боковой стороны, средней линии и величину угла при нижнем основании.
Пусть боковая сторона - с, средняя линия - m, угол - a, тогда:
S = m * c * sin a
Иногда в равностороннюю трапецию можно вписать окружность, радиус которой будет - r.
Известно, что в любую трапецию можно вписать окружность, если сумма длин оснований равна сумме длин ее боковых сторон. Тогда площадь найдется через радиус вписанной окружности и угол при нижнем основании:
S = 4r2 / sin a
Такой же расчет производится и через диаметр D вписанной окружности (кстати, он совпадает с высотой трапеции):
Зная основания и угол, площадь равнобедренной трапеции вычисляется так:
S = a * b / sin a
(эта и последующие формулы верны только для трапеций с вписанной окружностью).
Через основания и радиус окружности площадь ищется так:
Если известны только основания, то площадь считается по формуле:
Через основания и боковую линию площадь трапеции с вписанным кругом и через основания и среднюю линию - m вычисляется так:
Площадь прямоугольной трапеции
Прямоугольной называется трапеция, у которой одна из боковых сторон перпендикулярна основаниям. В этом случае боковая сторона по длине совпадает с высотой трапеции.
Прямоугольная трапеция представляет из себя квадрат и треугольник. Найдя площадь каждой из фигур, сложите полученные результаты и получите общую площадь фигуры.
Также для вычисления площади прямоугольной трапеции подходят общие формулы для расчета площади трапеции.
- Если известны длины оснований и высота (или перпендикулярная боковая сторона), то площадь рассчитывается по формуле:
S = (a + b) * h / 2
В качестве h (высоты) может выступать боковая сторона с. Тогда формула выглядит так:
S = (a + b) * c / 2
- Другой способ рассчитать площадь - перемножить длину средней линии на высоту:
или на длину боковой перпендикулярной стороны:
- Следующий способ вычисления - через половину произведения диагоналей и синус угла между ними:
S = 1/2 * d1 * d2 * sin a
Если диагонали перпендикулярны, то формула упрощается до:
S = 1/2 * d1 * d2
- Еще один способ вычисления - через полупериметр (сумма длин двух противоположных сторон) и радиус вписанной окружности.
Эта формула действительна для оснований. Если брать длины боковых сторон, то одна из них будет равна удвоенному радиусу. Формула будет выглядеть так:
S = (2r + c) * r
- Если в трапецию вписана окружность, то площадь вычисляется так же:
где m - длина средней линии.
Площадь криволинейной трапеции
Криволинейная трапеция представляет из себя плоскую фигуру, ограниченную графиком неотрицательной непрерывной функции y = f(x), определенной на отрезке , осью абсцисс и прямыми x = a, x = b. По сути, две ее стороны параллельны друг другу (основания), третья сторона перпендикулярна основаниям, а четвертая представляет из себя кривую, соответствующую графику функции.
Площадь криволинейной трапеции ищут через интеграл по формуле Ньютона-Лейбница:
Так вычисляются площади различных видов трапеций. Но, помимо свойств сторон, трапеции обладают одинаковыми свойствами углов. Как у всех существующих четырехугольников, сумма внутренних углов трапеции равна 360 градусов. А сумма углов, прилежащих к боковой стороне, - 180 градусам.
Геометрия – одна из наук, с применением которой на практике человек сталкивается практически ежедневно. Среди многообразия геометрических фигур отдельного внимания заслуживает и трапеция. Она представляет собой выпуклую фигуру с четырьмя сторонами, из которых две параллельны между собой. Последние называются основаниями, а оставшиеся две – боковыми сторонами. Отрезок, перпендикулярный основаниям и определяющий величину промежутка между ними, и будет высотой трапеции. Каким же образом можно вычислить его длину?
Найти высоту произвольной трапеции
Базируясь на исходных данных, определение высоты фигуры возможно несколькими способами.
Известна площадь
Если длина параллельных сторон известна, а также указана площадь фигуры, то для определения искомого перпендикуляра можно воспользоваться следующим соотношением:
S=h*(a+b)/2,
h – искомая величина (высота),
S – площадь фигуры,
a и b – стороны, параллельные друг другу.
Из приведенной формулы следует, что h=2S/(a+b).
Известна величина средней линии
Если среди исходных данных помимо площади трапеции (S) известна, и длина ее линии средины (l), то для вычислений пригодится другая формула. Прежде стоит уточнить, что такое средняя линия для данного вида четырехугольника. Термин определяет часть прямой, соединяющей средины боковых сторон фигуры.
Исходя из свойства трапеции l=(a+b)/2,
l – линия средины,
a, b – стороны-основания четырехугольника.
Поэтому h=2S/(a+b)=S/l.
Известны 4 стороны фигуры
В данном случае поможет теорема Пифагора. Опустив перпендикуляры на большую сторону-основание, воспользуйтесь ею для двух получившихся прямоугольных треугольников. Итоговое выражение будет иметь вид:
h=?c 2 -(((a-b) 2 +c 2 -d 2)/2(a-b)) 2 ,
c и d – 2 другие стороны.
Углы в основании
При наличии данных об углах при основании, воспользуйтесь тригонометрическими функциями.
h = c* sina = d*sinv,
a и v – углы в основании четырехугольника,
c и d – его боковые стороны.
Диагонали фигуры и углы, которые пересекаясь они образуют
Длина диагонали – длина отрезка, соединяющего противоположные вершины фигуры. Обозначим данные величины символами d1 и d2, а углы между ними g и f. Тогда:
h = (d1*d2)/(a+b) sin g = (d1*d2)/(a+b) sinf,
h = (d1*d2)/2l sin g = (d1*d2)/2l sinf,
a и b – стороны-основания фигуры,
d1 и d2 – диагонали трапеции,
g и f – углы между диагоналями.
Высота фигуры и радиус окружности, которая в нее вписана
Как следует из определения такого рода окружности, она касается каждого основания в 1 точке, которые являются частью одной прямой. Поэтому расстояние между ними – диаметр – искомая высота фигуры. А так как диаметр – удвоенный радиус, то:
h = 2 * r,
r – радиус окружности, которую вписали в данную трапецию.
Найти высоту равнобедренной трапеции
- Как и следует из формулировки, отличительной характеристикой равнобедренной трапеции является равенство ее боковых сторон. Поэтому для нахождения высоты фигуры воспользуйтесь формулой для определения данной величины в случае, когда известны стороны трапеции.
Итак, если с = d, то h=?c 2 -(((a-b) 2 +c 2 -d 2)/2(a-b)) 2 = ?c 2 -(a-b) 2 /4,
a, b – стороны-основания четырехугольника,
c = d – его боковые стороны.
- При наличии величины углов, образованных двумя сторонами (основанием и боковой), высоту трапеции определяет следующее соотношение:
h = c* sina,
h = с * tga *cosa = с * tga * (b – a)/2c = tga * (b-a)/2,
a – угол в основании фигуры,
a, b (a < b) – основания фигуры,
c = d – его боковые стороны.
- Если даны величины диагоналей фигуры, то выражение для нахождения высоты фигуры видоизменится, т.к. d1 = d2:
h = d1 2 /(a+b)*sing = d1 2 /(a+b)*sinf,
h = d1 2 /2*l*sing = d1 2 /2*l*sinf.