Генетический груз и его биологическая сущность. Генетический полиморфизм. Классификация. Генетический и мутационный груз и их биологическая сущность

В 1960г Хабби и Левонтин предложили использовать метод электрофореза для определения морфологии белков человека и животных - благодаря заряду происходит распределение белков по слоям (метод очень точен).

Примером могут служить изоферменты (у организмов одного и того же вида есть несколько форм ферментов, катализирующих одну химическую реакцию, но различающихся по строению, активности и физико-химическим свойствам).

16% локусов структурных генов – полиморфны. Существует 30 форм глюкозы-6-фосфатазы. Часто есть сцепление с полом. В клинике давно различают лактатдегидрогеназы (ЛДГ), которых существует 5 форм. Этот фермент осуществляет превращение глюкозы в пируват, концентрация того или иного изофермента в разных органах различает, на чем основана лабораторная диагностика заболеваний.

Беспозвоночные животные полиморфнее, чем позвоночные. Чем полиморфнее популяция, тем более она эволюционно пластична. В популяции большие запасы аллелей не обладают максимальной приспособленностью в данном месте в данное время. Эти запасы встречаются в небольшом количестве и гетерозиготном состоянии. После изменений условий существования они могут стать полезными и начать накапливаться – переходный полиморфизм . Большие генетические запасы помогают популяции реагировать на окружающую среду.

В следствие того, что в популяции отбор поддерживает генетически неустойчивую гетерозиготную структуру, популяция содержит 3 типа особей (АА, Аа, аа). В результате действия естественного отбора происходит генетическая гибель, снижающая репродуктивный потенциал популяции -численность популяции падает. Поэтому генетическая гибель – бремя для популяции. Ее также называют генетическим грузом .

Генетический груз – часть наследственной изменчивости популяции, определяющая появление менее приспособленных особей, подвергающихся избирательной гибели в результате естественного отбора. Генетический груз - неизбежное следствие генетического полиморфизма.

Существует 3 типа генетического груза:

Мутационный;

Сегрегационный;

Субституционный.

Каждый тип генетического груза коррелирует с определенным типом естественного отбора.

Мутационный генетический груз - побочное действие мутационного процесса. Стабилизирующий естественный отбор удаляет вредные мутации из популяции.

Сегрегационный генетический груз – характерен для популяций, использующих преимущество гетерозигот. Удаляются хуже приспособленные гомозиготные особи. Если обе гомозиготы летальны – половина потомков погибает.

Субституционный генетический груз – происходит замена старого аллеля новым. Соответствует движущей форме естественного отбора и переходному полиморфизму.

Генетический полиморфизм создает все условия для протекающей эволюции. При появлении нового фактора в среде популяция способна адаптироваться к новым условиям.

Пример - устойчивость насекомых к различным видам инсектицидов.

Генетический груз в популяциях людей

Впервые генетический груз в популяции человека был определен в 1956г в Северном полушарии и составил 4%, т.е. 4% детей рождались с наследственной патологией.

При этом за последующие годы в биосферу было выброшено более миллиона химических соединений: более 6000 ежегодно, ежедневно - 63000 соединений. Растет влияние источников радиоактивного излучения. Структура ДНК нарушается.

Сегодня 3% детей в США страдают от врожденной умственной отсталости (не обучаются даже в средней школе).

Число врожденных отклонений увеличилось в 1,5 – 2 раза (10%). Медицинские генетики говорят о 12-15%.

Вывод: необходимо беречь окружающую среду.

Так же как и в популяциях других организмов, наследственное разнообразие снижает реальную приспособленность популяций людей. Бремя генетического груза человечества можно оценить, введя понятие летальных эквивалентов. Считают, что число их в пересчете на гамету колеблется от 1,5 до 2,5 или от 3 до 5 на зиготу. Это означает, что то количество неблагоприятных аллелей, которое имеется в генотипе каждого человека, по своему суммарному вредному действию эквивалентно действию 3-5 рецессивных аллелей, приводящих в гомозиготном состоянии к смерти индивидуума до наступления репродуктивного возраста.

При наличии неблагоприятных аллелей и их сочетаний примерно половина зигот, образующихся в каждом поколении людей, в биологическом плане несостоятельна. Такие зиготы не участвуют в передаче генов следующему поколению. Около 15% зачатых организмов гибнет до рождения, 3 - при рождении, 2 - непосредственно после рождения, 3 - умирает, не достигнув половой зрелости, 20 - не вступают в брак, 10% браков бездетны.

Неблагоприятные последствия генетического груза в виде рецессивных аллелей, если они не приводят к гибели организма, проявляются в снижении ряда важных показателей состояния индивидуума, в частности его умственных способностей. Исследования, проведенные на популяции арабов в Израиле, для которой характерна высокая частота близкородственных браков (34% между двоюродными и 4% между дважды двоюродными сибсами), показали снижение умственных способностей у детей от таких браков.

Исторические перспективы человека в силу его социальной сущности не связаны с генетической информацией, накопленной видом Homo sapiens в ходе эволюции. Тем не менее человечество продолжает «оплачивать» эти перспективы, теряя в каждом поколении часть своих членов из-за их генетической несостоятельности.

Примерами генетического груза в человеческих популяциях являются аллели мутантных форм гемоглобина - Гемоглобина С и Гемоглобина S (патологические (аномальные) гемоглобины отличаются от нормального гемоглобина физико-химическими свойствами и молекулярной структурой глобиновой части. Присутствие в эритроцитах аномальных или патологических гемоглобинов приводит к состояниям, которые называются гемоглобинозы или гемоглобинопатии и являются наследственными аномалиями кроветворения).

Hb С - в этом виде гемоглобина происходит замена в 6-м положении v-полипептидной цепи глутаминовой кислоты на лизин. Встречается преимущественно в Западной Африке. Эта мутантная форма снижает пластичность эритроцитов организма. В гетерозиготном организме (один аллель, кодирующий нормальный гемоглобин и один мутантный аллель) 28-44 % гемоглобина представлены гемоглобином С, анемия не развивается. У гомозигот почти весь гемоглобин находится в мутантной форме, вызывая умеренную гемолитическую анемию. У таких пациентов кристаллы гемоглобина С можно обнаружить при анализе мазка крови. Присутствие комбинации гемоглобинов С и S вызывает более тяжёлые формы анемии.

HbS - глутаминовая кислота в 6-м положении v-цепи глобина замещена на валин. Поскольку валин имеет неполярный радикал, располагающийся на поверхности молекулы, в результаты этой замены растворимость гемоглобина резко падает. HbS обладает пониженной стойкостью к разрушению и пониженной кислород-транспортирующей способностью, а заполненные им (или смесью нормального HbА и HbS) эритроциты имеют более короткий срок жизни и быстрее разрушаются в печени или селезенке. Это дает преимущество гетерозиготам в районах с высокой смертностью от малярии, так как мерозоиты малярийного плазмодия не успевают закончить свое развитие в таких эритроцитах. Эритроциты, несущие HbS деформируются из-за кристаллизации гемоглобина в них, приобретают серповидную форму (серповидно-клеточная анемия), теряют пластичность мембраны и способность проходить через мелкие капилляры. Застревая в капиллярах, такие эритроциты разрушаются и образуют тромбы (хроническая капилляропатия).

  • Анкета для оценки инновационного потенциала предприятия.
  • Биологическая изменчивость людей и биогеографическая характеристика среды. Экологическая дифференцировка человечества. Понятие экологических типах людей и их формирования.
  • Генетический полиморфизм - сосуществование в пределах популяции двух или нескольких различных наследственных форм, находящихся в динамическом равновесии в течение нескольких и даже многих поколений. Чаще всего Г. п. обусловливается либо варьирующими давлениями и векторами (направленностью) отбора в различных условиях (например, в разные сезоны), либо повышенной относительной жизнеспособностью гетерозигот). Один из видов Г. п. - сбалансированный Г. п. - характеризуется постоянным оптимальным соотношением полиморфных форм, отклонение от которого оказывается неблагоприятным для вида, и автоматически регулируется (устанавливается оптимальное соотношение форм). В состоянии сбалансированного Г. п. у человека и животных находится большинство генов. Различают несколько форм Г. п., анализ которых позволяет определять действие отбора в природных популяциях.

    Полиморфным признаком называют менделевский (моногенный) признак, по которому в популяции присутствуют как минимум два фенотипа (и, следовательно, как минимум два аллеля), причём ни один из них не встречается с частотой менее 1% (т.е. не является редким). Эти два фенотипа (и, соответственно, генотипа) находятся в состоянии длительного равновесия. Наследственный полиморфизм создаётся мутациями и комбинативной изменчивостью. Часто в популяциях присутствует больше двух аллелей по данному локусу и, соответственно, более чем два фенотипа. Альтернативное полиморфизму явление - существование редких генетических вариантов, присутствующих в популяции с частотой менее 1%. Первый полиморфный признак (система групп крови АВО) был открыт в 1900 г. австрийским учёным К. Ландштейнером (1868-1943).

    Адаптивный потенциал - предел устойчивости культурных растений и сельскохозяйственных животных к неблагоприятным факторам. У культурных растений - к насекомым-вредителям, засоренности посева, болезням, засухе, засолению почвы, холоду. У сельскохозяйственных животных - к холоду, временному дефициту корма, болезням. Повышение А.п. - основное направление адаптивной селекции.

    ГЕНЕТИЧЕСКИЙ ГРУЗ - часть наследственной изменчивости популяции, к-рая определяет появление менее приспособленных особей, подвергающихся избирательной гибели в процессе естеств. отбора. Источниками Г. г. служат мутац. и сегрегац. процессы.

    Соответственно различают мутационный, сегрегационный , а также субституционный (замещающий, или переходный) Г. г. Согласно классич. концепции Г. Мёллера, мутационный груз обусловлен повторным возникновением в популяции мутантных аллелей. Поскольку естеств. отбор направлен против этих аллелей, их частота невелика и они поддерживаются в популяции благодаря мутационному давлению. Рецессивные мутации в гетерозиготном состоянии полностью подавляются или же оказывают слабое повреждающее действие. Согласно балансовой концепции Ф. Г. Добржанского, сегрегационный груз возникает в результате выщепления гетерозиготными родителями менее приспособленных гомозиготных потомков. При этом допускается, что значит, часть мутаций оказывает в гетерозиготном состоянии положит, действие (эффект сверхдоминирования) и постоянно поддерживается отбором в ряду поколений. Субституционный груз возникает при изменении адаптивной ценности особей и сохраняется в популяции, пока один аллель не заместит другой. Каждая популяция несёт в себе Г. г., часть к-рого происходит за счёт повторного мутирования, а др. часть - за счёт эффекта сверхдоминирования (вопрос о соотносит, роли разных типов Г. г. в популяции не решён). В обоих случаях гомозиготы имеют отрицат. проявление. Однако понятие вредности мутаций относительно, т. к. Г. г. одновременно может представлять собой генотипич. резерв эволюции благодаря поддержанию гене-тич. разнообразия и, следовательно, эво-люц. пластичности популяций. Этот резерв может служить для создания гене-тич. систем, к-рые приведут к появлению новых приспособит, особенностей популяций. Классич. пример такого рода эволюционного изменения - распространение мутации меланизма у бабочки берёзовой пяденицы. Изучение Г. г. в виде вредных мутаций у человека (наследств, заболевания) важно для решения прак-тич. вопросов мед. генетики.

    Паразитология (от греческого parasitos – нахлебник и logos – слово, учение) – наука, изучающая паразитов, их взаимодействие с хозяевами, переносчиками и окружающей средой, а также вызываемые ими болезни и меры борьбы с ними. Паразитизм - форма межвидовых взаимоотношений, при которых один вид использует среды организма другого вида как источник питания и место обитания. «Паразиты – это такие организмы, которые используют другие живые организмы в качестве среды обитания и источника пищи, возлагая при этом (частично или полностью) на своих хозяев задачу регуляции своих взаимоотношений с окружающей внешней средой». В.А. Догель. Медицинская гельминтология – наука, изучающая гельминтов – возбудителей болезней человека и вызываемые ими заболевания, а также меры профилактики и борьбы с ними. Заболевания, вызываемые гельминтами, называют гельминтозами. Гельминтозы наиболее распространенные и массовые паразитарные болезни человека, возникающие в результате сложных взаимоотношений между наиболее высокоорганизованными многоклеточными паразитами – гельминтами и организмом хозяина. Большинство гельминтозов характеризуется длительным течением и широким диапазоном клинических проявлений – от бессимптомных до тяжелых форм. Термин «гельминтозы» (от греческого helmins – червь, гельминт) введен Гиппократом, который подробно описал клинику некоторых из этих болезней (аскаридоза, энтеробиоза, тениозов, эхинококкоза, шистосомоза). Иногда эти болезни называют глистными инвазиями. По мнению ведущих специалистов, в действительности гельминтами в России ежегодно инвазируется около 15 млн. человек. Этиология и эпидемиология гельминтозовВозбудители гельминтозов низшие черви – гельминты относятся к надтипу Scolecida, который объединяет многоклеточных беспозвоночных животных, имеющих двусторонне-симметричное, вытянутое в длину тело, покрытое кутикулой. Стенки тела сколецид образованы кожно-мускульным мешком; их ткани формируются из трех зародышевых листков. Кожно-мускульный мешок состоит из гладких или поперечно-полосатых мышц и покровных тканей. 1. По специфичности питания:а) облигатные (специфичные) – паразиты обязательные для данного вида организмов;б) факультатиные (неспецифичные) – паразиты, которые способны вести свободный способ жизни, но попадая в организм хозяина проходят в нём часть цикла развития и нарушают его жизнедеятельность.2. По времени контакта:а) постоянные – паразиты, которые всю жизнь или значительную его часть проводят на или в организме хозяина;б) временные – паразиты, которые попадают на хозяина только для питания.3. По месту локализации:а) ектопаразиты – паразиты, живущие на покровах хозяина;б) ендопаразиты – паразиты, живущие внутри хозяина;в) моноксенные – паразиты, не способные вступать в симбиоз с другими паразитами;г) гетероксеные – паразиты живущие в симбиозе с другими паразитами.4. По экологической принадлежности:а) биопротисты- паразиты подцарства простейших, развивахщиеся с промежуточным хозяином или на всех стадиях жизненного цикла не выходят из организма хозяина и не образуют цисты;б) геопротисты- паразитов подцарства простейших, развивахщиеся без участия промежуточных хозяев, образуют цисты и одну из стадий развития проходят вне живого организма, во внешней среде.Патогенность – способность возбудителя вызывать специфический инфекционный процесс(заболевание) у животных определённого вида или у человека.Возбудитель инфекции (инвазии)- живое существо (бактерия, гриб, многоклеточный организм, животное) или вирус, которое способно попасть в организм и вызвать в нём патологический процесс.Хозяин возбудителя - вид (виды) животных, обеспечивающий циркуляцию возбудителя в природному очаге. Могут быть:а) окончательными – вид (виды) животных, который из-за особенностей способа жизни и взаимоотношений с возбудителем обеспечивает постоянство циркуляции возбудителя в конкретном очаге;б) промежуточным (дополнительным) – вид (виды) животных, который часто привлекается в эпизоотический процесс и способствует в той или иной степени распространению и интенсификации эпизоотий, через особенности экологии и взаимоотношений с возбудителем, неспособны самостоятельно обесбепечить его постоянную циркуляцию в природном очаге;в) резервуарными – вид (виды) животных, в которых паразиты накапливаются, сохраняются в межепизоотические периоды;г) облигатные – вид (виды) животных, который является обязательным в цикле развития данного паразита;д) факультативне – вид (виды) животных, которые не являються обязательными в цикле развития паразита и без которых они могут развиваться.Переносчик - кровососущие членистоногие, способные в природных условиях передавать возбудителя от донора к реципиенту. Различают:а) основного(специфического) – вид (виды) членистоногих, который в силу особенностей жизненного цикла, численности и способности передавать возбудителя обеспечивает постоянную циркуляцию его в природном очаге. В некоторых случаях одновременно может быть хозяином возбудителя;б) механического (неспецифического) – вид (виды) членистоногих, в котором паразит не проходит ни единого этапа цикла развития и не является обязательным для существования его.Механизм передачи - эволюционно сложный способ, при помощи которого возбудитель передаётся от зараженного организма к восприимчивому (склонного к полному заболеванию). Состоит из 3-х последовательно и закономерно следующих одна за другой фаз:а) выход (выведение) возбудителя из зараженного организма во внешнюю среду;б) пребывание возбудителя во внешней среде;в) проникновение возбудителя в здоровый организм, приводящее к заболеванию.Путь передачи – форма реализации механизма передачи от источника инфекции к восприимчивому организму при участии объектов окружающей среды.Различают 3 пути передачи возбудителя:а) контактно-бытовой – передача может осуществлятся при непосредственном общении (прямой контакт – влагалищная трихомонада) или через зараженные предметы окружающей среды (непрямой контакт – чесоточный зудень);б) механический:)a алиментарный(фекально-оральный) - характерный для передачи кишечных инфекций. Факторы передачи возбудителя – пищевые продукты, вода, грязные руки, мухи, разные предметы обихода;)b аэрогенный (воздушно-капельный) – передача может осуществляться при разговоре, крике, плаче и особенно чхании и кашле с капельками слизи или вдыхании пыли (ротовая амёба, ротовая трихомонада, токсоплазма); собственно механический (перкутантный) – передача может осуществляться через кожу хозяина (анкилостома);gв) трансмиссивный – передача осуществляется живыми переносчиками, которые часто являются основными хозяевами (плазмодии, лейшмании и др.).Факторы передачи инфекции – конкретные объекты, элементы окрущающей среды, при помощи которых возбудитель передаётся от зараженного организма к здоровому.

    Вывод: беречь окружающую среду.

    Генетический груз – часть наследственной изменчивости популяции, определяющая появление менее приспособленных особей, подвергающихся избирательной гибели в результате естественного отбора.

    Существует 3 типа генетического груза.

    1. Мутационный.

    2. Сегрегационный.

    3. Субституционный.

    Каждый тип генетического груза коррелирует с определенным типом естественного отбора.

    Мутационный генетический груз - побочное действие мутационного процесса. Стабилизирующий естественный отбор удаляет вредные мутации из популяции.

    Сегрегационный генетический груз – характерен для популяций, использующих преимущество гетерозигот. Удаляются хуже приспособленные гомозиготные особи. Если обе гомозиготы летальны – половина потомков погибает.

    Субституционный генетический груз – происходит замена старого аллеля новым. Соответствует движущей форме естественного отбора и переходному полиморфизму.

    Впервые генетический груз в популяции человека был определен в 1956г в Северном полушарии и составил 4%. Т.е. 4% детей рождались с наследственной патологией. За последующие годы было введено более миллиона соединений в биосферу (более 6000 ежегодно). Ежедневно – 63000 химических соединений. Растет влияние источников радиоактивного излучения. Структура ДНК нарушается.

    Генетическая гибель- гибель организмов, обусловленная естественны отбором, она уменьшает репродуктивный потенциал популяции.

    Генетический полиморфизм: классификация. Адаптивный потенциал популяции человека


    Полиморфизм
    – существование в единой панмиксной популяции двух и более резко различающихся фенотипов.

    Полиморфизм бывает:

    Хромосомный;

    Переходный;

    Сбалансированный.

    Генетический полиморфизм наблюдается, когда ген представлен более чем одним аллелем. Пример – системы групп крови.

    3 аллеля -А, В, О.

    J?J?, J?J° - А

    J?Jв, Jв J° - В

    J?Jв - АВ

    J° J° - О

    Генетический полиморфизм широко распространен и лежит в основе наследственной предрасположенности к заболеваниям. Однако болезни наследственных предрасположений проявляются лишь при взаимодействии генов и среды. Условия среды – недостаток или избыток питательных веществ, наличие психогенных факторов, токсических веществ и др.

    Генетический полиморфизм создает все условия для протекающей эволюции. При появлении нового фактора в среде популяция способна адаптироваться к новым условиям. Например, устойчивость насекомых к различным видам инсектицидов.

    Хромосомный полиморфизм – между особями имеются различия по отдельным хромосомам. Это результат хромосомных аббераций. Есть различия в гетерохроматиновых участках. Если изменения не имеют патологических последствий – хромосомный полиморфизм, характер мутаций – нейтрален.

    Переходный полиморфизм – замещение в популяции одного старого аллеля новым, который более полезен в данных условиях. У человека есть ген гаптоглобина - Нр1f, Hp 2fs. Старый аллель - Нр1f, новый - Нр2fs. Нр образует комплекс с гемоглобином и обусловливает слипание эритроцитов в острую фазу заболеваний.

    Сбалансированный полиморфизм – возникает, когда ни один из генотипов преимущества не получает, а естественный отбор благоприятствует разнообразию.

    Широкий полиморфизм помогает популяции приспосабливаться к условиям среды. У здоровых людей нет противоречия между средой и генотипом, если возникает это противоречие - проявляются болезни наследственного предрасположения.

    Есть моногенные и полигенные болезни.

    · Моногенные болезни наследственного предрасположения – наследственные заболевания, проявляющиеся из-за мутации одного гена или проявляющиеся при действии определенного фактора среды (аутосомно-рецессивные или сцепленные с Х-хромосомой).

    Проявляются при воздействии факторов:

    Физических;

    Химических;

    Пищевых;

    Загрязнения среды.

    Пигментная ксеродерма - веснушчатая кожа особого типа.

    Дети не переносят УФ-свет возникают злокачественные опухоли, такие дети умирают от метастаз еще до 15 лет. Не переносят также и гамма-лучей.

    · Полигенные болезни наследственного происхождения – такие болезни, которые возникают при действии многих факторов (мультифакториальные) и в результате взаимодействия многих генов.

    Установить диагноз в таком случае очень сложно, т.к. действует много факторов, и появляется новое качество при взаимодействии факторов.

    Генетический полиморфизм человечества: масштабы, факторы формирования. Значение генетического разнообразия в прошлом, настоящем и будущем человечества (медико-биологический и социальный аспекты).

    Генетический полиморфизм (наследственное разнообразие) - это сохранение в генофонде популяции различных аллелей одного и того же гена в концентрации, превышающей по наиболее редкой форме 1%. Это разнообразие поддерживается отбором, но создается мута­ционным процессом. Естественный отбор в этом случае может иметь два механизма: отбор против гомозигот в пользу гетерозигот и отбор против гетерозигот в пользу гомозигот.

    В первом случае отбором сохраняются гетерозиготные генотипы популяции и устраняются доминантные и рецессивные гомозиготы. Во втором случае накапливаются в генофонде гомозиготные геноти­пы и происходит устранение гетерозигот. При действии первого меха­низма возникает балансированный полиморфизм, при действии вто­рого - адаптационный.

    Адаптационный полиморфизм возникает в том случае, когда в различных, но закономерно изменяющихся условиях среды отбор благоприятствует разным генотипам. В человеческих пуляциях это более редкая форма полиморфизма. Наиболее часто проявляется балансированный полиморфизм. Он очень распрост­ранен в человеческих популяциях, усиливает гетерозиготизацию, а значит, устойчивость организмов к воздействию факторов среды. Сред-няя степень гетерозиготности в человеческих популяциях составляет 6,7%. Генетическое разнообразие в популяциях человека приводит к фенотипическому разнообразию. Наиболее значительно оно по бел­ковому составу, например по ферментам в генетической системе че­ловека 30% локусов имеют разнообразные гены. У человека имеется около ста полиморфных систем. Значение балансированного полиморфизма заключается в том, что он поддерживает беспредельную генетическую гетерогенность популяции, обеспечивает генетическую индивидуальность каждого человека.

    Для медицины изучение балансированного полиморфизма пред­ставляет особую важность в связи с тем, что, во-первых, проявляется неравномерность распределения наследственных заболеваний в по­пуляциях; во-вторых, различается степень предрасположенности к болезням; в-третьих, отмечается индивидуальный характер течения болезни и разная ее тяжесть; в-четвертых, имеет место различная ответная реакция на лечебные мероприятия. Отрицательное прояв­ление балансированного полиморфизма проявляется, прежде всего, в наличии генетического груза.

    Билет 92.

    Макроэволюция. Ее соотношение с микроэволюцией. Формы филогенеза (эволюции групп): филетическая и дивергентная эволюция, конвергентная эволюция и параллелизм. Примеры.

    Макроэволюция – это процесс формирования крупных систематических единиц: новых родов, семейств и т.д. Макроэволюция осуществляется на протяжении огромных промежутков времени, и непосредственно изучать ее невозможно. Тем не менее в основе макроэволюции лежат те же движущие силы, что и в основе микроэволюции: наследственная изменчивость, естественный отбор и репродуктивное разобщение.

    Понятие макроэволюции. Понятием «макроэволюция» обозначают происхождение надвидовых таксонов (родов, отрядов, классов, типов, отделов). В общем смысле макроэволюцией можно назвать развитие жизни на Земле в целом, включая ее происхождение. Макроэволюционным событием считается также возникновение человека, по многим признакам отличающегося от других биологических видов.

    Между микро- и макроэволюцией нельзя провести резкую грань, потому что процесс микроэволюции, первично вызывающий дивергенцию популяций (вплоть до видообразования), продолжается без какого-либо перерыва и на макроэволюци-онном уровне внутри вновь возникших форм.

    Отсутствие принципиальных различий в протекании микро- и макроэволюции позволяет рассматривать их как две стороны единого эволюционного процесса и применять для его анализа понятия, разработанные в теории микроэволюции, поскольку макроэволюционные явления (возникновение новых семейств, отрядов и других групп) охватывают десятки миллионов лет и исключают возможность их непосредственного экспериментального исследования.

    Среди форм филогенеза выделяют пер­вичные - филетическую эволюцию и ди­вергенцию, лежащие в основе любых изме­нений таксонов.

    Филетическая эволюция - это изме­нения, происходящие в одном филогене­тическом стволе (без учета всегда воз­можных дивергентных ответвлений). Без таких изменений не может протекать никакой эволюционный процесс, и поэтому филетическую эволюцию можно счи­тать одной из элементарных форм эво­люции. Филетическая эволю­ция происходит в пределах любой ветви древа жизни: любой вид развивается во вре­мени, и как бы ни были похожи между со­бой особи вида (разделенные, скажем, не­сколькими тысячами поколений в неизбеж­но меняющейся среде), вид в целом должен за это время в чем-то измениться. Это фи­летическая эволюция на микроэволюцион­ном уровне. Проблемы филетической эво­люции на макроэволюционном уров­не - изменение во времени близкородст­венной группы видов.

    В «чистом» виде (как эволюция без ди­вергенции) филетическая эволюция может характеризовать лишь сравнительно корот­кие периоды эволюционного процесса

    Дивергенция - другая первичная фор­ма эволюции таксона. В результате измене­ния направления отбора в разных условиях происходит дивергенция (расхождение) вет­вей древа жизни от единого ствола предков.

    Начальные стадии дивергенции можно наблюдать на внутривидовом (микроэволю­ционном) уровне, на примере возникнове­ния различий по каким-либо признакам в отдельных частях видового населения. Так, дивергенция популяций может приводить к видообразованию

    Уже Ч. Дарвин подчеркивал огромную роль дивергенции в процессе развития жиз­ни на Земле. Таков главный путь возникно­вения органического многообразия и посто­янного увеличения «суммы жизни». Меха­низм дивергентной эволюции основан на действии элементарных эволюционных фак­торов. В результате изоляции, волн жизни, мутационного процесса и в особенности естественного отбора популя­ции и группы популяций приобретают и со­храняют в эволюции признаки, все более заметно отличающие их от родительского вида. В какой-то момент эволюции (этот «момент» может длиться много поколений, а для эволюции даже сотни поколе­ний - мгновение) накопившиеся различия окажутся настолько значительными, что приведут к распаду исходного вида на два (и более) новых.

    Несмотря на принципиальное сходство процессов дивергенции внутри вида (микро­эволюционный уровень) и в группах более крупных, чем вид (макроэволюционный уро­вень), между ними существует и важное различие, состоящее в том, что на микро­эволюционном уровне процесс диверген­ции обратим: две разошедшиеся популя­ции могут легко объединиться путем скре­щивания в следующий момент эволюции и существовать вновь как единая популяция. Процессы же дивергенции в макроэволю­ции необратимы: раз возникший вид не может слиться с прародительским (в ходе филетической эволюции и тот и другой вид неизбежно изменится, и если даже какие-то части этих видов в будущем вступят на путь сетчатой эволюции, или семгенеза, то это не будет возврат к старому.

    Дивергенция и филетическая эволю­ция - основа всех изменений филогенети­ческого древа и первичные формы протека­ния процесса эволюции любого масштаба в природе.

    Самые сложные явления эволюции - это филогенетический параллелизм и филогенетическая конвергенция

    Параллелизм - это процесс филетического развития в сходном направлении двух или нескольких генетически близких таксонов. Довольно часто в качестве одной из форм филогенеза называют конвергенцию. Однако конвергентно может возникать только морфофизиологическое сходство по отдельным или нескольким признакам. Образование одного таксона выше уровня вида из двух различных, по-видимому, невозможно.

    Очень важно учитывать, что явления направленной эволюции выражаются не только в развитии в одном направлении, но и чаще всего в независимом приобретении организмами ряда общих признаков, отсутствовавших у предков. Если при этом проявляется прямая зависимость специфики приобретаемого признака от функции (например, веретеновидная форма тела у нектонных организмов), то мы говорим о конвергенциях. Если же наряду с функциональными моментами отчетливо проявляется зависимость приобретаемого признака от общих унаследованных особенностей организма, то мы предпочитаем говорить о филогенетических параллелизмах (Татаринов,1983, 1984). Параллелизмы особенно характерны для организмов, связанных относительно тесным родством. Обычно именно этот критерий, измеряемый рангом таксона, кладется в основу различения параллелизмов и конвергенции.

    Билет 93.

    Макроэволюция. Типы (направления) эволюции групп. Арогенез и ароморфозы. Аллогенез и идиоадаптации. Примеры.

    В зависимости от того, изменяется ли уровень организации в эволюционирующих группах, выделяют два основных типа эволюции: аллогенез и арогенез.

    При аллогенезе у всех представителей данной группы сохраняются без изменения основные черты строения и функционирования систем органов, благодаря чему уровень организации их остается прежним. Аллогенная эволюция происходит в пределах одной адаптивной зоны - совокупности экологических ниш, различающихся в деталях, но сходных по общему направлению действия основных средовых факторов на организм данного типа. Интенсивное заселение конкретной адаптивной зоны достигается благодаря возникновению у организмов идиоадаптаций - локальных морфофизиологических приспособлений к определенным условиям существования. Пример аллогенеза с приобретением идиоадаптаций к разнообразным условиям обитания в отряде насекомоядных млекопитающих

    Арогенез - такое направление эволюции, при котором у некоторых групп внутри более крупного таксона появляются новые морфофизиологические особенности, приводящие к повышению уровня их организации. Эти новые прогрессивные черты организации называют ароморфозами. Ароморфозы позволяют организмам заселять принципиально новые, более сложные адаптивные зоны. Так, арогенез ранних земноводных был обеспечен появлением у них таких основных ароморфозов, как пятипалые конечности наземного типа, легкие и два круга кровообращения с трехкамерным сердцем. Завоевание адаптивной зоны с более сложными для жизни условиями (наземной по сравнению с водной, воздушной по сравнению с наземной) сопровождается активным расселением в ней организмов с появлением у них локальных идиоадаптаций к различным экологическим нишам.

    Таким образом, периоды арогенной эволюции группы могут сменяться периодами аллогенеза, когда в результате возникающих идиоадаптаций новая адаптивная зона заселяется и используется наиболее эффективно. Если в ходе филогенеза организмы осваивают более 49

    Билет 94.

    Макроэволюция. Биологический прогресс и биологический регресс, их основные критерии. Эмпирические правила эволюции групп. Примеры.

    Прогресс и его роль в эволюции. На протяжении всей истории живой природы ее развитие осуществляется от более простого к более сложному, от менее совершенного к более совершенному, т.е. эволюция носит прогрессивный характер. Таким образом, общий путь развития живой природы - от простого к сложному, от примитивного к более совершенному. Именно этот путь развития живой природы и обозначают термином «прогресс». Однако всегда закономерно возникает вопрос: почему же в современной фауне и флоре одновременно с высокоорганизованными существуют низкоорганизованные формы? Когда подобная проблема встала перед Ж.Б. Ламарком, он вынужден был прийти к признанию постоянного самозарождения простых организмов из неорганической материи. Ч. Дарвин же считал, что существование высших и низших форм не представляет затруднений для объяснения, так как естественный отбор, или выживание наиболее приспособленных, не предполагает обязательного прогрессивного развития - он только дает преимущество тем изменениям, которые благоприятны для обладающего ими существа в сложных условиях жизни. А если от этого нет никакой пользы, то естественный отбор или не будет вовсе совершенствовать эти формы, или усовершенствует их в очень слабой степени, так что они сохранятся на бесконечные времена на их современной низкой ступени организации.

    Процесс эволюции идет непрерывно в направлении максимального приспособления живых организмов к условиям окружающей среды (т. е. происходит возрастание приспособленности потомков по сравнению с предками). Такое возрастание приспособленности организмов к окружающей среде А.Н. Северцов назвал биологическим прогрессом. Постоянное возрастание приспособленности организмов обеспечивает увеличение численности, более широкое распространение данного вида (или группы видов) в пространстве и разделение на подчиненные группы.

    Критериями биологического прогресса являются:

    • увеличение численности особей;
    • расширение ареала;
    • прогрессивная дифференциация - увеличение числа систематичес ких групп, составляющих данный таксон.

    Эволюционный смысл выделенных критериев заключается в следующем. Возникновение новых приспособлений снижает элиминацию особей, в результате средний уровень численности вида возрастает. Стойкое повышение численности потомков по сравнению с предками приводит к увеличению плотности населения, что, в свою очередь, через обострение внутривидовой конкуренции вызывает расширение ареала; этому же способствует и возрастание приспособленности. Расширение ареала приводит к тому, что вид при расселении сталкивается с новыми факторами среды, к которым необходимо приспосабливаться. Так происходит дифференциация вида, усиливается дивергенция, что ведет к увеличению дочерних таксонов. Таким образом, биологический прогресс - это наиболее общий путь биологической эволюции.

    В работах по теории эволюции иногда встречается термин «морфофи-зиологический прогресс». Под морфофизиологическим прогрессом понимают усложнение и совершенствование организации живых организмов.

    Регресс и его роль в эволюции. Биологический регресс - явление, противоположное биологическому прогрессу. Он характеризуется снижением численности особей вследствие превышения смертности над рождаемостью, сужением или разрушением целостности ареала, постепенным или быстрым уменьшением видового многообразия группы. Биологический регресс может привести вид к вымиранию. Общая причина биологического регресса - отставание темпов эволюции группы от скорости изменения внешней среды. Эволюционные факторы действуют непрерывно, в результате чего происходит совершенствование приспособлений к изменяющимся условиям среды. Однако когда условия изменяются очень резко (очень часто из-за непродуманной деятельности человека), виды не успевают сформировать соответствующие приспособления. Это приводит к сокращению численности видов, сужению их ареалов, угрозе вымирания. В состоянии биологического регресса находятся многие виды. Среди животных это, например, крупные млекопитающие, такие как уссурийский тигр, гепард, белый медведь, среди растений - гинкговые, представленные в современной флоре одним видом - гинкго двулопастным.

    Происхождение и развитие крупных групп организмов (типов, отделов, классов) называется макроэволюцией. Развитие живой природы от более простых форм к более сложным называется прогрессом. Выделяют биологический и морфофизиологический прогресс. Явление, противоположное прогрессу, называется регрессом. Биологический регресс может привести к вымиранию группы в целом или большей части ее видов.

    «Правила» эволюции групп

    Сопоставления характера развития изу­ченных ветвей древа жизни позволили уста­новить некоторые общие черты эволюции групп. Эти эмпирические обобщения назы­ваются «правилами макроэволюции».

    Правило необратимости эволюции (Л. Долло, 1893) гласит, что эволю­ция - процесс необратимый и организм не может вернуться к прежнему со­стоянию, уже осуществленному в ряду его предков. Так, если в эволюции назем­ных позвоночных на каком-то этапе от при­митивных амфибий возникли рептилии, то рептилии, как бы ни шла дальше эволюция, не могут вновь дать начало амфибиям. Вер­нувшись в просторы Мирового океана, реп­тилии (ихтиозавры) и млекопитающие (киты) никогда не становятся рыбами. Можно сказать, что если какая-то группа организмов в процессе эволюции вновь «возвращается» в адаптивную зону сущест­вования ее предков, то приспособление к этой зоне у «вернувшейся» группы будет неизбежно иным.

    Правило прогрессирующей специали­зации (Ш. Депере, 1876) гласит, что груп­па, вступившая на путь специализации, как правило, в дальнейшем развитии бу­дет идти по пути все более глубокой специализации. Если в процессе эволюции одна из групп позвоночных, скажем ветвь рептилий, приобрела адаптации к полету, то на после­дующем этапе эволюции это направление адаптации сохраняется и усиливается (на­пример, птеродактили в свое время все бо­лее приспосабливались к жизни в воздухе). Поскольку организм определенного строе­ния не может жить в любой среде, в выборе адаптивной зоны или ее части группа огра­ничена особенностями строения. Если эти особенности несут черты специализации, то организм обычно «выбирает» (точнее, в результате борьбы за существование попа­дает во все более частную среду), где его специализированные приспособления могут обеспечить успешное выживание и оставле­ние потомства. Но обычно это ведет лишь к дальнейшей специализации.

    Частный случай этого общего правила прогрессивной специализации - увеличе­ние размеров тела особей в процессе эво­люции позвоночных животных. Увеличение размеров тела, с одной стороны, связано с более экономным обменом веществ (умень­шение величины относительной поверхно­сти тела) и должно рассматриваться как ча­стный случай специализации. С другой сто­роны, дает хищнику преимущества в напа­дении, а жертве - преимущества в защите. Связь организмов в цепях питания неиз­бежно вызывает увеличение размеров тела во многих группах. У представителей других групп происходит уменьшение размеров тела. Например, при переходе к подземному образу жизни и обитанию в закрытых норах многие грызуны вторично стали более мел­кими. Интересно, что сопряженной эволю­ции подверглась ласка (Mustela nivalis) - один из наиболее облигатных потребителей мышевидных грызунов в средней полосе. Ласка приобрела размеры тела, позволяющие преследовать мелких грызунов в норах

    На этом примере видно, что выделяемые эмпирические эволюцион­ные правила имеют относительное значе­ние. Характер эволюции зависит в конечном счете от конкретных связей группы с эле-ментами биотической и абиотической среды (всегда при постоянном контроле отбора, идущем на уровне микроэволюционных взаимодействий внутри популяций и биогео­ценозов).

    Правило происхождения от неспециа­лизированных предков (Э. Коп, 1896)гла­сит, что обычно новые крупные группы берут начало не от специализирован­ных представителей предковых групп, а от сравнительно неспециализирован­ных. Млекопитающие возникли не от высо­коспециализированных форм рептилий,а от неспециализированных. Причина происхождения новых групп от неспециализированных предков в том, что отсутствие специализации определяет воз­можность возникновения новых приспособ­лений принципиально иного характера

    Правило происхождения от неспециа­лизированных предков оказывается, однако, далеко не всеобщим. Редко бывает так, что­бы специализация затронула в равной сте­пени все без исключения органы и функции организма (вида)

    Правило адаптивной радиации (Г.Ф. Осборн, 1902) гласит, что филогенез любой группы сопровождается разделе­нием группы на ряд отдельных филоге­нетических стволов, которые расхо­дятся в разных адаптивных ходит за пределы узких условий. Другие дают возможность выхода группы в новую адаптивную зону и непременно ведут к бы­строму эволюционному развитию групп в новом направлении. По существу, это правило не что иное, как принцип дивергенции, подробно описанный Ч. Дарвином (1859) при обосно­вании гипотезы естественного отбора. Дар­вин говорил о внутривидовой приспособи­тельной дивергенции к различной пище, не­сколько различным условиям существова­ния и т. п. и рассматривал ее как обязатель­ный этап образования новых видов.

    Правило чередования главных на­правлений эволюции . Арогенная эволю­ция чередуется с периодами аллогенной эволюции во всех группах. И.И. Шмаль­гаузен (1939) сформулировал это правило как чередование фаз адаптациоморфоза.

    Правило усиления интеграции биоло­гических систем (И.И. Шмальгаузен, 1961) можно сформулировать так: биологические системы в процессе эволюции стано­вятся все более интегрированными, со все более развитыми регуляторными механизмами, обеспечивающими такую интеграцию.

    Сейчас в общих чертах известны основ­ные направления такой интеграции, идущей на уровне популяции и биогеоценозов. На уровне популяции это означает поддержа­ние определенного уровня гетерозиготности, которая является основой интеграции всего популяционного генофонда в слож­ную, лабильную и одновременно устойчивую генетическую систему, способную к са­морегуляции (численности, структуры), генетико-экологическому гомеостазису.

    Наименование параметра Значение
    Тема статьи: ГЕНЕТИЧЕСКИЙ ГРУЗ
    Рубрика (тематическая категория) Экология

    НАСЛЕДСТВЕННЫЙ ПОЛИМОРФИЗМ ПРИРОДНЫХ ПОПУЛЯЦИЙ.

    Процесс видообразования с участием такого фактора, как естественный отбор, создает разнообразие живых форм, приспособленных к условиям обитания. Среди разных генотипов, возникающих в каждом поколении благодаря резерву наследственной изменчивости и перекомбинации аллел?ей, лишь ограниченное число обусловливает максимальную приспособленность к конкретной среде. Можно предположить, что дифференциальное воспроизведение этих генотипов в конце приведет к тому, что генофонды популяций будут представлены лишь ''удачными'' аллелями и их комбинациями. В итоге произойдет затухание наследственной изменчивости и повышение уровня гомозиготности генотипов.

    В природных популяциях, однако, наблюдается противоположное состояние. Большинство организмов являются высокогетерозиготными. Отдельные особи гетерозиготны частично по разным локусам, что повышает суммарную гетерозиготность популяции. Так, методом электрофореза на 126 особях рачка Euphausia superba, представляющего главную пищу китов в антарктических водах, изучали 36 локусов, кодирующих первичную структуру ряда ферментов. По 15 локусам изменчивость отсутствовала. По 21 локусу имелось по 3-4 аллеля. В целом в этой популяции рачков 58% локусов были гетерозиготными и имели по 2 аллеля и более. В среднем у каждой особи по 5,8% гетерозиготных локусов. Средний уровень гетерозиготности у растений составляет 17%, беспозвоночных - 13,4, позвоночных - 6,6%. У человека данный показатель равен 6,7%. Столь высокий уровень гетерозиготности нельзя объяснить только мутациями в силу относительной их редкости.

    Наличие в популяции нескольких равновесно сосуществующих генотипов в концентрации, превышающей по наиболее редкой форме 1%1, называют полиморфизмом. Наследственный полиморфизм создается мутациями и комбинативной изменчивостью. Он поддерживается естественным отбором и бывает адаптационным (переходным) и гетерозиготным (балансированным).

    Адаптационный полиморфизм возникает, в случае если в различных, но закономерно изменяющихся условиях жизни отбор благоприятствует разным генотипам. Так, в популяциях двухточечных божьих коровок Adalia bipunctata при уходе на зимовку преобладают черные жуки, а весной-красные (рис. 11.7). Это происходит потому, что красные формы лучше переносят холод, а черные интенсивнее размножаются в летний период.

    Рис. 11.7. Адаптационный полиморфизм у двухточечных божьих коровок:

    а- соотношение черной (зачернено) и красной форм при весеннем (В) и ос?еннем (О) сборе; б- частота доминантного аллеля черной окраски в весенней и ос?енней популяциях

    Балансированный полиморфизм возникает, в случае если отбор благоприятствует гетерозиготам в сравнении с рецессивными и доминантными гомозиготами. Так, в опытной численно равновесной популяции плодовых мух Drosophila melanogaster, содержащей поначалу много мутантов с более темными телами (рецессивная мутация ebony), концентрация последних быстро падала, пока не стабилизировалась на уровне 10% (рис. 11.8). Анализ показал, что в созданных условиях гомозиготы по мутации ebony и гомозиготы по аллелю дикого типа менее жизнеспособны, чем гетерозиготные мухи. Это и создает состояние устойчивого полиморфизма по соответствующему локусу.

    Рис. 11.8. Балансированный полиморфизм по локусу окраски тела в опытной популяции плодовых мух: I -серая муха (дикий тип), II- мутантная муха с черной окраской тела

    Явление сел?ективного преимущества гетерозигот называют сверхдоминантностью. Механизм положительного отбора гетерозигот различен. Правилом является зависимость интенсивности отбора от частоты, с которой встречается соответствующий фенотип (генотип). Так, рыбы, птицы, млекопитающие предпочитают обычные фенотипические формы добычи, ''не замечая'' редких.

    В качестве примера рассмотрим результаты наблюдений, выполненных на обыкновенной наземной улитке Cepaea nemoralis, раковина у которой бывает желтая, различных оттенков коричневого цвета#` розовая, оранжевая или красная. На раковин?е должна быть до пяти темных полос. При этом коричневая окраска доминирует над розовой, а они обе - над желтой. Полосатость является рецессивным признаком. Улитки поедаются дроздами, использующими камень как наковальню, чтобы разбить раковину и добраться до тела моллюска. Подсчет числа раковин разной окраски вокруг таких ''наковален'' показал, что на траве или лесной подстилке, фон которых достаточно однороден, добычей птиц чаще оказывались улитки с розовой и полосатой раковиной. На пастбищах с грубыми травами или в живых изгородях с более пестрым фоном чаще поедались улитки, раковины которых окрашены в светлые тона и не имели полос.

    Самцы относительно редких генотипов могут иметь повышенную конкурентоспособность за самок. Сел?ективное преимущество гетерозигот обусловливается также явлением гетерозиса. Повышенная жизнеспособность межлин?ейных гибридов отражает, по-видимому, результат взаимодействия аллельных и неаллельных генов в системе генотипов в условиях гетерозиготности по многим локусам. Гетерозис наблюдается в отсутствие фенотипического проявления рецессивных аллел?ей. Это сохраняет скрытыми от естественного отбора неблагоприятные и даже летальные рецессивные мутации.

    В силу разнообразия факторов среды обитания естественный отбор действует одновременно по многим направлениям. При этом конечный результат зависит от соотношения интенсивности разных векторов отбора. Конечный результат естественного отбора в популяции зависит от наложения многих векторов отборов и контротборов. Благодаря этому достигается одновременно и стабилизация генофонда, и поддержание наследственного разноообразия.

    Балансированный полиморфизм придает популяции ряд ценных свойств, что определяет его биологическое значение. Генетически разнородная популяция осваивает более широкий спектр условий жизни, используя среду обитания более полно. В ее генофонде накапливается больший объём резервной наследственной изменчивости. В результате она приобретает эволюционную гибкость и может, изменяясь в том или ином направлении, компенсировать колебания среды в ходе исторического развития.

    В генетически полиморфной популяции из поколения в поколение рождаются организмы генотипов, приспособленность которых неодинакова. В каждый момент времени жизнеспособность такой популяции ниже уровня, который был бы достигнут при наличии в ней лишь наиболее ''удачных'' генотипов. Величину, на которую приспособленность реальной популяции отличается от приспособленности идеальной популяции из ''лучших'' генотипов, возможных при данном генофонде, называют генетическим грузом. Он является своеобразной платой за экологическую и эволюционную гибкость. Генетический груз - неизбежное следствие генетического полиморфизма.

    ГЕНЕТИЧЕСКИЙ ГРУЗ - понятие и виды. Классификация и особенности категории "ГЕНЕТИЧЕСКИЙ ГРУЗ" 2017, 2018.

    Генетический груз популяции

    Как уже было показано в предыдущей главе, приблизительно у 70%

    Таблица 5. Значения
    коэффициентов инбридинга
    при разных типах скрещивания

    людей в течение жизни проявляются те или иные наследственные аномалии, приводящие к серьезным последствиям для здоровья. Исходя из этого можно заключить, что популяции человека существенно отягощены различными мутациями, которые либо проявляются доминантно, либо выщепляются в каждом поколении благодаря появлению гомозигот. Однако в большей своей части, подобно айсбергу, они остаются скрытыми в генофонде популяции в гетерозиготном состоянии, составляя генетический груз популяции.

    Термин "генетический груз популяции" отражает одно из фундаментальных понятий популяционной генетики. Впервые генетический груз в популяциях был выявлен в 20-30-х гг. в исследованиях природных популяций дрозофил.

    В 1929 гг. выдающийся русский генетик С.С. Четвериков с группой сотрудников провел генетические исследования дрозофил из популяций Крыма путем инбридинга потомства отловленных самок. В инбредных линиях были обнаружены разнообразные видимые мутации, которые у исходных фенотипически нормальных самок были скрыты в гетерозиготном состоянии. В результате этих работ впервые была выявлена насыщенность популяций мутациями, комплекс которых, как

    предположил С.С. Четвериков, является эволюционным резервом вида. В дальнейшем в 1931-1934 гг. Н.П. Дубинин с группой сотрудников при исследовании генетики природных популяций дрозофилы обнаружил, что дрозофилы из природных популяций необычайно часто несут в своем генотипе рецессивные летальные мутации. Так, в популяции Кутаиси более 40% дрозофил оказались гетерозиготными по летальным генам. Каждый из этих генов в гомозиготном состоянии приводил к гибели оплодотворенных яйцеклеток.

    Открытие отягощенности особей из природных популяций дрозофилы летальными мутациями положило начало учению о генетическом грузе популяций. В дальнейшем стало ясно, что генетический груз может быть выявлен практически в любой популяции разных видов - будь то растения, животные или человек.

    Американский генетик Г. Меллер и другие исследователи развили учение о генетическом грузе, показав, что он слагается из ряда категорий: летальных, полулетальных и субвитальных изменений. Величина генетического груза определяется как отношение разницы между наибольшей приспособленностью (Wmax), что свойственно особям, обладающим лучшим генотипом в популяции, и фактической средней приспособленностью популяции (W), отнесенной к величине наибольшей приспособленности.

    W max -W
    W max

    Генетический груз разделяется на три главных типа:

    Сегрегационный груз - выщепление менее приспособленных гомозиготных форм при наличии в популяции отбора в пользу гетерозигот;

    Мутационный груз – результат появления и накопления в популяциях мутаций, которые понижают приспособленность мутантных особей;

    Груз дрейфа - результат случайного увеличения концентрации аллелей в изолированной популяции. Частным случаем этого типа служит повышение доли гомозиготных особей при инбридинге (инбредный груз; инбредная депрессия).

    Объем генетического груза зависит от мутационного разнообразия, имеющегося в популяциях. В генетическом составе популяции широко представлены рецессивные мутации. Увеличение концентраций отдельных мутаций сдерживается отбором, в результате чего каждая рецессивная мутация включена в генофонд на уровне низкой концентрации. Как правило, концентрация рецессивного аллеля составляет 0,02-0,03. Появление фенотипических отклонений, что связано с гомозиготностью, происходит в этих условиях с частотой 1 особь на 1000-2500. Многие рецессивные аллели имеют еще более низкую концентрацию.

    Однако число разных рецессивных мутаций столь велико, что каждая особь несет одну или несколько таких мутаций в гетерозиготном состоянии. У каждого человека имеются, как полагает академик Н.П. Дубинин, 3-4 эквивалента летальных мутаций.

    Согласно современным оценкам, частота аутосомных рецессивных мутаций в популяциях человека составляет 0,75%, причем большая их часть (около 75%) - следствие точковых мутаций (см. табл. 6.1).

    Влияние отрицательных доминантных мутаций в популяциях связано с прямым фенотипическим проявлением вновь возникающих изменений. У человека около 60% всех регистрируемых

    менделевских мутации относятся к доминантным (абсолютная частота аутосомных доминантных мутаций составляет 1,5%). В целом различные типы менделевских наследственных болезней (аутосомные рецессивные, аутосомные доминантные и сцепленные с Х-хромосомой) выявляются у 2,4% людей. Ряд пока не учитываемых доминантных изменений проявляется на ранних этапах развития зародыша человека в виде серьезных дефектов, приводящих к прекращению беременности.

    Преобладающую часть наследственной изменчивости человека составляют врожденные пороки развития и мультифакториальные болезни (в сумме - 66%), наследование которых не подчиняется менделевским законам. Эти заболевания проявляются в результате сложного взаимодействия генетических изменений и факторов окружающей среды. Из материалов, изложенных в главе 6, следует, что генетические изменения, обуславливающие мульти-факториальные болезни, составляют значительную часть генетического груза популяций человека. Однако эту компоненту генетического груза пока трудно оценить количественно в силу сложности механизмов генетического контроля таких болезней.

    Воздействие мутагенных факторов должно приводить к увеличению уровня мутаций в популяциях различных организмов. Детально закономерности динамики мутационного процесса в популяциях исследованы в экспериментах с ионизирующими излучениями. Первые работы по генетике облученных популяций выполнены американским генетиком Б. Уолесом в 1951-1956 гг. Опыты проводились с экспериментальными популяциями D. melanogaster, созданными из особей, свободных от деталей и полулеталей во второй хромосоме. Популяции в каждом поколении подвергали хроническому облучению в дозах 0,9-5,1 сГр/ч. В каждом поколении исследовали частоту накопленных летальных мутаций во второй хромосоме путем перевода второй хромосомы облученных особей в гомозиготное состояние с помощью специальной системы скрещивания. Эксперименты продолжались в течение нескольких лет, за это время в популяциях дрозофилы прошло около 150 поколений.

    Результаты анализа по количеству деталей в облученных и в контрольной популяциях представлены на рисунке 7.4. В контрольной популяции, свободной первоначально от рецессивных деталей во второй хромосоме, в течение 70 поколений под давлением естественного мутационного процесса идет накопление мутаций до определенного равновесного уровня. Равновесный уровень естественных мутаций поддерживается в популяции более или менее постоянно, подвергаясь флюктуациям за счет изменения среды и эволюции генома популяции. В облученных популяциях концентрация леталей увеличилась.

    Популяция N 1, самцы которой получили единовременную дозу 7 Гр, а самки 10 Гр, в первых пяти поколениях имела повышенное количество деталей по сравнению с контролем. Облучение каждого поколения в дозе 0,9 сГр привело к незначительному (по сравнению с контролем) увеличению в популяции деталей (популяция N 7), в то время как облучение в дозе 5,1 сГр/ч на поколение (популяции 5 и 6) увеличило уровень генетического груза в несколько раз. Равновесный уровень концентрации деталей для облучаемых популяций достигается через

    Рис. 7.4. Концентрация летальных мутаций
    в облученных экспериментальных популяциях в течение 150 поколений.
    Три нижние кривые: популяция № 1 (________); популяция № 3 (- - - - - -); популяция
    № 7(- - - - -). Две верхние кривые популяция № 5(---); популяция №6 (----)


    60-70 поколений после начала облучения.

    Рассмотрим более детально, как зависит скорость установления равновесного уровня мутагенеза в популяции от интенсивности мутационного процесса. На рис. 7.5 представлены расчетные данные, полученные А.В.

    Рубановичем по величине равновесного уровня и скорости его достижения при различных гипотетических скоростях мутирования (10 -2 , 10 -3 и 10 -4), связанных с предполагаемым воздействием различных мутагенных факторов. Видно, что чем выше темп мутирования в популяции, тем выше равновесный уровень и тем быстрее он достигается. Опираясь на эти расчеты, можно заключить, что при действии малых доз ионизирующих излучений равновесный уровень мутаций в популяциях будет достигаться лишь спустя весьма значительное число поколений после начала хронического воздействия ионизирующих излучений.

    Результаты, полученные на популяциях дрозофилы, были в дальнейшем подтверждены на других экспериментальных объектах -одноклеточных водорослях, растениях, мышах. Кроме того, высокий генетический груз в природных популяциях различных организмов был выявлен при изучении генетических последствий ядерной аварии на предприятии "Маяк", произошедшей в 1957 г, в результате которой возник Восточно-Уральский


    Рис. 7.5. Влияние скорости мутагенеза
    на величину стационарного уровня
    и темп выхода популяции
    на стационарный уровень


    Рис. 7.6. Динамика хлорофильных мутаций в хронически облучаемых
    и контрольной популяциях С scabiosa L, произрастающих
    при разных концентрациях 90Sr - 90Y в почве

    радиоактивный след. Например В.А. Кальченко была прослежена в течение 38 лет динамика хлорофильных мутаций у василька шероховатого (Centaurea scabiosa L.), подвергающегося хроническому воздействию бета-излучения стронция-90 и иттрия-90 (рис. 7.6). Видно, что частота выявляемых хлорофильных мутаций (по существу, летальных и сублетальных мутаций) поддерживается в хронически облучаемой популяции на высоком равновесном уровне, значительно превышающем контрольный. В экспериментах, проведенных в зоне аварии на Чернобыльской атомной станции, В.И. Абрамов изучал динамику генетического груза в природных популяция арабидопсиса (Arabidopsis thaliana), хорошо изученного генетического объекта. Был проведен анализ частоты эмбриональных леталей (рецессивные летальные мутации), наблюдаемых в стручках этого растения (регистрировали погибшие зародыши семян). На рисунке 7.7 видно, что уровни эмбриональных леталей, наблюдаемые в течение нескольких лет в облучаемых популяциях, намного превосходят контрольный уровень, равный в контрольной популяции 5%. Полученные результаты свидетельствуют о насыщении генофонда облучаемых популяций арабидопсиса рецессивными летальными мутациями.

    Возникает вопрос, как скоро после прекращения воздействия мутагенного фактора популяция может освободиться от груза индуцированных мутаций. Этот вопрос интересовал исследователей с первых шагов зарождения радиационной генетики. Ответ был найден в экспериментах, проведенных на дрозофиле Б. Уолесом и Н.В. Тимофеевым-Рессовским, и на одноклеточных водорослях,


    Рис. 7.7. Мутационный груз в популяциях арабидопсиса
    произраставших в 30 км зоне аварии на ЧАЭС


    проведенных В. А. Шевченко. Показано, что уровень мутаций каждого мутантного клона (например, летальных мутаций) снижается после прекращения облучения в последующих поколениях по экспоненциальному закону. Требуется несколько десятков поколений (для популяций дрозофилы - около 30-40), чтобы уровень мутаций в популяции достиг равновесного уровня контрольных популяций. Однако незначительная часть индуцированных мутаций остается закрепленной в популяции на более длительное время, создавая резерв для адаптивной изменчивости популяции при изменении условий окружающей среды.

    В природных популяциях исследователь имеет дело с совокупностью огромного количества различных мутаций, постоянно возникающих и подвергающихся отбору. Острое облучение популяций того или иного вида индуцирует широкий спектр мутаций, формирующих мутантные клоны, каждый из которых обладает своей, присущей только ему селективной ценностью, своими параметрами отбора.

    Популяционные закономерности едины для любых скрещивающихся (панмиктических) популяций. Выявленные на экспериментальных объектах исследования, они имеют прямое отношение к человеку. Так же, как для дрозофилы, в облучаемых популяциях человека при воздействии ионизирующих излучений в течение многих поколений предполагается появление равновесного уровня мутагенеза, характеризующего накопленный груз индуцированных мутаций. Как следует из докладов Научного Комитета ООН по действию атомной радиации, равновесный уровень мутаций в облучаемых популяциях человека, возникающий через 7-10 поколений после начала

    хронического облучения в дозе 1 Зв на поколение, приблизительно в восемь раз превышает эффект облучения, наблюдаемый в первом поколении.

    После прекращения воздействия радиации элиминация индуцированных мутаций в этой гипотетической популяции человека до установления равновесного уровня естественного мутационного процесса, как и в популяциях дрозофилы, составит многие поколения.