Фотосинтез воды. Фотосинтез: все, что надо о нем знать. Фотосинтез световая и темновая фазы доклад

Со школьной скамьи понятие фотосинтез ассоциируется с зеленым цветом. Это цвет пигмента под названием хлорофилл. Без его скопления в листьях процесс фотосинтеза не возможен. Как же выживает белая секвойя?

Фотосинтез растений зиждется на 0,4% световых лучей. Половина из них не доходит до поверхности планеты. Из оставшихся для фотосинтеза подходит только 1/8. Работают ограничения по длине световой волны. Из подходящих лучей растения забирают 0,4%.

Если переводить в энергию, это 1% от ее общего количества. Привычное течение фотосинтеза проходит под действием света солнца. Однако, искусственные лучи растения тоже научились использовать.

Световой фотосинтез сводится к получению глюкозы. Она идет на питание . Побочный продукт реакции — кислород. Он выбрасывается представителями флоры во внешнюю среду, пополняя атмосферу Земли.

Получаются кислород и глюкоза в ходе реакции меж углекислым газом и водой. Хлорофилл в этом взаимодействии – своеобразный катализатор. Без него реакция не возможна.

Интересно, что хлорофилл встречается только в растениях. Функции, возложенные на пигмент, напоминают работу крови в организме животных. Хлорофилл подобен молекуле гемоглобина, но с магнием в центре.

В клетках же человеческой крови задействовано железо. Тем не менее, на организмы людей хлорофилл оказывает близкое к гемоглобину действие, а именно, повышает уровень кислорода крови и ускоряет обмен азота.

Реакция фотосинтеза может протекать быстро, или медленно. Все зависит от условий среды. Важны: интенсивность светового потока, температура воздуха, его насыщение углекислым газом и кислородом. Идеалом считается достижение точки компенсации. Так называют совпадение скоростей дыхания растения и выделения им кислорода.

Если свет в клетки хлоропласты, в коих скапливается хлорофилл, поступает сверху, то воду для реакции растения выкачивают из почвы. Вот зачем нужен полив растений. Недостаток влаги тормозит реакции фотосинтеза. В итоге, растение желтеет, то есть теряет хлорофилл.

Полей представителя флоры в этот момент, листья не зазеленеют. Выкачивать воду из почвы тоже помогает хлорофилл. Получается замкнутый круг. Нет полива – нет хлорофилла, нет хлорофилла – нет доставки воды в растение.

Теперь, уделим внимание глюкозе. Раз зелень вырабатывает ее из воды и углекислого газа, значит, из неорганического получается органика. Присоединяя к сахару то фосфор, то серу, то азот, растения производят витамины, жиры, белки, крахмалы. Дополнения к глюкозе травы да деревья берут из почвы. Элементы поступают растворенными в воде.

Фазы фотосинтеза

Фазы фотосинтеза – это деление процесса на фотолиз и восстановительную реакцию. Первый протекает на свету и сводится к выделению водорода. Кислород служит побочным продуктом реакции, однако, тоже нужным растению. Оно использует газ в процессе дыхания.

Световая фаза фотосинтеза возбуждает хлорофилл. От переизбытка энергии, его электрон отрывается и начинает перемещение по цепи органических соединений. В ходе путешествия частица способствует синтезу аденозиндифосфорной кислоты из аденозинтрифосфорной.

На это уходит данная электрону энергия. АДФ нужна для образования растением нуклеотидов. Они входят в нуклеиновые кислоты, без которых не возможен метаболизм представителей флоры.

Растратив энергию, электрон возвращается к молекуле хлорофилла. Эта клетка фотосинтеза вновь захватывает квант света. Уставший от работы электрон подкрепляется ею, опять отправляясь на дело. Такова световая фаза процесса. Однако, он не останавливается и в темноте.

Темновой фотосинтез направлен на захват из внешней среды уже углекислого газа. Вместе с водородом он участвует в образовании 6-углеродного сахара. Это и есть глюкоза. Этот результат фотосинтеза сопровождается, так же, образованием веществ, помогающих захватывать новые порции углекислого газа.

Захватываются они опять же, хлоропластами. Те тратят энергию, накопленную за день. Ресурс идет на связывание углекислого газа с рибулозобисфосфатом. Это 5-углеродный сахар. Реакция дает две молекулы фосфоглицериновой кислоты.

В каждой из них по 3 атома углерода. Это один из этапов цикла Кальвина. Он протекает в строме, то есть подстилке хлоропластов. Состоит цикл из трех реакций. Сначала, углекислый газ присоединяется к рубулозо-1,5-дифосфату.

Для реакции обязательно присутствие рубулозобифосфата-карбоксилазы. Это фермент. В его присутствии рождается гексоза. Из нее и получаются молекулы фосфоглицериновой кислоты.

После получения фосфоглицеринового соединения растение восстанавливает его до глицеральдегида-3-фосфата. Его молекулы идут на два «направления». В первом образуется глюкоза, а во втором рубулозо-1,5-дифосфат. Он, как помним, подхватывает газ углекислый.

Фотосинтез на обеих стадиях протекает в растениях активно, поскольку те приспособились захватывать днем максимальное количество энергии солнца. Вспомним школьные классы. Фотосинтезу посвящены несколько уроков ботаники.

Учителя рассказывают, почему у большинства растений плоские и широкие листья. Так представители флоры увеличивают площадь для улавливания квантов света. Не зря и люди сделали солнечные батареи широкими, но плоскими.

Фотосинтез углекислого газа

Углекислый газ проникает в растения через устица. Это подобие пор в листьях, стволах. Процесс всасывания газа и выпуска после через те же устица кислорода напоминает дыхание у людей.

Разница лишь в чередовании стадий. Люди вдыхают кислород, а выдыхают углекислый газ. У растений все наоборот. Так на планете удерживается равновесие двух газов в атмосфере.

Продукты фотосинтеза несут в себе энергию солнца. Животные перерабатывать ее не умеют. Съесть растения – единственная возможность «зарядиться» от дневного светила.

Перерабатывая углекислое соединение, растения способны давать людям и животным в два раза больше. Представители флоры работают с 0,03% газа в атмосфере. Как видно, углекислый газ в ней не из преобладающих.

В искусственных условиях ученые доводили процент углекислого вещества в воздухе до 0,05%. Огурцы, при этом, давали в 2 раза больше плодов. Так же реагировали на изменения , .

Уровень углекислого газа ученые повышали, сжигая в теплицах опилки и прочие отходы деревообрабатывающей промышленности. Интересно, что при концентрации газа в 0,1% растения уже не были рады.

Многие виды начинали болеть. У помидоров, к примеру, в атмосфере с переизбытком углекислого соединения начинали желтеть и скручиваться листья. Это еще одно подтверждение опасности перенасыщения атмосферы CO 2 . Продолжая вырубку лесов и развитие промышленности, человек рискует поставить оставшиеся растения в непригодные для них условия.

Повышать уровень углекислого газа до оптимального можно не только путем сжигания отходов древесины, но и внося в почву удобрения. Они провоцируют размножение бактерий.

Многие микроорганизмы вырабатывают углекислое соединение. Сосредотачиваясь у земли, оно тут же захватывается растениями, идя на благо представителей флоры и всего населения Земли.

Значение фотосинтеза

Если допустить повышение уровня углекислого газа в нижних слоях атмосферы повсеместно, а не только в экспериментальных теплицах, наступит парниковый эффект. Это то самое глобальное потепление, которое то ли уже приближается, то ли и не «светит».

Ученые не сходятся во мнениях. Если говорить о фактах, говорящих в пользу парникового эффекта, вспоминается таяние льдов Антарктики. Там обитают белые медведи. Уже несколько лет они включены в .

Частью жизни медведей исторически является преодоление водных широт на пути к новым ледникам. Устремляясь к ним, животные все чаще выбиваются из сил, так и не достигнув цели. Водные просторы увеличиваются.

Доплыть до клочков суши становится все сложнее. Порой, медведи гибнут в пути. Порой, краснокнижные хищники добираются до земли, но изможденными. Сил на охоту и переходов уже по твердой почве не остается.

Из вышесказанного делаем вывод: без фотосинтеза или с сокращением его доли, уровень углекислого газа в атмосфере спровоцирует парниковый эффект. Изменится не только климат планеты, но и состав ее обитателей, их облик, приспособления к окружающей среде.

Так будет до тех пор, пока доля углекислого соединения в воздухе не достигнет критического 1%. Далее, под вопрос встает сам фотосинтез. Воды мировых океанов могут остаться единственным его источником. Водоросли ведь тоже «дышат». Клетки, хранящие хлорофилл, у них другие.

Однако, суть процесса фотосинтеза у наземных и водных растений одна. Концентрация углекислого газа в атмосфере не обязательно передается водной среде. В ней баланс может сохраниться.

Некоторые ученые предполагают, что при постепенном увеличении доли углекислого газа в воздухе, представители флоры смогут приспособиться к новым условиям. Помидоры не станут сворачивать листья, капитулируя перед реалиями будущего.

Возможно, растения эволюционируют, научившись перерабатывать большее количество СО 2 . Догадка ученых относится к категории «лучше не проверять». Слишком рискованно.

Значение фотосинтеза связано не только с поддержанием жизни самих растений и насыщением атмосферы Земли кислородом. Ученые бьются над искусственным проведением реакций.

Расщепляемая под действием радиации солнца на водород и кислород вода – источник энергии. Энергия эта, в отличие от получаемой из нефтепродуктов и каменного угля, экологически чистая, безопасная.

Где происходит фотосинтез – не важно. Важна энергия, которую он несет с собой. Пока, человек получает ресурс, лишь поглощая растительную пищу. Возникает вопрос, как же выживают плотоядные? Они не зря охотятся на травоядных, а не себе подобных. В мясе животных, питающихся травами и листьями, сохраняется часть их энергии.

Кроме энергии фотосинтеза важны и его продукты. Кислород, к примеру, идет не только на дыхание животных, но и на образования озонового слоя. Он располагается в стратосфере Земли, на границе с космосом.

Озон – одна из модификаций кислорода, которую тот принимает, поднимаясь на тысячекилометровые высоты. Здесь элемент борется с радиацией Солнца. Не будь озонового слоя, излучение светила достигало бы поверхности планеты в опасных для всего живого дозах.

Интересно, что в деле поддержания баланса газов на планете могут помочь некоторые беспозвоночные. Слизень Elisia Chloroti, к примеру, научился ассимилировать хлоропласты водорослей.

Обитатель морей съедает их, «приручая» клетки с хлорофиллом в слизистой своего желудка. Геном слизня кодирует белки, необходимые зеленому пигменту для фотосинтеза.

Выработанные вещества поставляются хлоропластам и те «кормят» беспозвоночное сладенькой глюкозой. На ней и люди некоторое время способны выживать. Достаточно вспомнить больницы, где ослабленным вводят глюкозу внутривенно.

Сахар – основной источник энергии и, главное, быстрый. Цепочка преобразования глюкозы в чистую энергию короче, чем цепь преобразований жиров, белков. Конечно, сахар научились синтезировать искусственно.

Но, многие ученые склоняются к мнению, что полезнее для организма глюкоза растений, фруктов и овощей. Это подобно эффекту витаминов. У синтетических и природных один состав, но чуть разниться положение атомов. Опыты доказывают, что аптечный витамин С пользу дает сомнительную, а вот то же вещество из лимона или капусты – бесспорную.

Бесспорна и польза фотосинтеза. Он привычен и, одновременно, хранит еще много тайн. Познавайте их, дабы обеспечить счастливое будущее и себе, и планете в целом.

ОПРЕДЕЛЕНИЕ: Фотосинтез – это процесс образования органических веществ из углекислого газа и воды, на свету, с выделением кислорода.

Краткое объяснение фотосинтеза

В процессе фотосинтеза участвуют:

1) хлоропласты,

3) углекислый газ,

5) температура.

У высших растений фотосинтез происходит в хлоропластах – пластидах (полуавтономные органеллы) овальной формы, содержащих пигмент хлорофилл, благодаря зеленому цвету которого части растения также имеют зеленый цвет.

У водорослей хлорофилл содержится в хроматофорах (пигментсодержащие и светоотражающие клетки). У бурых и красных водорослей, обитающих на значительной глубине, куда плохо доходит солнечный свет, имеются другие пигменты.

Если посмотреть на пищевую пирамиду всех живых существ, фотосинтезирующие организмы находятся в самом ее низу, в составе автотроф (организмов, синтезирующих органические вещества из неорганических). Поэтому они являются источником пищи для всего живого на планете.

При фотосинтезе кислород выделяется в атмосферу. В верхних слоях атмосферы из него образуется озон. Озоновый экран защищает поверхность Земли от жесткого ультрафиолетового излучения, благодаря чему жизнь смогла выйти из моря на сушу.

Кислород необходим для дыхания растений и животных. При окислении глюкозы с участием кислорода в митохондриях запасается почти в 20 раз больше энергии, чем без него. Это делает использование пищи гораздо более эффективным, что привело к высокому уровню обмена веществ у птиц и млекопитающих.

Более подробное описание процесса фотосинтеза растений

Ход фотосинтеза:

Процесс фотосинтеза начинается с попадания света на хлоропласты – внутриклеточные полуавтономные органеллы, содержащие зеленый пигмент. Под действием света хлоропласты начинают потреблять воду из почвы, расщепляя ее на водород и кислород.

Часть кислорода выделяется в атмосферу, другая часть идет на окислительные процессы в растении.

Сахар соединяется с поступающими из почвы азотом, серой и фосфором, таким путем зеленые растения производят крахмал, жиры, белки, витамины и другие сложные соединения, необходимые для их жизни.

Лучше всего фотосинтез идет под воздействием солнечного света, однако некоторые растения могут довольствоваться и искусственным освещением.

Сложное описание механизмов фотосинтеза для продвинутого читателя

До 60-ых годов 20 века ученым был известен только один механизм фиксации углекислого газа - по С3-пентозофосфатному пути. Однако недавно группа австралийских ученых смогла доказать, что у некоторых растений восстановление углекислого газа происходит по циклу C4-дикарбоновых кислот.

У растений с реакцией С3 фотосинтез наиболее активно происходит в условиях умеренной температуры и освещенности, в основном, в лесах и в темных местах. К таким растениям относятся почти все культурные растения и большая часть овощей. Они составляют основу рациона человека.

У растений с реакцией С4 фотосинтез наиболее активно происходит в условиях высоких температура и освещенности. К таким растениям относятся, например, кукуруза, сорго и сахарный тростник, которые произрастают в теплом и тропическом климате.

Сам метаболизм растений был обнаружен совсем недавно, когда удалось выяснить, что у некоторых растений, имеющих специальные ткани для запаса воды, углекислый газ накапливается в форме органических кислот и фиксируется в углеводах лишь спустя сутки. Такой механизм помогает растениям экономить запасы воды.

Как происходит процесс фотосинтеза

Растение поглощает свет при помощи зеленого вещества, которое называется хлорофилл. Хлорофилл содержится в хлоропластах, которые находятся в стеблях или плодах. Особенно большое их количество в листьях, потому что из-за своей очень плоской структуры листок может притянуть много света, соответственно, получить намного больше энергии для процесса фотосинтеза.

После поглощения хлорофилл находится в возбужденном состоянии и передает энергию другим молекулам организма растения, особенно, тем, которые непосредственно участвуют в фотосинтезе. Второй этап процесса фотосинтеза проходит уже без обязательного участия света и состоит в получении химической связи с участием углекислого газа, получаемого из воздуха и воды. На данной стадии синтезируются разные очень полезные для жизнедеятельности вещества, такие как крахмал и глюкоза.

Эти органические вещества используют сами растения для питания разных его частей, а также для поддержания нормальной жизнедеятельности. Кроме того, эти вещества также получают и животные, питаясь растениями. Люди тоже получают эти вещества, употребляя в пищу продукты животного и растительного происхождения.

Условия для фотосинтеза

Фотосинтез может происходить как под действием искусственного света, так и солнечного. Как правило, на природе растения интенсивно «работают» в весенне-летний период, когда необходимого солнечного света много. Осенью света меньше, день укорачивается, листья сначала желтеют, а потом опадают. Но стоит появиться весеннему теплому солнцу, как зеленая листва вновь появляется и зеленые «фабрики» снова возобновят свою работу, чтобы давать кислород, такой необходимый для жизни, а также множество других питательных веществ.

Альтернативное определение фотосинтеза

Фотоси?нтез (от др.-греч. фот- свет и синтез - соединение, складывание, связывание, синтез) - процесс преобразования энергии света в энергию химических связей органических веществ на свету фотоавтотрофами при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий). В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция - совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества.

Фазы фотосинтеза

Фотосинтез – процесс довольно сложный и включает две фазы: световую, которая всегда происходит исключительно на свету, и темновую. Все процессы происходят внури хлоропластов на особых маленьких органах - тилакодиах. В ходе световой фазы хлорофиллом поглощается квант света, в результате чего образуются молекулы АТФ и НАДФН. Вода при этом распадается, образуя ионы водорода и выделяя молекулу кислорода. Возникает вопрос, что это за непонятные загадочные вещества: АТФ и НАДН?

АТФ – это особые органические молекулы, которые имеются у всех живых организмов, их часто называют «энергетической» валютой. Именно эти молекулы содержат высокоэнергетические связи и являются источником энергии при любых органических синтезах и химических процессах в организме. Ну, а НАДФН – это собственно источник водорода, используется непосредственно при синтезе высокомолекулярных органических веществ - углеводов, который происходит во второй, темновой фазе фотосинтеза с использованием углекислого газа.

Cветовая фаза фотосинтеза

В хлоропластах содержится очень много молекул хлорофилла, и все они поглощают солнечный свет. Одновременно свет поглощается и другими пигментами, но они не умеют осуществлять фотосинтез. Сам процесс происходит лишь только в некоторых молекулах хлорофилла, которых совсем немного. Другие же молекулы хлорофилла, каротиноидов и других веществ образуют особые антенные, а также светособирающие комплексы (ССК). Они, как антенны, поглощают кванты света и передают возбуждение в особые реакционные центры или ловушки. Эти центры находятся в фотосистемах, которых у растений две: фотосистема II и фотосистема I. В них имеются особые молекулы хлорофилла: соответственно в фотосистеме II - P680, а в фотосистеме I - P700. Они поглощают свет именно такой длины волны(680 и 700 нм).

По схеме более понятно, как все выглядит и происходит во время световой фазы фотосинтеза.

На рисунке мы видим две фотосистемы с хлорофиллами Р680 и Р700. Также на рисунке показаны переносчики, по которым происходит транспорт электронов.

Итак: обе молекулы хлорофилла двух фотосистем поглощают квант света и возбуждаются. Электрон е- (на рисунке красный) у них переходит на более высокий энергетический уровень.

Возбужденные электроны обладает очень высокой энергией, они отрываются и поступают в особую цепь переносчиков, которая находится в мембранах тилакоидов – внутренних структур хлоропластов. По рисунку видно, что из фотосистемы II от хлорофилла Р680 электрон переходит к пластохинону, а из фотосистемы I от хлорофилла Р700 – к ферредоксину. В самих молекулах хлорофилла на месте электронов после их отрыва образуются синие дырки с положительным зарядом. Что делать?

Чтобы восполнить недостачу электрона молекула хлорофилла Р680 фотосистемы II принимает электроны от воды, при этом образуются ионы водорода. Кроме того, именно за счет распада воды образуется выделяющийся в атмосферу кислород. А молекула хлорофилла Р700, как видно из рисунка, восполняет недостачу электронов через систему переносчиков от фотосистемы II.

В общем, как бы ни было сложно, именно так протекает световая фаза фотосинтеза, ее главная суть заключается в переносе электронов. Также по рисунку можно заметить, что параллельно транспорту электронов происходит перемещение ионов водорода Н+ через мембрану, и они накапливаются внутри тилакоида. Так как их там становится очень много, они перемещаются наружу с помощью особого сопрягающего фактора, который на рисунке оранжевого цвета, изображен справа и похож на гриб.

В завершении мы видим конечный этап транспорта электрона, результатом которого является образование вышеупомянутого соединения НАДН. А за счет переноса ионов Н+ синтезируется энергетическая валюта – АТФ (на рисунке видно справа).

Итак, световая фаза фотосинтеза завершена, в атмосферу выделился кислород, образовались АТФ и НАДН. А что же дальше? Где обещанная органика? А дальше наступает темновая стадия, которая заключается, главным образом, в химических процессах.

Темновая фаза фотосинтеза

Для темновой фазы фотосинтеза обязательным компонентом является углекислый газ – СО2. Поэтому растение должно постоянно его поглощать из атмосферы. Для этой цели на поверхности листа имеются специальные структуры – устьица. Когда они открываются, СО2 поступает именно внутрь листа, растворяется в воде и вступает в реакцию световой фазы фотосинтеза.

В ходе световой фазы у большинства растений СО2 связывается с пятиуглеродным органическим соединением (которое представляет собой цепочку из пяти молекул углерода), в результате чего образуются две молекулы трехуглеродного соединения (3-фосфоглицериновая кислота). Т.к. первичным результатом являются именно эти трехуглеродные соединения, растения с таким типом фотосинтеза получили название С3-растений.

Дальнейший синтез в хлоропластах происходит довольно сложно. В его конечном итоге образуется шестиуглеродное соединение, из которого в дальнейшем могут синтезироваться глюкоза, сахароза или крахмал. В виде этих органических веществ растение накапливает энергию. При этом в листе остается только небольшая их часть, которая используется для его нужд, в то время как остальные углеводы путешествуют по всему растению, поступая туда, где больше всего нужна энергия - например, в точки роста.

Фотосинтез является фотоавтотрофным процессом, представляющим собой комплекс реакций поглощения, преобразования и использования световых квантов в разных эндэргонических процессах. В ходе фотосинтеза, происходящего в тканях зеленых растений , некоторых бактерий и зеленых водорослей при участии фотосинтетических пигментов (хлорофилл или бактериохлорофилл) на свету образуются сложные органические вещества из простых соединений (углекислого газа и воды).

Впервые процесс фотосинтеза начал осуществляться в клетках цианобактерий в архейскую эру. В настоящее время наиболее примитивный тип фотосинтеза (бесхлорофильный) происходит у бактерий рода Halobacterium. Хлорофильный фотосинтез более совершенный по механизму протекания реакций. Так, аноксигенный фотосинтез присущ зеленым и пурпурным бактериям. А оксигенный фотосинтез – источник органических веществ и кислорода для всех растений, имеющих хлорофилл, и нуждающихся в доступе атмосферного воздуха для осуществления фотосинтеза. Существуют определенные стадии фотосинтеза: фотофизическая, фотохимическая и химическая. На первой стадии кванты света поглощаются фотосинтетическими пигментами, которые переходят в возбужденное состояние и передают энергию к последующим элементам фотосистемы. На фотохимической стадии синтезируются носители энергии клеток – НАДФН и АТФ. Описанные две стадии объединяют понятием световая фаза фотосинтеза. Третья химическая стадия фотосинтеза может осуществляться как на свету, так и в темноте, поэтому ее называют темновой фазой фотосинтеза. На этой стадии в ходе биохимических реакций образуются органические соединения при расходовании энергии, запасенной в световой фазе. В большинстве случаев в процессе таких реакций происходит синтез углеводов (сахаров, крахмала), реже - белков.

Процесс фотосинтеза происходит в таких клеточных органеллах, как хлоропласты. Благодаря совершенному строению фотосинтетического аппарата зеленых растений, обеспечивается высокая эффективность фотосинтеза. В клетках зеленых листьев растений содержится в среднем от 20 до 100 хлоропластов, каждый из которых представляет собой обособленную двухмембранную структуру. Иногда хлоропласты наблюдаются в клетках стеблей и плодов, однако главным органом фотосинтеза является зеленый лист растения, благодаря особенностям своего строения. Структурным компонентом хлоропластов является хлорофилл – зеленый пигмент, который обладает способностью поглощать свет. Хлоропласт заполнен внутри стромой и пронизан внутренними мембранами, соединяющимися между собой с образованием тилакоидов (плоских пузырьков), которые прилегают друг к другу, формируя стопки - граны. В строме удерживается углекислый газ, и образуются ферменты, выступающие как катализаторы химических реакций темновой фазы фотосинтеза, в частности, фотосинтеза углеводов и белков. Световая фаза фотосинтеза происходит на внутренних мембранах тилакоидов хлоропластов. Также в хлоропластах есть такие структуры, как ДНК, РНК (носители наследственной информации) и рибосомы, осуществляющие синтез белка. В клетках большей части водорослей фотосинтетическая система – это хроматофоры – особые внутриклеточные органеллы, а в клетках фотосинтезирующих бактерий – тилакоиды, содержащие бактериохлорофилл.

Фотосинтез – это один из самых важных процессов, ежеминутно и повсеместно происходящих на Земле. Согласно статистическим данным, в течение года растения нашей планеты в процессе фотосинтеза продуцируют более 100 миллиардов тонн органических веществ, при этом выделяя в атмосферу более 140 миллиардов тонн кислорода и поглощая до 200 миллиардов тонн углекислого газа. По мнению ученых, весь атмосферный кислород – является конечным продуктом фотосинтеза растений. Значение фотосинтеза состоит в том, что из всех биологических процессов фотосинтез единственный, который протекает с накоплением свободной энергии в системе, тогда как другие биологические процессы происходят с использованием потенциальной энергии, находящейся в связанном состоянии в продуктах фотосинтеза. Человечество ежегодно расходует в несколько раз меньше энергии, чем количество запасаемой фотосинтезирующими организмами (растениями, бактериями, водорослями) на Земле.

Фотосинтез представляет собой биосинтез, состоящий в превращении световой энергии в органические соединения. Свет в виде фотонов захватывается цветным пигментом, связанным с неорганическим или органическим донором электронов, и позволяет использовать минеральный материал для синтеза (производства) органических соединений.

Иными словами, что такое фотосинтез – это процесс синтеза органического вещества (сахара) из солнечного света. Эта реакция происходит на уровне хлоропластов, которые являются специализированными клеточными органеллами, и позволяют потреблять углекислый газ и воду для получения диоксигена и органических молекул, таких как глюкоза.

Он происходит в две фазы:

Световая фаза (фотофосфорилирование) – представляет собой набор светозависимых фотохимических (т. е. светозахватывающих) реакций, в которых электроны транспортируются через обе фотосистемы (PSI и PSII) для получения АТФ (богатая энергией молекула) и NADPHH (восстанавливающий потенциал).

Таким образом, светлая фаза фотосинтеза позволяет непосредственно превращать световую энергию в химическую энергию. Именно через этот процесс наша планета теперь имеет атмосферу, богатую кислородом. В результате высшие растения сумели доминировать на поверхности Земли, обеспечивая пищу многим другим организмам, которые питаются или находят убежище через неё. Первоначальная атмосфера содержала такие газы, как аммоний, азот и углекислый газ, но очень мало кислорода. Растения нашли способ превратить этот CO настолько обильно в пищу, используя солнечный свет.

Темновая фаза – соответствует полностью ферментативному и не зависящему от света циклу Кальвина, в котором аденозинтрифосфат (АТФ) и НАДФН+Н+ (никотин амид адениндинуклеотид фосфат) используются для конверсии углекислого газа и воды в углеводы. Эта вторая фаза позволяет усвоить углекислый газ.

То есть в этой фазе фотосинтеза, примерно через пятнадцать секунд после поглощения CO происходит реакция синтеза и появляются первые продукты фотосинтеза - сахара: триосы, пентозы, гексозы, гептозы. Из определённых гексоз образуются сахароза и крахмал. Помимо углеводов, могут также развиваться липидами и белками путём связывания с молекулой азота.

Этот цикл существует в водорослях, умеренных растениях и всех деревьях; эти растения называются «растениями С3», наиболее важными промежуточными телами биохимического цикла, имеющими молекулу три атома углерода (С3).

В этой фазе хлорофилл после поглощения фотона имеет энергию 41 ккал на моль, некоторые из которых преобразуются в теплоту или флуоресценцию. Использование изотопных маркеров (18O) показало, что кислород, высвобождаемый во время этого процесса, происходит из разложенной воды, а не из поглощённого диоксида углерода.

Фотосинтез происходит главным образом в листьях растений и редко (когда-либо) в стеблях и т. д. Части типичного листа включают: верхний и нижний эпидермис ;

  • мезофилл;
  • сосудистый пучок (вены);
  • устьица.

Если клетки верхнего и нижнего эпидермиса не являются хлоропластами, фотосинтез не происходит. Фактически они служат прежде всего в качестве защиты для остальной части листа.

Устьица - это дыры, существующие главным образом в нижнем эпидермисе, и позволяют проводить обмен воздуха (CO и O2). Сосудистые пучки (или вены) в листе составляют часть транспортной системы растения, при необходимости перемещая воду и питательные вещества вокруг растения. Клетки мезофилла имеют хлоропласты, вот это и есть место фотосинтеза.

Механизм фотосинтеза очень сложный . Однако эти процессы в биологии имеют особое значение. При энергичном воздействии света хлоропласты (части растительной клетки, содержащие хлорофилл), вступая в реакцию фотосинтеза, объединяют углекислый газ (СО) с пресной водой с образованием сахаров C6H12O6.

Они в процессе реакции превращаются в крахмал C6H12O5, для квадратного дециметра поверхности листа, в среднем 0,2 г крахмала в день. Вся операция сопровождается сильным высвобождением кислорода .

Фактически процесс фотосинтеза состоит в основном из фотолиза молекулы воды.

Формула этого процесса:

6 Н 2 О + 6 СО 2 + свет = 6 O 2 + С 6 Н 12 О 6

Вода + углекислый газ + свет = кислород + глюкоза

  • Н 2 О = вода
  • СО 2 = диоксид углерода
  • O 2 = Кислород
  • С 6 Н 12 О 6 = глюкоза

В переводе этот процесс означает: растению для вступления в реакцию нужны шесть молекул воды + шесть молекул углекислого газа и света. Это приводит к образованию шести молекул кислорода и глюкозы в химическом процессе. Глюкоза - это глюкоза , которую растение использует в качестве исходного материала для синтеза жиров и белков. Шесть молекул кислорода являются всего лишь «необходимым злом» для растения, которое он доставляет в окружающую среду через закрывающие клетки.

Как уже было сказано, углеводы являются наиболее важным прямым органическим продуктом фотосинтеза в большинстве зелёных растений. В растениях образуется мало свободной глюкозы; вместо этого глюкозные единицы связаны с образованием крахмала или соединены с фруктозой, другим сахаром, с образованием сахарозы.

При фотосинтезе синтезируются не только углеводы , как это когда-то считалось, но также:

  • аминокислоты;
  • белки;
  • липиды (или жиры);
  • пигменты и другие органические компоненты зелёных тканей.

Минералы поставляют элементы (например, азот, N; фосфор, Р; серы, S), необходимых для образования этих соединений.

Химические связи разрушаются между кислородом (O) и углеродом (С), водородом (Н), азотом и серы, а новые соединения образуются в продуктах, которые включают газообразный кислород (O 2) и органические соединения. Для разрушения связей между кислородом и другими элементами (например, в воде, нитрате и сульфате) требуется больше энергии, чем высвобождается, когда в продуктах образуются новые связи. Это различие в энергии связи объясняет большую часть световой энергии, хранящейся в виде химической энергии в органических продуктах, образующихся при фотосинтезе. Дополнительная энергия хранится при создании сложных молекул из простых.

Факторы, влияющие на скорость фотосинтеза

Скорость фотосинтеза определяется в зависимости от скорости производства кислорода либо на единицу массы (или площади) зелёных растительных тканей, либо на единицу веса всего хлорофилла.

Количество света, подача углекислого газа, температура, водоснабжение и наличие полезных ископаемых являются наиболее важными факторами окружающей среды, которые влияют на скорость реакции фотосинтеза на наземных установках. Его скорость определяется также видами растений и его физиологическим состоянием, например, его здоровьем, зрелостью и цветением.

Фотосинтез происходит исключительно в хлоропластах (греческий хлор = зелёный, пластообразный) растения. Хлоропласты преимущественно обнаруживаются в палисадах, но также и в губчатой ткани. На нижней стороне листа находятся блокирующие ячейки, которые координируют обмен газами. CO 2 течёт в межклеточные клетки снаружи.

Вода, необходимая для фотосинтеза , транспортирует растение изнутри через ксилему в клетки. Зелёный хлорофилл обеспечивает поглощение солнечного света. После того как углекислый газ и вода превращаются в кислород и глюкозу, закрывающие клетки открывают и выделяют кислород в окружающую среду. Глюкоза остаётся в клетке и превращается растением среди других в крахмал. Сила сравниваются с полисахаридом глюкозы и лишь слегка растворимой, так что даже в высоких потерях воды в прочности растительных остатков.

Важность фотосинтеза в биологии

Из света, полученного листом, отражается 20%, 10% передаются и 70% фактически поглощаются, из которых 20% рассеивается в тепле, 48% теряется при флуоресценции. Около 2% остаётся для фотосинтеза.

Благодаря этому процессу растения играют незаменимую роль на поверхности Земли; на самом деле зелёные растения с некоторыми группами бактерий являются единственными живыми существами, способными выработать органические вещества из минеральных элементов. По оценкам, каждый год 20 миллиардов тонн углерода фиксируются наземными растениями из углекислого газа в атмосфере и 15 миллиардов водорослями.

Зелёные растения являются основными первичными производителями, первое звено в пищевой цепи; не хлорофилловые растения и травоядные и плотоядные животные (включая людей) полностью зависят от реакции фотосинтеза.

Упрощённое определение фотосинтеза заключается в том, чтобы преобразовать световую энергию от солнца в химическую энергию. Этот фотонный биосинтез углевода производится из углекислого газа СО2 с помощью световой энергии.

То есть фотосинтез является результатом химической активности (синтеза) растений хлорофилла, которые продуцируют основные биохимические органические вещества из воды и минеральных солей благодаря способности хлоропластов захватывать часть энергии солнца.

Фотосинтез – синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света: 6СО 2 +6Н 2 О + Q света ->С 6 Н 12 О 6 +6О 2 . Фотосинтез – сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы.

Световая фаза . Происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента – АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящеёся во внутритилакоидном пространстве. Это приводит к распаду и фотолизу воды: Н 2 О+ Q света ->Н + +ОН - . Ионы гидроксида отдают свои электроны, превращаясь в реакционноспособные радикалы ?ОН: ОН - ->?ОН+е - . Радикалы ?ОН объединяются, образуя воду и свободный кислород: 4НО?-> 2Н 2 О+О 2 . Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н + заряжается положительно, с другой за счет электронов – отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идёт на восстановление специфицеского переносчика НАДФ + до НАДФ?Н 2: 2Н + +2 е - + НАДФ-> НАДФ?Н 2 . Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1)синтез АТФ; 2) образование НАДФ?Н 2 ; 3) образование кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ?Н 2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

Темновая фаза . Происходит в строме хлоропласта. Для её реакций нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют цепочку последовательных преобразований углекислого газа (из воздуха), приводящую к образованию глюкозы и других органических веществ. Сначала происходит фиксация СО 2 , акцептором является сахар рибулозобифосфат, катализируется рибулозобифосфаткарбоксилазой. В результате карбоксилирования рибулозобифосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты. Затем происходит цикл реакций, в которых через ряд промежуточных продуктов ФГК преобразуется в глюкозу. Используется энергия АТФ и и НАДФ·Н 2 образованых в световую фазу. (Цикл Кальвина).

23. Реакции ассимиляции со2 в темновой фазе фотосинтеза.

Цикл Кальвина – главный путь ассимиляции СО 2 . Фаза декарбоксилирования - углекислый газ, связываясь с рибулозобифосфатом, образует две молекулы фосфоглицерата. Эту реакцию катализирует рибулозобифосфат карбосилаза.