Пдк загрязнений в воде водоемов. Определения показателей загрязнения вод
ПРЕДЕЛЬНО ДОПУСТИМАЯ КОНЦЕНТРАЦИЯ (ПДК) ВРЕДНЫХ ВЕЩЕСТВ – это максимальная концентрация вредного вещества, которая за определенное время воздействия не влияет на здоровье человека и его потомство, а также на компоненты экосистемы и природное сообщество в целом.
В атмосферу поступает множество примесей от различных промышленных производств и автотранспорта. Для контроля их содержания в воздухе нужны вполне определенные стандартизированные экологические нормативы, поэтому и было введено понятие о предельно допустимой концентрации. Величины ПДК для воздуха измеряются в мг/м 3 . Разработаны ПДК не только для воздуха, но и для пищевых продуктов, воды (питьевая вода, вода водоемов, сточные воды), почвы.
Предельной концентрацией для рабочей зоны считают такую концентрацию вредного вещества, которая при ежедневной работе в течение всего рабочего периода не может вызвать заболевания в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений.
Предельные концентрации для атмосферного воздуха измеряются в населенных пунктах и относятся к определенному периоду времени. Для воздуха различают максимальную разовую дозу и среднесуточную.
В зависимости от значения ПДК химические вещества в воздухе классифицируют по степени опасности. Для чрезвычайно опасных веществ (пары ртути, сероводород, хлор) ПДК в воздухе рабочей зоны не должна превышать 0,1 мг/м 3 . Если ПДК составляет более 10 мг/м 3 , то вещество считается малоопасным. К таким веществам относят, например, аммиак.
Таблица 1. ПРЕДЕЛЬНО ДОПУСТИМЫЕ КОНЦЕНТРАЦИИ некоторых газообразных веществ в атмосферном воздухе и воздухе производственных помещений | ||
Вещество | ПДК в атмосферном воздухе, мг/м 3 | ПДК в воздухе произв. помещений, мг/м 3 |
Диоксид азота | Максимальная разовая 0,085 Среднесуточная 0,04 |
2,0 |
Диоксид серы | Максимальная разовая 0,5 Среднесуточная 0,05 |
10,0 |
Монооксид углерода | Максимальная разовая 5,0 Среднесуточная 3,0 |
В течение рабочего дня 20,0 В течение 60 мин.* 50,0 В течение 30 мин.* 100,0 В течение 15 мин.* 200,0 |
Фтороводород | Максимальная разовая 0,02 Среднесуточная 0,005 |
0,05 |
* Повторные работы в условиях повышенного содержания СО в воздухе рабочей зоны могут проводиться с перерывом не менее 2 часов |
ПДК устанавливаются для среднестатистического человека, однако ослабленные болезнью и другими факторами люди могут почувствовать себя дискомфортно при концентрациях вредных веществ, меньших ПДК. Это, например, относится к заядлым курильщикам.
Величины предельно допустимых концентраций некоторых веществ в ряде стран существенно различаются. Так, ПДК сероводорода в атмосферном воздухе при 24-часовом воздействии в Испании составляет 0,004 мг/м 3 , а в Венгрии – 0,15 мг/м 3 (в России – 0,008 мг/м 3).
В нашей стране нормативы предельно допустимой концентрации разрабатываются и утверждаются органами санитарно-эпидемиологической службы и государственными органами в области охраны окружающей среды. Нормативы качества окружающей среды являются едиными для всей территории РФ. С учетом природноклиматических особенностей, а также повышенной социальной ценности отдельных территорий для них могут быть установлены нормативы предельно допустимой концентрации, отражающие особые условия.
При одновременном присутствии в атмосфере нескольких вредных веществ однонаправленного действия сумма отношений их концентраций к ПДК не должна превышать единицу, однако это выполняется далеко не всегда. По некоторым оценкам, 67% населения России живут в регионах, где содержание вредных веществ в воздухе выше установленной предельно допустимой концентрации. В 2000 содержание вредных веществ в атмосфере в 40 городах с суммарным населением около 23 млн. человек время от времени превышало предельно допустимую концентрацию более чем в десять раз.
При оценке опасности загрязнения в качестве образца сравнения служат исследования, проводимые в биосферных заповедниках. А вот в крупных городах природная среда далека от идеальной. Так, по содержанию вредных веществ Москву-реку в пределах города считают «грязной рекой» и «очень грязной рекой». На выходе Москвы-реки из Москвы содержание нефтепродуктов в 20 раз больше предельно допустимых концентраций, железа – в 5 раз, фосфатов – в 6 раз, меди – в 40 раз, аммонийного азота – в 10 раз. Содержание серебра, цинка, висмута, ванадия, никеля, бора, ртути и мышьяка в донных отложениях Москвы-реки превышает норму в 10–100 раз. Тяжелые металлы и другие ядовитые вещества из воды попадают в почву (например, при половодьях), растения, рыбу, сельскохозяйственную продукцию, питьевую воду, как в Москве, так и ниже по ее течению в Подмосковье.
Химические методы оценки качества окружающей среды очень важны, однако они не дают прямой информации о биологической опасности загрязняющих веществ – это задача биологических методов. Предельно допустимые концентрации являются определенными нормами щадящего воздействия загрязняющих веществ на здоровье человека и природную среду.
Елена Савинкина
Владимир Хомутко
Время на чтение: 5 минут
А А
Проблема наличия нефтепродуктов в воде и как с ней бороться
К наиболее распространенным и токсически опасным веществам, которые служат источниками загрязнения природной водной среды, специалисты относят нефтепродукты (НП).
Нефть и её производные являются непостоянными смесями углеводородов предельной и непредельной группы, а также их производных разного вида. Гидрохимия условно трактует понятие «нефтепродукты», ограничиваясь только их углеводородными алифатическими, ароматическими и ациклическими фракциями, которые составляют основную и наиболее распространенную часть нефти и её компонентов, выделяемых в процессе нефтепереработки. Для обозначения содержания нефтепродуктов в воде, в международной практике существует термин Нydrocarbon Оil Index («углеводородный нефтяной индекс»).
Предельная допустимая концентрация (ПДК) в воде нефти и нефтепродуктов для культурно-бытовых и хозяйственно-питьевых объектов водопользования находится на отметке 0,3 миллиграмма на кубический дециметр, а для объектов рыбохозяйственного водопользования – 0,05 миллиграмма на кубический дециметр.
Определение нефтепродуктов, содержащихся в воде, возможно с помощью различных приборов и методов, о которых мы кратко расскажем в этой статье.
На сегодняшний момент существуют четыре основных методики определения концентрации нефти и её производных в воде, которые основаны на разных физических свойствах определяемых нефтепродуктов:
- метод гравиметрии;
- ИК-спектрофотометрия;
- флуориметрический метод;
- методика газовой хроматографии.
Методика применения того или иного способа измерения содержания нефтей и нефтепродуктов в воде, а также нормы ПДК для различных видов нефтепродуктов, регламентируется природоохранными нормативными документами федерального значения (сокращенно – ПНД Ф).
Гравиметрический метод
Его применение регулируется ПНД Ф за номером 14.1:2.116-97.
Суть его – извлечение (обезвоживание) нефтепродуктов из предоставленных для анализа проб с помощью органического растворителя, с последующим отделением от полярных соединений с помощью колоночной хроматографии на оксиде алюминия других классов соединений, после чего производится количественное определение содержания вещества в воде.
В исследованиях сточных вод этот способ применяется при концентрациях, диапазон которых составляет от 0,30 до 50,0 миллиграмм на кубический дециметр, что не позволяет определить соответствие воды нормам ПДК на объектах рыбохозяйственного водопользования.
Еще одним существенным недостатком этого способа является длительный период времени, который требуется для проведения измерений. Поэтому его не применяют при текущем технологическом контроле на производстве, а также в других случаях, когда скорость получения результатов имеет первостепенное значение.
К достоинствам этой методики специалисты относят отсутствие стандартных градуировок по образцам, которые характерны для прочих методов анализа.
Погрешность при использовании этого способа при показателе Р равном 0,95 (±d, %) при анализе природных вод варьируется от 25-ти до 28-ми процентов, а при анализе сточных вод – от 10-ти до 35-ти.
ИК-спектрофотометрия
Применение этой методики регламентируется ПНД Ф за номером 14.1:2:4.168, а также методическими указаниями МУК 4.1.1013-01.
Суть этой методики определения содержания нефтепродуктов в воде – выделение растворенных и эмульгированных нефтяных загрязнений путем экстракции их с помощью четыреххлористого углерода, с последующим хроматографическим отделением нефтепродукта от прочих соединений органической группы, на заполненной оксидом алюминия колонке. После этого определение количества НП в воде производится по показателям интенсивности поглощения в инфракрасной области спектра C-H связей.
Инфракрасная спектроскопия на сегодняшний момент является одной из наиболее мощных аналитических методик, и широко применяется в исследованиях как прикладного, так и фундаментального характера. Её применение также возможно для нужд текущего контроля производственного процесса.
Самой популярной на сегодняшний момент методикой такого спектрального ИК-анализа является Фурье-ИК. Спектрометры, действие которых основано на этой методике, даже находящиеся в нижней и средней ценовой нише, по своим параметрам уже составляют конкуренцию таким традиционным приборам, как дифракционные спектрометры. В настоящее время их широко используют в многочисленных аналитических лабораториях.
Помимо оптики, в стандартную комплектацию таких приборов обязательно входит управляющий компьютер, который не только выполняет функцию по управлению процессом получения необходимого спектра, но и служит для оперативной обработки получаемых данных. С помощью таких ИК-спектрометров достаточно легко получить колебательный спектр соединения, представленного для анализа.
Основными преимуществами данной методики являются:
- малые количества исходных проб анализируемой воды (от 200-т до 250-ти миллилитров);
- высокая чувствительность методики (шаг определения – 0,02 миллиграмма на кубический дециметр, что позволяет определять соответствие результатов нормам ПДК для рыбохозяйственных водоемов).
Самым главным недостатком этого способа анализа (особенно при использовании фотоколориметрического окончания), специалисты называют высокую степень его зависимости от вида анализируемого нефтепродукта. Определение с помощью фотоколориметра требует построения отдельных калибровочных графиков для каждого типа нефтепродукта. Это связано с тем, что несоответствие эталона и анализируемого нефтепродукта значительно искажает получаемые результаты.
Этот способ применяется при концентрациях НП от 0,02 до 10 миллиграмм на кубический дециметр. Погрешность измерений при Р равном 0,95 (±d, %) составляет от 25-ти до 50-ти процентов.
Регламентируется ПНД Ф за номером 14.1:2:4.128-98.
Суть этой методики заключается в обезвоживании нефтепродуктов с последующим их извлечение из воды с помощью гексана, затем очистки получаемого экстракта (в случае необходимости) и последующего измерения флуоресцентной интенсивности экстракта, которая возникает от оптического возбуждения. Для измерения интенсивности флуоресценции применяется анализатор жидкости марки «Флюорат-2».
К несомненным достоинствам этого метода относятся:
Ароматическим углеводородам для возбуждения и последующей регистрации флуоресцентного излучения необходимы различные условия. Специалисты отмечают зависимость спектральных изменений флуоресценции от длины волны, которой обладает возбуждающий свет. Если возбуждение происходит ближней части ультрафиолетового спектра, и уж тем более – в его видимой области, то флуоресценция проявляется только у полиядерных углеводородов.
Так как их доля – достаточно мала, и напрямую зависит от природы исследуемого нефтепродукта, возникает высокая степень зависимости получаемого аналитического сигнала от конкретного вида НП. При воздействии ультрафиолетового излучения люминесцируют только некоторые углеводороды, в основном – высокомолекулярные ароматические из группы полициклических. Причем интенсивность их излучение сильно разнится.
В связи с этим, чтобы получить достоверные результаты, нужно обязательно иметь в наличие стандартный раствор, который содержит те же люминесцирующие компоненты (причем – в таких же относительных пропорциях), что наличествуют в анализируемой пробе. Это чаще всего труднодостижимо, поэтому флуориметрический способ определения содержания в воде нефтепродуктов, который основан на регистрации интенсивности флуоресцентного излучения в видимой части спектра, для массовых анализов является непригодным.
Этот метод можно применять при концентрациях нефтепродуктов в пределах от 0,005 до 50,0 миллиграммов на кубический дециметр.
Погрешность получаемых результатов (при Р равном 0,95, (±d, %)) составляет от 25-ти до 50-ти процентов.
Применение этой методики регулируется ГОСТ-ом за номером 31953-2012.
Эту методику применяют для определения массовой концентрации различных нефтепродуктов как в питьевой (включая расфасованную в емкости), так и в природной (как поверхностной, так и подземной) воде, а также в воде, содержащейся в источниках хозяйственно-питьевого назначения. Эффективен этот способ и при анализе сточной воды. Главное, чтобы массовая концентрация нефтепродуктов была не меньше, чем 0,02 миллиграмма на кубический дециметр.
Суть метода газовой хроматографии заключается в экстракционном извлечении НП из анализируемой пробы воды с помощью экстрагента, последующей его очистке от полярных соединений при помощи сорбента, и заключительном анализе полученного вещества на газовом хроматографе.
Результат получается после суммирования площадей хроматографических пиков выделяемых углеводородов и путем последующего расчета содержания НП в анализируемой пробе воды с помощью заранее установленной градуировочной зависимости.
С помощью газовой хроматографии не только определяют общую концентрацию нефтепродуктов в воде, но и проводят идентификацию их конкретного состава.
Газовая хроматография вообще представляет собой методику, основанную на разделении термостабильных летучих соединений. Таким требованиям соответствует примерно пять процентов от общего числа известных науке органических соединений. Однако именно они занимают 70-80 процентов от общего числа используемых человеком в производстве и быту соединений.
Роль подвижной фазы в этой методике исполняет газ-носитель (обычно инертной группы), который протекает через неподвижную фазу с гораздо большей площадью поверхности. В качестве газа-носителя подвижной фазы применяют:
- водород;
- азот;
- углекислый газ;
- гелий;
- аргон.
Чаще всего используется наиболее доступный и недорогой азот.
Именно с помощью газа-носителя обеспечивается перенос по хроматографической колонке разделяемых компонентов. При этом этот газ не вступает во взаимодействие ни с самими разделяемыми компонентами, ни с ни с веществом неподвижной фазы.
Основные достоинства газовой хроматографии:
- относительная простота используемого оборудования;
- достаточно широкое поле применения;
- возможность высокоточного определения достаточно малых концентраций газов в органических соединениях;
- быстрота получения результатов анализа;
- широкая палитра как используемых сорбентов, так и веществ для неподвижных фаз;
- высокий уровень гибкости, позволяющий менять условия разделения;
- возможность проведения химических реакций в хроматографическом детекторе или в хроматографической колонке, что значительно увеличивает охват химических соединений, подвергаемых анализу;
- повышенная информативность в случае применения с другими инструментальными методами анализа (например, с масс-спектрометрией и Фурье-ИК-спектрометрией).
Погрешность результатов этой методики (Р равно 0,95 (±d, %)) составляет от 25-ти до 50-ти процентов.
Стоит отметить, что только способ измерения содержания нефтепродуктов в воде с помощью газовой хроматографии стандартизован в международной организации по стандартизации, которую все мы знаем под аббревиатурой ИСО, поскольку только он дает возможность идентифицировать виды нефтяных и нефтепродуктовых загрязнений.
Вне зависимости от применяемой методики, постоянный контроль за водами, применяемыми на производстве и в бытовой сфере, жизненно необходим. По данным специалистов-экологов, в некоторых российских регионах более половины всех заболеваний так или иначе связано с качеством питьевой воды.
Большая концентрация нефтепродуктов в воде
Более того, по оценкам тех же ученых, одно только повышение качества воды для питья способно продлить жизнь на срок от пяти до семи лет. Все эти факторы говорят о значимости постоянного мониторинга состояния воды вблизи предприятий нефтяной промышленности, которые являются основными источниками загрязнений окружающей среды нефтью и её производными.
Своевременное обнаружение превышения ПДК нефтепродуктов в воде позволит избежать масштабных нарушений экосистемы, и своевременно принять необходимые меры по устранению сложившейся ситуации.
Однако, для эффективной работы ученым-экологам необходима государственная поддержка. Причем не столько в виде денежных дотаций, сколько в создании нормативной базы, регулирующей ответственность предприятий народного хозяйства за нарушение экологических норм, а также в жестком контроле за исполнением принятых нормативов.
Химические свойства воды
Окисляемость
Окисляемость показывает количество кислорода в миллиграммах, необходимого для окисления органических веществ, содержащихся в 1 дм? воды.
Воды поверхностных и подземных источников имеют разную окисляемость - у подземных вод величина окисляемости незначительна, за исключением болотных вод и вод нефтяных месторождений. Окисляемость горных рек ниже, чем равнинных. Наибольшая величина окисляемости (до десятков мг/дм?) - у рек с питанием болотными водами.
Величина окисляемости закономерно изменяется в течение года. Окисляемость характеризуется несколькими величинами - перманганатной, бихроматной, йодатной окисляемостью (в зависимости от того, какой окислитель используется).
ПДК окисляемости воды имеют следующие значения: химическое потребление кислорода или бихроматная окисляемость (ХПК) водоемов питьевого назначения не должна превышать 15 мг О? /дм?. Для водоемов в зонах рекреации величина ХПК не должна превышать 30 мг О? /дм?.
Показатель pH
Водородный показатель (pH) природной воды показывает количественное содержание в ней угольной кислоты и ее ионов.
Санитарно-гигиенические нормативы для водоемов разного типа водопользования (питьевого, рыбохозяйственного, рекреационных зон) устанавливают ПДК pH в интервале 6,5-8,5.
Концентрация ионов водорода, выраженная величиной pH - один из важнейших показателей качества воды. Величина pH имеет решающее значение при протекании многочисленных химических и биологических процессов в природной воде. Именно от величины pH зависит, какие растения и организмы будут развиваться в данной воде, каким образом будет происходить миграция элементов, от этой величины также зависит степень коррозионной активности воды на металлические и бетонные конструкции.
От величины pH зависят пути превращения биогенных элементов и степени токсичности загрязняющих веществ.
Жесткость воды
Жесткость природной воды проявляется вследствие содержания в ней растворенных солей кальция и магния. Суммарное содержание ионов кальция и магния является общей жесткостью. Жесткость можно выражать несколькими единицами измерения, на практике чаще используют величину мг-экв/дм?.
Высокая жесткость ухудшает бытовые характеристики и вкусовые свойства воды, оказывает неблагоприятное воздействие на здоровье человека.
ПДК по жесткости питьевой воды нормируется величиной 10,0 мг-экв/дм?.
К технической воде отопительных систем предъявляют более строгие требования по жесткости их-за вероятности образования накипи в трубопроводах.
Аммиак
Присутствие аммиака в природной воде обусловлено разложением азотсодержащих органических веществ. Если аммиак в воде образуется при разложении органических остатков (фекальное загрязнение), то такая вода непригодна для питьевых нужд. Аммиак определяется в воде по содержанию ионов аммония NH??.
ПДК аммиака в воде составляет 2,0 мг/дм?.
Нитриты
Нитриты NO?? являются промежуточным продуктом биологического окисления аммиака до нитратов. Процессы нитрификации возможны только в аэробных условиях, в противном случае природные процессы идут по пути денитрификации - восстановления нитратов до азота и аммиака.
Нитриты в поверхностных водах находятся в виде нитрит-ионов, в кислых водах частично могут быть в форме недиссоциированной азотистой кислоты (HN0?).
ПДК нитритов в воде составляет 3,3 мг/дм? (по нитрит-иону), или 1 мг/дм? в пересчете на азот аммонийный. Для водоемов рыбохозяйственного назначения нормы составляют 0,08 мг/дм? по нитрит-иону или 0,02 мг/дм? в пересчете на азот.
Нитраты
Нитраты по сравнению с другими азотными соединениями наименее токсичны, однако в значительных концентрациях вызывают вредные последствия для организмов. Основная опасность нитратов - в их способности накапливаться в организме и окисляться там до нитритов и нитрозаминов, которые значительно более токсичны и способны вызывать так называемое вторичное и третичное нитратное отравление.
Накопление больших количеств нитратов в организме способствует развитию метгемоглобинемии. Нитраты вступают в реакцию с гемоглобином крови и образуют метгемоглобин, которые не переносит кислород и, таким образом, вызывает кислородное голодание тканей и органов.
Подпороговая концентрация нитрата аммония, не оказывающая вредных последствий на санитарный режим водоема составляет 10мг/дм?.
Для водоемов рыбохозяйственного назначения повреждающие концентрации нитратов аммония для различных видов рыб начинаются с величин порядка сотен миллиграммов на литр.
ПДК нитратов для питьевой воды составляет 45 мг/дм? , для рыбохозяйственных водоемов -40 мг/дм? по нитратам или 9,1 мг/дм? по азоту.
Хлориды
Хлориды в повышенной концентрации ухудшают вкусовые качества воды, а при высокой концентрации делают воду непригодной для питьевых целей. Для технических и хозяйственных целей содержание хлоридов также строго нормируется. Вода, в которой много хлоридов непригодна для орошения сельскохозяйственных насаждений.
ПДК хлоридов в питьевой воде не должно превышать 350 мг/дм?, в воде рыбохозяйственных водоемов - 300мг/дм?.
Сульфаты
Сульфаты в питьевой воде ухудшают ее органолептические показатели, при высоких концентрациях оказывают физиологическое воздействие на организм человека. Сульфаты в медицине используются как слабительное средство, поэтому их содержание в питьевой воде строго нормируется.
Сульфат магния определяется в воде на вкус при содержании от 400 до 600 мг/дм?, сульфат кальция - от 250 до 800 мг/дм?.
ПДК сульфатов для питьевой воды - 500 мг/дм?, для вод рыбохозяйственных водоемов -100 мг/дм?.
О влиянии сульфатов на процессы коррозии нет достоверных данных, но отмечается, что при содержании сульфатов в воде свыше 200 мг/дм? из свинцовых труб вымывается свинец.
Железо
Соединения железа поступают в природную воду из природных и антропогенных источников. Значительные количества железа поступают в водоемы вместе со сточными водами металлургических, химических, текстильных и сельскохозяйственных предприятий.
При концентрации железа свыше 2 мг/дм? ухудшаются органолептические показатели воды- в частности, появляется вяжущий привкус.
ПДК железа в питьевой воде 0,3 мг/дм?,при лимитирующем показатели вредности – органолептическом. Для вод рыбохозяйственных водоемов - 0,1 мг/дм?, лимитирующий показатель вредности - токсикологический.
Фтор
Высокие концентрации фтора наблюдаются в сточных водах стекольных, металлургических и химических производств (при производстве удобрений, стали, алюминия и др.), а также на горнорудных предприятиях.
ПДК по фтору в питьевой воде составляет 1,5 мг/дм?, при лимитирующем показателе вредности санитарно-токсикологическом.
Щелочность
Щелочность - показатель, логически противоположный кислотности. Щелочность природных и технических вод – способность содержащихся в них ионов нейтрализовать эквивалентное количество сильных кислот.
Показатели щелочности воды необходимо учитывать при реагентной подготовке воды, в процессах водоснабжения, при дозировании химических реагентов.
Если концентрация щелочноземельных металлов повышена, знание щелочности воды необходимо при определении пригодности воды для систем орошения.
Щелочность воды и показатель pH используются в расчете баланса угольной кислоты и определении концентрации карбонат-ионов.
Кальций
Поступление кальция в природные воды идет из естественных и антропогенных источников. Большое количество кальция поступает в природные водоемы со стоками металлургических, химических, стекольных и силикатных производств, а также при стоке с поверхности сельхозугодий, где применялись минеральные удобрения.
ПДК кальция в воде рыбохозяйственных водоемов составляет 180 мг/дм?.
Ионы кальция относятся к ионам жесткости, которые образуют прочную накипь в присутствии сульфатов, карбонатов и некоторых других ионов. Поэтому содержание кальция в технических водах, питающих паросиловые установки, строго контролируется.
Количественное содержание в воде ионов кальция необходимо учитывать при исследовании карбонатно-кальциевого равновесия, а также при анализе происхождения и химсостава природных вод.
Алюминий
Алюминий известен как легкий серебристый металл. В природных водах он присутствует в остаточных количествах в виде ионов или нерастворимых солей. Источники попадания алюминия в природные воды - сточные воды металлургических производств, переработки бокситов. В процессах водоподготовки соединения алюминия применяют в качестве коагулянтов.
Растворенные соединения алюминия отличаются высокой токсичностью, способны накапливаться в организме и приводить к тяжелым поражениям нервной системы.
ПДК алюминия в питьевой воде не должна превышать 0,5 мг/дм?.
Магний
Магний - один из важнейших биогенных элементов, играющий большую роль в жизнедеятельности живых организмов.
Антропогенные источники поступления магния в природные воды- сточные воды металлургии, текстильной, силикатной промышленности.
ПДК магния в питьевой воде - 40 мг/дм?.
Натрий
Натрий - щелочной металл и биогенный элемент. В небольших количествах ионы натрия выполняют важные физиологические функции в живом организме, в высоких концентрациях натрий вызывает нарушение работы почек.
В сточных водах натрий поступает в природные воды преимущественно с орошаемых сельхозугодий.
ПДК натрия в питьевой воде составляет 200 мг/дм?.
Марганец
Элемент марганец содержится в природе в виде минеральных соединений, а для живых организмов является микроэлементом, то есть в малых количествах необходим для их жизнедеятельности.
Значительное поступление марганца в природные водоемы происходит со стоками металлургических и химических предприятий, горно-обогатительных фабрик и шахтных производств.
ПДК ионов марганца в питьевой воде -0,1 мг/дм?, при лимитирующем показателе вредности органолептическом.
Избыточное поступление марганца в организм человека нарушает метаболизм железа, при тяжелых отравлениях возможны серьезные психические расстройства. Марганец способен постепенно накапливаться в тканях организма, вызывая специфические заболевания.
Хлор остаточный
Используемый для обеззараживания воды гипохлорит натрия присутствует в воде в виде хлорноватистой кислоты или иона гипохлорита. Использование хлора для дезинфекции питьевых и сточных вод, несмотря на критику метода, до сих пор широко используется.
Хлорирование также применяется в процессах изготовления бумаги, ваты, для дезинсекции холодильных установок.
В природных водоемах активный хлор присутствовать не должен.
ПДК свободного хлора в питьевой воде 0.3 - 0.5 мг/дм?.
Углеводороды (нефтепродукты)
Нефтепродукты - одни из наиболее опасных загрязнителей природных водоемов. Нефтепродукты попадают в природные воды несколькими путями: в результате разливов нефти при авариях нефтеналивных судов; со сточными водами нефтегазовой промышленности; со сточными водами химических, металлургических и других тяжелых производств; с хозяйственно-бытовыми стоками.
Небольшие количества углеводородов образуются в результате биологического разложения живых организмов.
Для санитарно-гигиенического контроля определяются показатели содержания растворенной, эмульгированной и сорбированной нефти, поскольку каждый перечисленный вид по-разному влияет на живые организмы.
Растворенные и эмульгированные нефтепродукты оказывают многообразное неблагоприятное воздействие на растительный и животный мир водоемов, на здоровье человека, на общее физико-химическое состояние биогеоценоза.
ПДК нефтепродуктов для питьевой воды -0,3 мг/дм?, при лимитирующем показатели вредности органолептическом. Для водоемов рыбохозяйственного назначения ПДК нефтепродуктов 0,05 мг/дм?.
Полифосфаты
Полифосфатные соли используются в процессах водоподготовки для умягчения технической воды, в качестве компонента средств бытовой химии, как катализатор или ингибитор химических реакций, как пищевая добавка.
ПДК полифосфатов для воды хозяйственно-питьевого назначения - 3,5 мг/дм?, при лимитирующем показатели вредности органолептическом.
Кремний
Кремний – распространенный в земной коре элемент, входит в состав многих минералов. Для организма человека является микроэлементом.
Значительное содержание кремния наблюдается в сточных водах керамических, цементных, стекольных и силикатных производств, при производстве вяжущих материалов.
ПДК кремния в питьевой воде - 10 мг/дм?.
Сульфиды и сероводород
Сульфиды - серосодержащие соединения, соли сероводородной кислоты H?S. В природных водах содержание сероводорода позволяет судить об органическом загрязнении, поскольку сероводород образуется при гниении белка.
Антропогенные источники сероводорода и сульфидов - хозяйственно-бытовые сточные воды, стоки металлургических, химических и целлюлозных производств.
Высокая концентрация сероводорода придает воде характерный неприятный запах (тухлых яиц) и токсичные свойства, вода становится непригодной для технических и хозяйственно-питьевых целей.
ПДК по сульфидам - в водоемах рыбохозяйственного назначения содержание сероводорода и сульфидов недопустимо.
Стронций
Химически активный металл, в естественной форме является микроэлементом растительных и животных организмов.
Повышенные поступления стронция в организм изменяют метаболизм кальция в организме. Возможно развитие стронциевого рахита или «уровской болезни», при которой наблюдается задержка роста и искривление суставов.
Радиоактивные изотопы стронция вызывают у человека канцерогенный эффект или лучевую болезнь.
ПДК природного стронция в питьевой воде составляет 7 мг/дм?, при лимитирующем показателе вредности санитарно-токсикологическом.
Существенные количества сульфатов рассеиваются на поверхности Байкала и бассейнов рек, впадающих в Байкал, воздушными выбросами промышленных предприятий, ТЭЦ, котельных. На локальных участках вдоль побережья сульфат-ион может быть информативным индикатором антропогенного загрязнения, привносимого реками, подземными водами и прямым сбросом в Байкал недостаточно очищенных промышленных (с использованием серной кислоты и ее производных), сельскохозяйственных и бытовых стоков (от отходов органических веществ, содержащих серу).
Санитарная норма содержания сульфатов в питьевой воде (предельно допустимые концентрации) - не более 500 мг/дм 3 по СанПиН 2.1.4.1074-01 (М.:Госкомсанэпиднадзор,2001), ПДК для рыбохозяйственного производства - 100 мг/дм 3 , ПДК для вод Байкала - 10 мг/дм 3 , фоновые значения для Байкала - 5,5 мг/дм 3 . Степень вредности сульфатов по СанПиН - 4-й класс опасности (умеренно опасны по органолептическому признаку).
Предельно допустимые концентрации хлоридов в питьевой воде по СанПиН 2.1.4.1074-01 - не более 350 мг/дм 3 , ПДК для рыбохозяйственного производства - 300 мг/дм 3 , ПДК для вод Байкала - 30 мг/дм 3 , фоновые значения для Байкала - 0,4 мг/дм 3 . Степень вредности хлоридов по СанПиН - 4-й класс опасности (умеренно опасны по органолептическому признаку).
В природных водах встречается в очень незначительных концентрациях, зачастую недоступных существующим массовым методам анализа (сотые доли мг/дм 3). Увеличение концентрации ионов аммония и аммиака может наблюдаться в осенне-зимние периоды отмирания водных организмов, особенно в зонах их скопления. Уменьшение концентрации этих веществ происходит весной и летом в результате интенсивного их усвоения растениями при фотосинтезе. Прогрессирующее повышение концентрации аммоний-иона в воде указывает на ухудшение санитарного состояния водоема.
Норма содержания аммиака в воде (предельно допустимые концентрации) - не более 2 мг/дм 3 по азоту (ПДК и ориентировочные безопасные уровни воздействия вредных веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования, Минздрав, 1983г.), ПДК аммоний-иона для рыбохозяйственного производства - 0,5 мг/дм 3 , ПДК для вод Байкала - 0,04 мг/дм 3 , фоновые значения для Байкала - 0,02 мг/дм 3 .
Нитраты по классификации СанПиН 2.1.4.1074-01 относятся к 3-му классу опасности (опасны по органолептическому признаку).
Санитарная норма содержания нитратов в питьевой воде (ПДК) - не более 45 мг/дм 3 по СанПиН 2.1.4.1074-01, ПДК для вод Байкала - 5 мг/дм 3 , фоновые значения для Байкала - 0,1 мг/дм 3 .
Фосфат-ион, как и сульфат-ион, является информативным индикатором антропогенного загрязнения, которому способствует широкое применение фосфорных удобрений (суперфосфат и др.) и полифосфатов (как моющих средств). Соединения фосфора поступают в водоем при биологической очистке сточных вод.
Фосфаты по СанПиН 2.1.4.1074-01 отнесены к 3-му классу опасности (опасны по органолептическому признаку). Санитарная норма содержания фосфатов в питьевой воде (ПДК) - не более 3,5 мг/дм 3 , ПДК для рыбохозяйственного производства - 0,2 мг/дм 3 , ПДК для вод Байкала - 0,04 мг/дм 3 , фоновые значения для Байкала - 0,015 мг/дм 3 .
Примечание:
ПДК для вод Байкала приведены по документу "Нормы допустимых воздействий на экологическую
систему озера Байкал (на период 1987-1995гг.). Основные требования", который в настоящее время юридической силы не имеет.
Данный документ был утвержден
Президентом Академии наук СССР, академиком Г.И.Марчуком,
Министром мелиорации и водного хозяйства СССР Н.Ф.Васильевым,
Министром здравоохранения СССР, академиком Е.И.Чазовым,
Председателем Государственного комитета СССР по гидрометеорологии и контролю природной среды, чл.-корр. АН СССР Ю.А.Израэлем,
Министром рыбного хозяйства СССР Н.И.Котляром.
Предельно допустимые концентрации загрязняющих веществ в воде
регламентируются рядом нормативных документов, обеспечивающих экологическую безопасность водных ресурсов. В Республике Беларусь, Украине и Российской Федерации вначале использовались нормативы, принятые раннее в СССР, это:
«Санитарные правила и нормы охраны поверхностных вод от загрязнения », СанПиН 4630-88, Министерство здравоохранения СССР, 4.06.1988 и Дополнения: №1 (N 5311-90, от от 28.12.90), №2 (N 5793-91 от 11.07.91), №3 (N 6025-91 от 21.10.91).2). «» СанПиН 4631-88, Министерство здравоохранения СССР, 6.07.1988.3). «Правила охраны поверхностных вод », Госкомприроды СССР, от 21.02.1991, Предельно допустимые концентрации нормированных веществ в воде рыбохозяйственных водных объектов (представляется Главрыбводом Минрыбхоза СССР).
Кроме этих нормативных документов в начальный период становления новых государств руководствовались Республиканскими Водными Кодексами, действовавшими в каждой республике СССР. В дальнейшем в Республике Беларусь, Украине и Российской Федерации были разработаны и утверждены свои законодательные акты по нормированию предельно допустимые концентрации загрязняющих веществ в воде (ПДК) с целью обеспечения экологической безопасности водоемов и водопользования.
Нормативная база в Республике Беларусь:
Водный Кодекс Республики Беларусь от 30 апреля 2014 г. № 149-ЗПринят Палатой представителей 2 апреля 2014 года Одобрен Советом Республики 11 апреля 2014 года.
Гигиенические нормативы 2.1.5.10-21-2003. Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования. Министерство здравоохранеия Республики Беларусь, Постановление от 12. 12. 2003 № 163.
О некоторых вопросах нормирования качества воды рыбохозяйственных водных объектов . Постановление Министерства природных ресурсов и окружающей среды Республики Беларусь и Министерства здравоохранеия Республики Беларусь № 43/42 от 8 мая 2007г.
Нормативная база в Украине:
Водный Кодекс Украины . Постановление Верховной Рады № 214/95-ВР от 06.06.95, ВВР, 1995, № 24, ст.190
Предельно допустимые концентрации вредных веществ в воде водоемов санитарно-бытового водопользования и требования к составу и свойствам воды водных объектов хозяйственно-питьевого и культурно-бытового водопользования регламентируется СанПиНом 4630-88 и тремя Дополнениями к данным Санитарным правилам и нормам: №1 (N 5311-90 , от от 28.12.90), №2 (N 5793-91 от 11.07.91), №3 (N 6025-91 от 21.10.91).
«Санитарные правила и нормы охраны прибрежных вод морей от загрязнения в местах водопользования населения » СанПиН 4631-88, Министерство здравоохранения СССР, 6.07.1988.
Предельно допустимые концентрации вредных веществ в морской воде указаны в Приложении к «Правилам охраны внутренних морских вод и территориальных морей Украины от загрязнения и засорения », утвержденного постановлением Кабинета Министров Украины № 431 от 29.03.2002 г.
Нормативная база в Российской Федерации:
«Водный кодекс Российской Федерации» от 03.06.2006 N 74-ФЗ (ред. от 28.11.2015) (с изменениями и дополнениями, вступившими в силу с 01.01.2016).
СанПиН 2.1.5.980-00 «Гигиенические требования к охране поверхностных вод». Постановление Министерства здравоохранения Российской Федерации от 22 июня 2000 г.
Гигиенические нормативы 2.1.5.1315-03 «Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования», Постановление Министерства здравоохранения Российской Федерации, 2003 от 30 апреля 2003 г. N 78 (с изменениями от 28 сентября 2007 г.)
Приказ Федерального агентства по рыболовству от 18 января 2010г. №20 «Об утверждении нормативов качества воды водных объектов рыбохозяйственного значения, в том числе нормативов предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения»
Об утверждении Положения о мерах по сохранению водных биологических ресурсов и среды их обитания . Постановление № 380 Правительства РФ от 29.04.2013
Таблица. ПДК некоторых химических веществ в водных объектах и водоемах.
Извините, страница ещё в разработке.