Занимательные и простые опыты для маленьких физиков. Разные физические опыты

Опыт 1 Четыре этажа Приборы и материалы: бокал, бумага, ножницы, вода, соль, красное вино, подсолнечное масло, крашенный спирт. Этапы проведения опыта ПОПРОБУЕМ НАЛИТЬ В СТАКАН ЧЕТЫРЕ РАЗНЫХ ЖИДКОСТИ ТАК, ЧТОБЫ ОНИ НЕ СМЕШАЛИСЬ И СТОЯЛИ ОДНА НАД ДРУГОЙ В ПЯТЬ ЭТАЖЕЙ. ВПРОЧЕМ, НАМ УДОБНЕЕ БУДЕТ ВЗЯТЬ НЕ СТАКАН, А УЗКИЙ, РАСШИРЯЮЩИЙСЯ К ВЕРХУ БОКАЛ. 1. НАЛИТЬ НА ДНО БОКАЛА СОЛЁНОЙ ПОДКРАШЕННОЙ ВОДЫ. 2. СВЕРНУТЬ ИЗ БУМАГИ ФУНТИК И ЗАГНУТЬ ЕГО КОНЕЦ ПОД ПРЯМЫМ УГЛОМ; КОНЧИК ЕГО ОТРЕЗАТЬ. ОТВЕРСТИЕ В ФУНТИКЕ ДОЛЖНО БЫТЬ ВЕЛИЧИНОЙ С БУЛАВОЧНУЮ ГОЛОВКУ. НАЛИТЬ В ЭТОТ РОЖОК КРАСНОГО ВИНА; ТОНКАЯ СТРУЙКА ДОЛЖНА ВЫТЕКАТЬ ИЗ НЕГО ГОРИЗОНТАЛЬНО, РАЗБИВАТЬСЯ О СТЕНКИ БОКАЛА И ПО НЕМУ СТЕКАТЬ НА СОЛЁНУЮ ВОДУ. КОГДА СЛОЙ КРАСНОГО ВИНА ПО ВЫСОТЕ СРАВНЯЕТСЯ С ВЫСОТОЙ СЛОЯ ПОДКРАШЕННОЙ ВОДЫ, ПРЕКРАТИТЬ ЛИТЬ ВИНО. 3. ИЗ ВТОРОГО РОЖКА НАЛЕЙ ТАКИМ ЖЕ ОБРАЗОМ В БОКАЛ ПОДСОЛНЕЧНОГО МАСЛА. 4. ИЗ ТРЕТЬЕГО РОЖКА НАЛИТЬ СЛОЙ КРАШЕННОГО СПИРТА.




Опыт 2 Удивительный подсвечник Приборы и материалы: свеча, гвоздь, стакан, спички, вода. Этапы проведения опыта Утяжелить конец свечи гвоздём. Рассчитать величину гвоздя так, чтобы свеча вся погрузилась в воду, только фитиль и самый кончик парафина должны выступать над водой. Зажечь фитиль. - Позволь, - скажут тебе, - ведь через минуту свеча догорит до воды и погаснет! - В том-то и дело, - ответишь ты, - что свеча с каждой минутой короче. А раз короче, значит и легче. Раз легче, значит, она всплывёт. И, правда, свеча будет понемножку всплывать, причём охлаждённый водой парафин у края свечи будет таять медленней, чем парафин, окружающий фитиль. Поэтому вокруг фитиля образуется довольно глубокая воронка. Эта пустота, в свою очередь, облегчает свечу, потому- то наша свеча и догорит до конца. Не правда ли, удивительный подсвечник – стакан воды? А этот подсвечник совсем не плох.


Опыт 3 Свеча за бутылкой Приборы и материалы: свеча, бутылка, спички Этапы проведения опыта Поставить зажженную свечу позади бутылки, а самому стань так, чтобы лицо отстояло от бутылки на см. Стоит теперь дунуть, и свеча погаснет, будто между тобой и свечёй нет никакой преграды. Объяснение опыта Свеча гаснет потому, что бутылка воздухом Обтекается: струя воздуха разбивается бутылкой на два потока; один обтекает её справа, а другой – слева; а встречаются они примерно там, где стоит пламя свечи.


Опыт 4 Вертящаяся змейка Приборы и материалы: плотная бумага, свеча, ножницы. Этапы проведения опыта 1. Из плотной бумаги вырезать спираль, растянуть её немного и посадить на конец изогнутой проволоки. 2. Держать эту спираль над свечкой в восходящем потоке воздуха, змейка будет вращаться. Объяснение опыта Змейка вращается, т.к. происходит расширение воздуха под действием тепла и о превращении теплой энергии в движение.


Опыт 5 Извержение Везувия Приборы и материалы: стеклянный сосуд, пузырёк, пробку, спиртовая тушь, вода. Этапы проведения опыта В широкий стеклянный сосуд, наполненный водой, поставить пузырёк спиртовой туши. В пробке пузырька должно быть небольшое отверстие. Объяснение опыта Вода имеет большую плотность, чем спирт; она постепенно будет входить в пузырёк, вытесняя оттуда тушь. Красная, синяя или черная жидкость тоненькой струйкой будет подниматься из пузырька кверху.


Опыт 6 Пятнадцать спичек на одной Приборы и материалы: 15 спичек. Этапы проведения опыта Положить одну спичку на стол, а на неё поперёк 14 спичек так, чтобы головки их торчали кверху, а концы касались стола. Как поднять первую спичку, держа её за один конец, и вместе с нею все остальные спички? Объяснение опыта Для этого нужно только поверх всех спичек, в ложбинку между ними, положить ещё одну, пятнадцатую спичку


Опыт 8 Парафиновый мотор Приборы и материалы: свеча, спица, 2 стакана, 2 тарелки, спички. Этапы проведения опыта Чтобы сделать это мотор, нам не нужно ни электричества, ни бензина. Нам нужно для этого только … свеча. 1. Раскалить спицу и воткнуть её их головками в свечку. Это будет ось нашего двигателя. 2. Положить свечу спицей на края двух стаканов и уравновесить. 3. Зажечь свечу с обоих концов. Объяснение опыта Капля парафина упадёт в одну из тарелок, подставленных под концы свечи. Равновесие нарушится, другой конец свечи перетянет и опустится; при этом с него стечёт несколько капель парафина, и он станет легче первого конца; он поднимается к верху, первый конец опустится, уронит каплю, станет легче, и наш мотор начнёт работать вовсю; постепенно колебания свечи будут увеличиваться всё больше и больше.


Опыт 9 Свободный обмен жидкостями Приборы и материалы: апельсин, бокал, красное вино или молоко, воду, 2 зубочистки. Этапы проведения опыта Осторожно разрезать апельсин пополам, очистить так, чтобы кожица снялась целой чашечкой. Проткнуть в дне этой чашечки два отверстия рядом и положить её в бокал. Диаметр чашечки должен быть немного больше диаметра центральной части бокала, тогда чашечка удержится на стенках, не падая на дно. Опустить апельсинную чашечку в сосуд на одну треть высоты. Налить в апельсинную корку красного вина или подкрашенного спирта. Оно будет проходить через дырку, пока уровень вина не дойдёт до дна чашечки. Затем налить воды почти до края. Можно увидеть, как струя вина поднимается через одно из отверстий до уровня воды, между тем как вода, более тяжёлая, пройдет через другое отверстие и станет опускаться ко дну бокала. Через несколько мгновений вино очутится на верху, а вода внизу.


Диффузия жидкостей и газов Диффузия (от лат. diflusio - распространение, растекание, рассеивание), перенос частиц разной природы, обусловленный хаотическим тепловым движением молекул (атомов). Различают диффузию в жидкостях, газах и твёрдых телах Демонстрационный эксперимент «Наблюдение диффузии» Приборы и материалы: вата, нашатырный спирт, фенолфталеин, установка для наблюдения диффузии. Этапы проведения эксперимента Возьмём два кусочка ватки. Смочим один кусочек ватки фенолфталеином, другой – нашатырным спиртом. Приведём ветки в соприкосновение. Наблюдается окрашивание ваток в розовый цвет вследствие явления диффузии.



Толстый воздух Мы живём благодаря воздуху, которым мы дышим. Если тебе не кажется это достаточно волшебным, проделай этот эксперимент, чтобы узнать, на какую ещё магию способен воздух. Реквизит Защитные очки Сосновая дощечка 0,3 х 2,5 х 60 см (можно приобрести в любом магазине пиломатериалов) Газетный лист Линейка Подготовка Разложи всё необходимое на столе Начинаем научное волшебство! Надень защитные очки. Объяви зрителям: « В мире есть два вида воздуха. Один из них – тощий, а другой – жирный. Сейчас я с помощью жирного воздуха совершу волшебство ». Положи на стол дощечку так, чтобы примерно 6 дюймов (15 см) выступало на край стола. Произнеси: « Толстый воздух садись на дощечку ». Ударь по концу дощечки, который выступает за край стола. Дощечка подпрыгнет в воздух. Скажи зрителям, что на дощечку сел должно быть тощий воздух. Опять положи дощечку на стол как в пункте 2. Положи на дощечку газетный лист, как показано на рисунке, чтобы дощечка была посередине листа. Разгладь газету, чтобы между ней и столом не осталось воздуха. Снова скажи: « Толстый воздух, садись на дощечку ». Ударь по выступающему концу ребром ладони. Результат Когда ты ударяешь по дощечке в первый раз, она подпрыгивает. Но если ударить по дощечке, на которой лежит газета, дощечка ломается. Объяснение Когда ты разглаживаешь газету, ты удаляешь из-под неё почти весь воздух. Вместе с тем большое количество воздуха сверху газеты давит на неё с большой силой. Когда ты ударяешь по дощечке, она ломается, потому что давление воздуха на газету не даёт дощечке подняться вверх в ответ на приложенную тобой силу.


Непромокаемая бумага Реквизит Бумажное полотенце Стакан Пластиковая миска или ведёрко, в которое можно налить достаточное количество воды, чтобы она полностью покрыла стакан Подготовка Разложи всё необходимое на столе Начинаем научное волшебство! Объяви зрителям: "C помощью своего магического мастерства я смогу сделать так, чтобы кусочек бумаги остался сухим ». Сомни бумажное полотенце и положи его на дно стакана. Переверни стакан и убедись, что комок бумаги остаётся на месте. Произнеси над стаканом какие-нибудь волшебные слова, например: « магические силы, оградите бумагу от воды ». Потом медленно опусти перевёрнутый стакан в миску с водой. Старайся держать стакан как можно ровнее, пока он не скроется под водой полностью. Вытащи стакан из воды и стряхни с него воду. Переверни стакан дном книзу и достань бумагу. Дай зрителям пощупать её и убедиться, что она осталась сухой. Результат Зрители обнаруживают, что бумажное полотенце осталось сухим. Объяснение Воздух занимает определённый объём. В стакане есть воздух, в каком бы положении он не находился. Когда ты переворачиваешь стакан кверху дном и медленно опускаешь в воду, воздух остаётся в стакане. Вода из-за воздуха не может попасть в стакан. Давление воздуха оказывается больше, чем давление воды, стремящейся проникнуть внутрь стакана. Полотенце на дне стакана остаётся сухим. Если стакан под водой перевернуть набок, воздух в виде пузырьков будет выходить из него. Тогда сможет попасть в стакан.


Прилипчивый стакан Из этого эксперимента ты узнаешь, как благодаря воздуху предметы могут прилипать друг к другу. Реквизит 2 больших воздушных шарика 2 пластиковых стакана по 250 мл Помощник Подготовка Разложи всё необходимое на столе Начинаем научное волшебство! Вызови кого-нибудь из зрителей в качестве ассистента. Дай ему шарик и стаканчик, а другой шарик и стаканчик оставь себе. Пусть твой ассистент надует твой шарик примерно наполовину, и завяжет его. Теперь попроси его попытаться прилепить к шарику стаканчик. Когда он не сможет выполнить это, наступает твоя очередь. Надуй свой шарик примерно на треть. Приложи стаканчик к шарику сбоку. Удерживая стаканчик на месте, продолжай надувать шарик, пока он не будет надут по крайней мере на 2/3. Теперь отпусти стаканчик. Советы учёному волшебнику Докажи зрителям, что твой стаканчик не намазан клеем. Выпусти из шарика некоторое количество воздуха, и стаканчик отваливается. Что ещё можно сделать Попробуй одновременно прикрепить к шарику одновременно 2 стаканчика. Это потребует некоторой тренировки и помощи ассистента. Попроси его приложить к шарику два стаканчика, а потом надуй шарик, как было описано. Результат Когда ты надуешь шарик, стаканчик « прилипнет » к нему. Объяснение Когда ты прикладываешь стаканчик к шарику и надуваешь его, вокруг края стаканчика стенка шарика становится плоской. При этом объём воздуха внутри стаканчика слегка увеличивается, однако количество молекул воздуха остаётся прежним, поэтому давление воздуха внутри стаканчика уменьшается. Следовательно, атмосферное давление внутри стаканчика становится слегка меньшим, чем снаружи. Благодаря этой разницы в давлении стаканчик и удерживается на месте.


Упорная воронка Может ли воронка « отказываться » пропускать воду в бутылку? Проверь сам! Реквизит 2 воронки Две одинаковые чистые сухие пластиковые бутылки по 1 литру Пластилин Кувшин с водой Подготовка Вставь в каждую бутылку по воронке. Замажь горлышко одной из бутылок вокруг воронки пластилином,чтобы не осталось щели.Замажь горлышко одной из бутылок вокруг воронки пластилином,чтобы не осталось щели. Начинаем научное волшебство! Объяви зрителям: « У меня есть волшебная воронка, которая не пускает воду в бутылку »Объяви зрителям: « У меня есть волшебная воронка, которая не пускает воду в бутылку » Возьми бутылку без пластилина и налей в неё через воронку немного воды. Обясни зрителям: « Вот так ведёт себя большинство воронок ».Возьми бутылку без пластилина и налей в неё через воронку немного воды. Обясни зрителям: « Вот так ведёт себя большинство воронок ». Поставь на стол воронку с пластилином. Налей воды в воронку до верха. Посмотри, что будет. Результат Из воронки в бутылку протечёт несколько капель воды, а затем она прекратит течь совсем. Объяснение Это ещё один пример действия атмосферного давления. В первую бутылку вода течёт свободно. Вода, текущая через воронку в бутылку, замещает в ней воздух, который выходит через щели между горлышком и воронкой. В запечатанной пластилином бутылке тоже есть воздух, который обладает своим давлением. Вода в воронке тоже обладает давлением, которое возникает благодаря силе тяжести, тянущей воду вниз. Однако сила давления воздуха в бутылке превышает силу тяжести, действующую на воду. Поэтому вода не может попасть в бутылку. Если в бутылке или в пластилине будет хотя бы маленькая дырочка, воздух сможет выходить через неё. Из-за этого его давление в бутылке будет падать, и вода сможет течь в неё.


Разрушитель Как тебе уже должно быть известно из предыдущих опытов, настоящий волшебник может использовать силу давления воздуха в своих удивительных трюках. Из этого опыта ты узнаешь, как воздух может раздавить жестяную банку. Обратите внимание: для этого эксперимента понадобиться газовая или электрическая плита и помощь взрослых. Реквизит Форма для выпечки Водопроводная вода Линейка Газовая или электрическая лампа (пользоваться должен только взрослый помощник) Пустая жестяная банка Щипцы Взрослый ассистент Подготовка Налей в форму воды примерно на 2,5 см. Поставь её рядом с плитой. Налей немного воды в пустую банку от газированной воды – чтобы вода только прикрывала дно. После этого твой взрослый ассистент должен нагреть банку на плите. Вода должна сильно кипеть в течение примерно минуты, так, чтобы из банки шёл пар. Начинаем научное волшебство! Объяви зрителям, что сейчас ты раздавишь жестяную банку, не дотронувшись до неё. Попроси взрослого ассистента взять банку щипцами и быстро перевернуть её в форму с водой. Посмотри, что произойдёт. Советы учёному волшебнику Прежде чем твой помощник перевернёт банку, скажи какие-нибудь волшебные слова. Протяни руки над банкой и произнеси: « Жестянка, приказываю тебе расплющиться, как только тебя коснётся вода! » Что ещё можно сделать Попробуй повторить эксперимент с банкой большего размера, например, с литровой банкой из-под томатного сока. Открывая банку, сделай в крышке только небольшие отверстия. Перед проведением эксперимента вылей из банки содержимое и вымой её, но не открывай крышку полностью. Так же легко окажется раздавить такую банку, как банку из-под газировки? Результат Когда твой ассистент опустит перевёрнутую банку в форму с водой, банка тут же сплющится. Объяснение Банка сминается из-за изменения давления воздуха. Ты создаёшь внутри неё низкое давление, а затем более высоким давлением её сминает. В ненагретой банке содержится вода и воздух. Когда вода вскипает, она испаряется – превращается из жидкости в горячий водяной пар. Горячий пар замещает в банке воздух. Когда твой ассистент опускает перевёрнутую банку, воздух не может снова вернуться в неё. Холодная вода в форме охлаждает пар, оставшийся в банке. Он конденсируется-превращается из газа обратно в воду. Пар который занимал весь объём банки, превращается всего в несколько капель воды, которая занимает существенно меньше места, чем пар. В банке остаётся большое пустое пространство, практически не заполненное воздухом, поэтому давление там оказывается гораздо ниже, чем атмосферное давление снаружи. Воздух давит на банку снаружи, и она сминается.


Летающий мячик Видел ли ты, как на выступлении фокусника человек поднимается в воздух? Попробуй провести подобный эксперимент. Обрати внимание: Для этого эксперимента понадобиться фен и помощь взрослых. Реквизит Фен (пользоваться должен только взрослый помощник) 2 толстые книги или другие тяжёлые предметы Мячик для пинг-понга Линейка Взрослый ассистент Подготовка Установи фен на столе вверх отверстием, откуда дует горячий воздух. Чтобы установить его в таком положении, используй книги. Проверь, чтобы они не закрывали отверстие сбоку, где воздух засасывается в фен. Включи фен в розетку. Начинаем научное волшебство! Попроси кого-нибудь из взрослых зрителей стать твоим ассистентом. Объяви зрителям: « Сейчас я заставлю обыкновенный пинг-понговый шарик летать по воздуху ». Возьми шарик в руку и отпусти, чтобы он упал на стол. Скажи зрителям: « Ой! Я забыл сказать волшебные слова! » Произнеси над мячиком волшебные слова. Пусть твой ассистент включит фен на полную мощность. Аккуратно помести шарик над феном в струю воздуха, примерно в 45 см от выдувающего отверстия. Советы учёному волшебнику В зависимости от силы выдува, тебе, возможно, придётся поместить шарик немного выше или ниже, чем указано. Что ещё можно сделать Попробуй проделать тоже самое с мячиком разного размера и массы. Одинаково ли хорошо будет получаться опыт? Результат Шарик зависнет в воздухе над феном. Объяснение На самом деле этот трюк не противоречит силе тяжести. В нём демонстрируется важная способность воздуха, называемая принципом Бернулли. Принцип Бернулли – закон природы, согласно которому любое давление любого текучего вещества, в том числе воздуха, уменьшается с ростом скорости его движения. Иначе говоря при низкой скорости потока воздуха он имеет высокое давление. Воздух, выходящий из фена, движется очень быстро и следовательно его давление невелико. Мячик со всех сторон становится окружён областью низкого давления, которая образует конус у отверстия фена. Воздух вокруг этого конуса обладает более высоким давлением, и не даёт мячику выпасть из зоны низкого давления. Сила тяжести тянет его вниз, а сила воздуха тянет его вверх. Благодаря совместному действию этих сил, шарик и зависает в воздухе над феном.


Волшебный мотор В этом эксперименте ты сможешь заставить лист бумаги работать, как мотор – конечно, с помощью воздуха. Реквизит Клей Квадратный кусок дерева 2,5 х 2,5 см Швейная иголка Бумажный квадрат 7, 5 х 7,5 см Подготовка Нанеси каплю клея в центре деревяшки. Установи в клей иголку острым концом вверх, под прямым углом (перпендикулярно) к деревяшке. Держи её в таком положении, пока клей не застынет настолько, что иголка будет стоять самостоятельно. Сложи бумажный квадрат по диагонали (угол к углу). Разверни, и сложи по другой диагонали. Снова разверни бумагу. Там, где пересекаются линии сгиба, находится центр листа. Лист бумаги должен выглядеть как низкая, уплощённая пирамида. Начинаем научное волшебство! Объяви зрителям: « Теперь у меня есть волшебная сила, которая поможет мне запустить маленький бумажный моторчик ». Поставь на стол деревяшку с иголкой. Положи на иголку бумагу, так, чтобы её центр оказался на острие иголки. 4 стороны пирамиды должны свисать вниз. Произнеси волшебные слова, например: « Волшебная энергия, заведи мой мотор! » Потри ладони 5-10 раз, потом сложи их вокруг пирамиды на расстоянии около 2,5 см от краёв бумаги. Посмотри, что получиться. Результат Бумага сначала будет качаться, а затем начнёт вращаться по кругу. Объяснение Веришь или нет, но бумагу заставит двигаться тепло от твоих рук. Когда ты трёшь ладони друг о друга, между ними возникает трение – сила, которая тормозит движение соприкасающихся предметов. Из-за трения предметы разогреваются, значит, и трение твоих ладоней производит тепло. Тёплый воздух всегда движется от тёплого места к холодному. Воздух, соприкасающийся с твоими ладонями, нагревается. Тёплый воздух поднимается вверх, так как расширяется и становится мене плотным, следовательно, более лёгким. Двигаясь, воздух соприкасается с бумажной пирамидой, заставляя двигаться и её. Такое перемещение тёплого и холодного воздуха называется конвекцией. Конвекция – это такой процесс, при котором в жидкости или газе возникают потоки тепла.

Опыты в домашних условиях — это отличный способ познакомить детей с основами физики и химии, и облегчить понимание сложных абстрактных законов и терминов при помощи наглядной демонстрации. Причем для их проведения не нужно обзаводиться дорогими реактивами или специальным оборудованием. Ведь не задумываясь, мы каждый день проводим опыты в домашних условиях — от добавления гашеной соды в тесто до подключения батареек к фонарику. Читайте далее, чтобы узнать, как легко, просто и безопасно проводить интересные эксперименты.

Химические опыты в домашних условиях

Сразу в голове возникает образ профессора со стеклянной колбой и опаленными бровями? Не переживайте, наши химические опыты в домашних условиях совершенно безопасны, интересны и полезны. Благодаря им ребенок легко запомнит что такое экзо- и эндотермические реакции и какая между ними разница.

Итак, давайте сделаем вылупляющиеся яйца динозавра, которые с успехом можно использовать в качестве бомбочек для ванной.

Для опыта нужны:

  • маленькие фигурки динозавров;
  • пищевая сода;
  • растительное масло;
  • лимонная кислота;
  • пищевой краситель или жидкие акварельные краски.

Порядок проведения опыта

  1. Высыпьте 1/2 стакана соды в небольшую миску и добавьте около 1/4 ч. л. жидких красок (или растворите 1—2 капли пищевого красителя в 1/4 ч. л. воды), перемешайте соду пальцами, чтобы получился равномерный цвет.
  2. Добавьте 1 ст. л. лимонной кислоты. Тщательно перемешайте сухие компоненты.
  3. Добавьте 1 ч. л. растительного масла.
  4. У вас должно получиться рассыпчатое тесто, которое едва слипается при нажатии. Если оно совсем не хочет держаться вместе, то потихоньку добавляйте по 1/4 ч. л. масла до тех пор, пока не добьетесь желаемой консистенции.
  5. Теперь возьмите фигурку динозавра и облепите ее тестом в форме яйца. Оно будет очень хрупкое вначале, поэтому его следует отложить на ночь (минимум 10 часов), чтобы оно затвердело.
  6. Затем можно приступить к веселому эксперименту: наберите воды в ванную и бросьте в нее яйцо. Оно будет яростно шипеть, растворяясь в воде. При прикосновении оно будет холодное, поскольку это эндотермическая реакция между кислотой и щелочью, с поглощением тепла из окружающей среды.

Обратите внимание, что ванная может стать скользкой из-за добавления масла.

Зубная паста для слона

Опыты в домашних условиях, результат которых можно пощупать и потрогать, очень нравятся детям. К ним относится и этот забавный проект, который заканчивается большим количеством плотной пышной цветной пены.

Для его проведения понадобятся:

  • защитные очки для ребенка;
  • сухие активные дрожжи;
  • теплая вода;
  • перекись водорода 6 %;
  • средство для мытья посуды или жидкое мыло (не антибактериальное);
  • воронка;
  • пластиковые блестки (обязательно неметаллические);
  • пищевые красители;
  • бутылка 0,5 л (лучше всего брать бутылку с широким дном, для большой устойчивости, но подойдет и обычная пластиковая).

Сам опыт выполняется крайне просто:

  1. 1 ч. л. сухих дрожжей разведите в 2 ст. л. теплой воды.
  2. В бутылку, поставленную в раковину или посуду с высокими бортиками, налейте 1/2 стакана перекиси водорода, капельку красителя, блестки и немного жидкости для мытья посуды (несколько нажатий на дозатор).
  3. Вставьте воронку и влейте дрожжи. Реакция начнется сразу, поэтому действуйте быстро.

Дрожжи выступают в качестве катализатора и ускоряют выделение водорода перекисью, а когда газ взаимодействует с мылом, то он создает огромное количество пены. Это экзотермическая реакция, с выделением тепла, поэтому если потрогать бутылку после того, как «извержение» прекратится, то она будет теплая. Поскольку водород сразу улетучивается, остается просто мыльная пена, с которой можно играть.

Опыты по физике в домашних условиях

А знаете ли вы, что лимон можно использовать в качестве батарейки? Правда, очень маломощной. Опыты в домашних условиях с цитрусовыми продемонстрируют детям работу аккумулятора и замкнутой электрической цепи.

Для эксперимента вам понадобятся:

  • лимоны — 4 шт.;
  • оцинкованные гвозди — 4 шт.;
  • небольшие куски меди (можно взять монетки)— 4 шт.;
  • аллигаторные зажимы с проводами небольшой длины (около 20 см) — 5 шт.;
  • небольшая лампочка или фонарик — 1 шт.

Да будет свет

Вот как провести опыт:

  1. Покатайте по твердой поверхности, затем слегка сожмите лимоны, чтобы они пустили сок внутри шкурки.
  2. Вставьте по одному оцинкованному гвоздю и одному куску меди в каждый лимон. Расположите их на одной линии.
  3. Подключите один конец провода к оцинкованному гвоздю, а другой — к куску меди в другом лимоне. Повторяйте этот шаг, пока все фрукты не будут соединены между собой.
  4. Когда вы закончите, у вас должен остаться один 1 гвоздь и 1 кусок меди, которые ни к чему не подключены. Подготовьте вашу лампочку, определите полярность элемента питания.
  5. Подключите оставшийся кусок меди (плюс) и гвоздь (минус) к плюсу и минусу фонарика. Таким образом, цепочка соединенных лимонов — это батарейка.
  6. Включите лампочку, которая будет работать от энергии фруктов!

Чтобы повторить такие опыты в домашних условиях также подойдет картошка, особенно зеленая.

Как это работает? Лимонная кислота, содержащаяся в лимоне, вступает в реакцию с двумя разными металлами, что заставляет ионы двигаться в одну сторону, создавая электрический ток. По этому принципу работают все химические источники электроэнергии.

Летние забавы

Необязательно оставаться в помещении, чтобы проводить Некоторые эксперименты лучше пройдут на улице, и не надо будет ничего убирать по их завершении. К ним относятся интересные опыты в домашних условиях с воздушными пузырями, причем не простыми, а огромными.

Чтобы их сделать понадобятся:

  • 2 деревянные палки длиной 50-100 см (в зависимости от возраста и роста ребенка);
  • 2 металлических вкручивающихся ушка;
  • 1 металлическая шайба;
  • 3 м хлопчатобумажного шнура;
  • ведро с водой;
  • любое моющее — для посуды, шампунь, жидкое мыло.

Вот как провести эффектные опыты для детей в домашних условиях:

  1. Вкрутите в концы палок металлические ушка.
  2. Разрежьте хлопчатобумажный шнур на две части, длиной 1 и 2 м. Можно точно не придерживаться этих мерок, но важно, чтобы между ними сохранялась пропорция 1 к 2.
  3. На длинный кусок веревки наденьте шайбу, чтобы она равномерно провисала по центру, и привяжите обе веревки к ушкам на палках, формируя петлю.
  4. В ведре с водой размешайте небольшое количество моющего.
  5. Аккуратно погружая петлю на палочках в жидкость, начинайте выдувать гигантские пузыри. Чтобы отделять их друг от друга аккуратно сводите концы двух палок вместе.

Какова же научная составляющая этого опыта? Объясните детям, что пузыри держатся за счет поверхностного натяжения — силы притяжения, которая удерживает молекулы любой жидкости вместе. Ее действие проявляется в том, что разлитая вода собирается в капли, которые стремятся обрести сферическую форму, как наиболее компактную из всех существующих в природе, или в том, что вода, когда льется, собирается в цилиндрические потоки. У пузыря слой молекул жидкости с обеих сторон зажат молекулами мыла, которые усиливают ее поверхностное натяжение при распределении по поверхности пузыря, и не дают ей быстро испариться. Пока палки держат разомкнутыми, вода удерживается в виде цилиндра, как только их сомкнуть — она стремится к сферической форме.

Вот такие опыты в домашних условиях можно провести с детьми.

1. Цилиндры со стругом.

Притяжение между молекулами становится заметным только тогда, когда они находятся очень близко друг к другу, на расстояниях, сравнимых с размером самих молекул. Два свинцовых цилиндра сцепляются вместе, если их вплотную прижать друг к другу ровными, только что срезанными поверхностями. При этом сцепление может быть настолько прочным, что цилиндры не удаётся оторвать друг от друга даже при большой нагрузке.

2. Определение архимедовой силы.

1. К пружине подвешивают небольшое ведёрко и тело цилиндрической формы. Растяжение пружины по положению стрелки отмечают меткой на штативе. Она показывает вес тела в воздухе.

2. Приподняв тело, под него подставляют отливной сосуд, наполненный водой до уровня отливной трубки. После чего тело погружают целиком в воду. При этом часть жидкости, объём которой равен объёму тела, выливается из отливного сосуда в стакан. Указатель пружины поднимается вверх, пружина сокращается, показывая уменьшение веса тела в воде. В данном случае на тело, наряду с силой тяжести, действует ещё и сила, выталкивающая его из жидкости.

3. Если в ведёрко перелить воду из стакана (т.е. ту, которую вытеснило тело),то указатель пружины возвратится к своему начальному положению.

На основании этого опыта можно заключить, что, сила, выталкивающая тело, целиком погруженное в жидкость, равна весу жидкости в объёме этого тела.

3. Поднесём дугообразный магнит к листу картона. Магнит не притянет его. Затем положим картон на мелкие железные предметы и снова поднесём магнит. Лист картона поднимется, а за ним и мелкие железные предметы. Это происходит потому, что между магнитом и мелкими железными предметами образуется магнитное поле, которое действует и на картон, под действием этого поля картон притягивается к магниту.

4. Положим дугообразный магнит на край стола. Тонкую иглу с ниткой положим на один из полюсов магнита. Затем осторожно потянем иглу за нить, пока игла не соскочит с полюса магнита. Игла зависает в воздухе. Это происходит потому, что находясь в магнитном поле, иголка намагничивается и притягивается к магниту.

5. Действие магнитного поля на катушку с током.

Магнитное поле действует с некоторой силой на любой проводник с током, находящийся в этом поле.

У нас имеется катушка, подвешенная на гибких проводах, которые присоединены к источнику тока. Катушка помещена между полюсами дугообразного магнита, т.е. находится в магнитном поле. Взаимодействие между ними не наблюдается. При замыкании электрической цепи катушка приходит в движение. Направление движения катушки зависит от направления тока в ней и от расположения полюсов магнита. В данном случае ток направлен по часовой стрелке и катушка притянулась. При изменении направления тока на противоположное катушка оттолкнётся.

Точно так же катушка изменит направление движения при изменении расположения полюсов магнита (т.е. изменения направления линий магнитного поля).

Если убрать магнит, то при замыкании цепи катушка двигаться не будет.

Значит, со стороны магнитного поля на катушку с током действует некоторая сила, отклоняющая его от первоначального положения.

Следовательно, направление тока в проводнике, направление линий магнитного поля и направление силы, действующей на проводник, связаны между собой.

6. Прибор для демонстрации правила Ленца.

Выясним, как направлен индукционный ток. Для этого воспользуемся прибором, который представляет собой узкую алюминиевую пластинку с алюминиевыми кольцами на концах. Одно кольцо сплошное, другое имеет разрез. Пластинка с кольцами помещена на стойку и может свободно вращаться вокруг вертикальной оси.

Возьмём дугообразный магнит и внесём его в кольцо с разрезом - кольцо останется на месте. Если же вносить магнит в сплошное кольцо, то оно будет отталкиваться, уходить от магнита, поворачивая при этом всю пластинку. Результат будет точно таким же, если магнит будет повёрнут к кольцам не северным полюсом, а южным.

Объясним наблюдаемое явление.

При приближении к кольцу любого полюса магнита, поле которого является неоднородным, проходящий сквозь кольцо магнитный поток увеличивается. При этом в сплошном кольце возникает индукционный ток, а в кольце с разрезом тока не будет.

Ток в сплошном кольце создаёт в пространстве магнитное поле, благодаря чему кольцо приобретает свойства магнита. Взаимодействуя с приближающимся магнитом, кольцо отталкивается от него. Из этого следует, что кольцо и магнит обращены друг к другу одноимёнными полюсами, а векторы магнитной индукции их полей направлены в противоположные стороны. Зная направление вектора индукции магнитного поля кольца, можно по правилу правой руки определить направление индукционного тока в кольце. Отодвигаясь от приближающегося к нему магнита, кольцо противодействует увеличению проходящего сквозь него внешнего магнитного потока.

Теперь посмотрим, что произойдёт при уменьшении внешнего магнитного потока сквозь кольцо. Для этого, удерживая кольцо рукой, внесём в него магнит. Затем, отпустив кольцо, начнём удалять магнит. В этом случае кольцо будет следовать за магнитом, притягиваться к нему. Значит, кольцо и магнит обращены друг к другу разноимёнными полюсами, а векторы магнитной индукции их полей направлены в одну сторону. Следовательно, магнитное поле тока будет противодействовать уменьшению внешнего магнитного потока, проходящего сквозь кольцо.

На основании результатов рассмотренных опытов было сформулировано правило Ленца: возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению внешнего магнитного потока, которое вызвало этот ток.

7. Шар с кольцом.

О том, что все тела состоят из мельчайших частиц между которыми есть промежутки, позволяет судить следующий опыт по изменению объёма шара при нагревании и охлаждении.

Возьмём стальной шарик, который в ненагретом состоянии проходит сквозь кольцо. Если шарик нагреть, то, расширившись, он уже сквозь кольцо не пройдёт. Через некоторое время шарик, остыв, уменьшится в объёме, а кольцо, нагревшись от шарика, расширится, и шарик вновь пройдёт сквозь кольцо. Это происходит потому, что все вещества состоят из отдельных частичек, между которыми есть промежутки. Если частицы удаляются друг от друга, то объём тела увеличивается. Если частицы сближаются, объём тела уменьшается.

8. Давление света.

На лёгкие крылышки, находящиеся в сосуде, из которого откачан воздух, направляют свет. Крылышки приходят в движение. Причина светового давления заключается в том, что фотоны обладают импульсом. При поглощении их крылышками они передают им свой импульс. Согласно закону сохранения импульса импульс крылышек становится равным импульсу поглощённых фотонов. Поэтому покоящиеся крылышки приходят в движение. Изменение импульса крылышек означает согласно второму закону Ньютона, что на крылышки действует сила.

9. Источники звука. Звуковые колебания.

Источниками звука являются колеблющиеся тела. Но не всякое колеблющееся тело является источником звука. Не издаёт звука колеблющейся шарик, подвешенный на нити, т.к его колебания происходят с частотой меньше 16 Гц. Если по камертону ударить молоточком, то камертон зазвучит. Значит его колебания лежат в звуковом диапазоне частот от 16 Гц до 20 кГц. Поднесём к звучащему камертону шарик, подвешенный на нитке, - шарик будет отскакивать от камертона, свидетельствуя о колебаниях его ветвей.

10. Электрофорная машина.

Электрофорная машина является источником тока, в котором механическая энергия превращается в электрическую.

11. Прибор для демонстрации инерции.

Прибор позволяет учащимся усвоить понятие импульса силы и показать его зависимость от действующей силы и времени её действия.

На торец стойки с лункой положим пластинку, а на пластинку - шарик. Медленно сдвинем пластинку с шариком с торца стойки и увидим одновременное движение шарика и пластинки, т.е. шарик по отношению к пластинке неподвижен. Значит результат взаимодействия шарика и пластинки зависит от времени взаимодействия.

На торец стойки с лункой положим пластинку так, чтобы её торец коснулся плоской пружины. На пластинку положим шарик на место соприкосновения пластинки с торцом стойки. Придерживая левой рукой площадку, слегка оттянем пружину от пластинки и отпустим её. Пластинка вылетает из под шарика, а шарик остаётся на месте в лунке стойки. Значит результат взаимодействия тел зависит не только от времени, но и от силы взаимодействия.

Также этот опыт служит косвенным доказательством 1 закона Ньютона - закона инерции. Пластинка после вылета далее движется по инерции. А шарик сохраняет состояние покоя, при отсутствии внешнего воздействия на него.

Можно применять на уроках физики на этапах постановки цели и задач урока, создании проблемных ситуаций при изучении новой темы, применении новых знаний при закреплении. Презентацию «Занимательные опыты» можно использовать учащимися для подготовки опытов в домашних условиях, при проведении внеклассных мероприятия по физике.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Предварительный просмотр:

Муниципальное Бюджетное Общеобразовательное Учреждение

"Гимназия № 7 имени Героя России С. В. Василева"

Научная работа

«Занимательные физические опыты

из подручных материалов»

Выполнил: ученик 7а класса

Корзанов Андрей

Учитель: Балесная Елена Владимировна

г. Брянск 2015 год

  1. Введение «Актуальность темы» ……………………………3
  2. Основная часть ………………………………………………...4
  1. Организация исследовательской работы………………...4
  2. Опыты по теме «Атмосферное давление»……………….6
  3. Опыты по теме «Теплота»…………………………………7
  4. Опыты по теме «Электричество и магнетизм»…………...7
  5. Опыты по теме «Свет и звук»……………………………...8
  1. Заключение ……………………………………………………...10
  2. Список изученной литературы ……………………………….12
  1. ВВЕДЕНИЕ.

Физика – это не только научные книги и сложные законы, не только огромные лаборатории. Физика – это еще интересные эксперименты и занимательные опыты. Физика – это фокусы, показанные в кругу друзей, это смешные истории и забавные игрушки-самоделки.

Самое главное, для физических опытов можно использовать любой подручный материал.

Физические опыты можно делать с шарами, стаканами, шприцами, карандашами, соломинками, монетами, иголками и т.д.

Опыты повышают интерес к изучению физики, развивают мышление, учат применять теоретические знания для объяснения различных физических явлений, происходящих в окружающем мире.

При проведении опытов приходится не только составлять план его осуществления, но и определять способы получения некоторых данных, самостоятельно собирать установки и даже конструировать нужные приборы для воспроизведения того или иного явления.

Но, к сожалению, из-за перегруженности учебного материала на уроках физики занимательным опытам уделяется недостаточное внимание, большое внимание уделяется теории и решению задач.

Поэтому было решено провести исследовательскую работу по теме «Занимательные опыты по физике из подручных материалов».

Цели исследовательской работы следующие:

  1. Освоить методики физических исследований, овладеть навыками правильного наблюдения и техникой физического эксперимента.
  2. Организация самостоятельной работы с различной литературой и другими источниками информации, сбор, анализ и обобщение материала по теме исследовательской работы.
  3. Научить учащихся применять научные знания для объяснения физических явлений.
  4. Привить любовь учащимся школы к физике, концентрация их внимания на понимании законов природы, а не на механическом их запоминании.
  5. Пополнение кабинета физики самодельными приборами, изготовленными из подручных материалов.

При выборе темы исследования мы исходили из следующих принципов:

  1. Субъективность – выбранная тема соответствует нашим интересам.
  2. Объективность – выбранная нами тема актуальна и важна в научном и практическом отношении.
  3. Посильность – задачи и цели, поставленные нами в работе, реальны и выполнимы.
  1. ОСНОВНАЯ ЧАСТЬ.

Исследовательская работа проводилась по следующей схеме:

  1. Постановка проблемы.
  2. Изучение информации из разных источников по данной проблеме.
  3. Выбор методов исследования и практическое овладение ими.
  4. Сбор собственного материала – комплектование подручных материалов, проведение опытов.
  5. Анализ и обобщение.
  6. Формулировка выводов.

В ходе исследовательской работы применялись следующие физические методики исследований :

I. Физический опыт

Проведение опыта состояло из следующих этапов:

  1. Уяснение условий опыта.

Этот этап предусматривает знакомство с условиями проведения эксперимента, определение перечня необходимых подручных приборов и материалов и безопасных условий при проведении опыта.

  1. Составление последовательности действий.

На этом этапе намечался порядок проведения опыта, в случае необходимости добавлялись новые материалы.

  1. Проведение опыта.

II. Наблюдение

При наблюдении за явлениями, происходящими в опыте, мы обращали особое внимание на изменение физических характеристик (давления, объема, площади, температуры, направления распространения света и т.д.), при этом мы получали возможность обнаруживать закономерные связи между различными физическими величинами.

III. Моделирование.

Моделирование является основой любого физического исследования. При проведении опытов мы моделировали изотермическое сжатие воздуха, распространение света в различных средах, отражение и поглощение электромагнитных волн, электризацию тел при трении.

Всего нами моделировано, проведено и научно объяснено 24 занимательных физических опытов.

По итогам научно-исследовательской работы можно сделать следующие выводы:

  1. В различных источниках информации можно найти и самим придумать много занимательных физических опытов, выполняемых с помощью подручного оборудования.
  2. Занимательные опыты и самодельные физические приборы увеличивают спектр демонстраций физических явлений.
  3. Занимательные опыты позволяют проверить законы физики и теоретические гипотезы, имеющие принципиальное значение для науки.

ТЕМА «АТМОСФЕРНОЕ ДАВЛЕНИЕ»

Опыт №1. «Шарик не сдувается»

Материалы: Трехлитровая стеклянная банка с крышкой, соломинка для коктейля, резиновый шар, нитка, пластилин, гвоздик.

Последовательность действий

С помощью гвоздика сделай в крышке банки 2 отверстия – одно центральное, другое на небольшом расстоянии от центрального. Через центральное отверстие пропусти соломинку и заделай отверстие пластилином. К концу соломинки с помощью нитки привяжи резиновый шар, закрой крышкой стеклянную банку, при этом конец соломинки с шаром должен быть внутри банки. Для устранения перемещения воздуха место контакта крышки и банки заделай пластилином. Надуй резиновый шарик через соломинку, шарик сдувается. А теперь надуй шарик и закрой второе отверстие в крышке пластилином, шарик сначала сдувается, а потом перестает сдуваться. Почему?

Научное объяснение

В первом случае при открытом отверстии давление внутри банки равно давлению воздуха внутри шара, поэтому под действием силы упругости растянутой резины шарик сдувается. Во втором случае при закрытом отверстие воздух не выходит из банки, по мере сдувания шарика объем воздуха увеличивается, давление воздуха уменьшается и становится меньше давления воздуха внутри шара, сдувание шарика прекращается.

По данной теме проведены следующие опыты:

Опыт №2. «Равновесие давления».

Опыт №3. «Воздух брыкается»

Опыт №4. «Приклеенный стакан»

Опыт №5. «Подвижный банан»

ТЕМА «ТЕПЛОТА»

Опыт №1. «Мыльный пузырь»

Материалы: Маленький флакон из-под лекарства с пробкой, чистый стержень от шариковой ручки или соломинка от коктейля, стакан с горячей водой, пипетка, мыльная вода, пластилин.

Последовательность действий

В пробке флакона из-под лекарства проделай тонкое отверстие и вставь в него чистый стержень шариковой ручки или соломинку. Место, где стержень вошел в пробку, облепи пластилином. Пипеткой наполни стержень мыльной водой, опусти флакон в стакан с горячей водой. С наружного конца стержня начнут подниматься мыльные пузырьки. Почему?

Научное объяснение

При нагревании флакончика в стакане с горячей водой, воздух внутри флакона нагревается, его объем увеличивается, при этом надуваются мыльные пузыри.

По теме «Теплота» проведены следующие опыты:

Опыт №2. «Несгораемый платок»

Опыт №3. «Лед не плавится»

ТЕМА «ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ»

Опыт №1. «Измеритель тока – мультиметр»

Материалы: 10 метров изолированного медного провода 24 калибра (диаметр 0,5мм, сечение 0,2 мм 2 ), машинка для зачистки проводов, широкая липкая лента, швейная игла, нитка, сильный стержневой магнит, банка из-под сока, гальванический элемент «D».

Последовательность действий

Зачисти провод с обоих концов от изоляции. Намотай провод вокруг банки плотными витками, оставив свободными концы провода на 30 см. Сними получившуюся катушку с банки. Чтобы катушка не разваливалась, в нескольких местах обмотай ее липкой лентой. Прикрепи катушку вертикально к столу с помощью большого куска липкой ленты. Намагнить швейную иголку, проведя ей по магниту, по крайней мере, четыре раза в одном направлении. Обвяжи иголку ниткой посередине так, чтобы иголка висела в равновесии. Свободный конец нитки прилепи внутрь катушки. Намагниченная игла должна спокойно висеть внутри катушки. Присоедини свободные концы провода к положительной и отрицательной клеммам гальванического элемента. Что произошло? А теперь поменяй полярность. Что произошло?

Научное объяснение

Вокруг катушки с током возникает магнитное поле, вокруг намагниченной иголки, также возникает магнитное поле. Магнитное поле катушки с током действует на намагниченную иголку и поворачивает ее. Если поменять полярность, то направление тока меняется на противоположное, иголка поворачивается в противоположную сторону.

Кроме того, по данной теме проведены следующие опыты:

Опыт №2. «Статический клей».

Опыт №3. «Фруктовая батарейка»

Опыт №4. «Антигравитационные диски»

ТЕМА «СВЕТ И ЗВУК»

Опыт №1. «Мыльный спектр»

Материалы: Мыльный раствор, ершик для чистки курительной трубки (или кусок толстой проволоки), глубокая тарелка, карманный фонарик, липкая лента, лист белой бумаги.

Последовательность действий

Согни ершик для трубки (или кусок толстой проволоки) так, чтобы он образовал петлю. Не забудь сделать небольшую ручку, чтобы удобнее было держать. Налей мыльный раствор в тарелку. Погрузи петлю в мыльный раствор и дай ей как следует пропитаться мыльным раствором. Через несколько минут аккуратно вынь ее. Что ты видишь? Видны ли цвета? Прикрепи лист белой бумаги к стене с помощью липкой ленты. Выключи свет в комнате. Включи фонарь и направь его луч на петлю с мыльной пеной. Расположи фонарь так, чтобы петля отбрасывала тень на бумагу. Опиши полнившуюся тень.

Научное объяснение

Белый свет является сложным светом, он состоит из 7 цветов – красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Это явление называется интерференцией света. При прохождении через мыльную пленку, белый свет распадается на отдельные цвета, различные световые волны на экране образуют радужную картину, которая называется сплошным спектром.

По теме «Свет и звук» были проведены и описаны следующие опыты:

Опыт №2. «На краю пропасти».

Опыт №3. «Шутки ради»

Опыт №4. «Пульт дистационного управления»

Опыт №5. «Копировальное устройство»

Опыт №6. «Появление из ниоткуда»

Опыт №7. «Цветная юла»

Опыт №8. «Прыгающие зерна»

Опыт №9. «Наглядный звук»

Опыт №10. «Выдуваем звук»

Опыт №11. «Переговорное устройство»

Опыт №12. «Кукарекающий стакан»

  1. ЗАКЛЮЧЕНИЕ

Анализируя результаты занимательных опытов, мы убедились, что школьные знания вполне применимы для решения практических вопросов.

С помощью опытов, наблюдений и измерений были исследованы зависимости между различными физическими величинами

Объемом и давлением газов

Давлением и температурой газов

Числом витков и величиной магнитного поля вокруг катушки с током

Силой тяжести и силой атмосферного давления

Направлением распространения света и свойствами прозрачной среды.

Все явления, наблюдаемые при проведении занимательных опытов, имеют научное объяснение, для этого мы использовали фундаментальные законы физики и свойства окружающей нас материи – II закон Ньютона, закон сохранения энергии, закон прямолинейности распространения света, отражение, преломление, дисперсия и интерференция света, отражение и поглощение электромагнитных волн.

В соответствии с поставленной задачей все опыты проведены с использованием только дешевых, малогабаритных подручных материалов, при их проведении изготовлено 8 самодельных приборов, в том числе магнитная стрелка, копировальное устройство, фруктовая батарейка, измеритель тока – мультиметр, переговорное устройство, опыты безопасные, наглядные, простые по конструкции.

СПИСОК ИЗУЧЕННОЙ ЛИТЕРАТУРЫ

* - Поля обязательные к заполнению.


На школьных уроках физики учителя всегда говорят, что физические явления повсюду в нашей жизни. Только мы частенько об этом забываем. Меж тем, удивительное рядом! Не думайте, что для организации физических опытов на дому вам потребуется что-то сверхъестественное. И вот вам несколько доказательств;)

Магнитный карандаш

Что необходимо приготовить?

  • Батарейку.
  • Толстый карандаш.
  • Медную изолированную проволоку диаметром 0,2–0,3 мм и длиной несколько метров (чем больше, тем лучше).
  • Скотч.

Проведение опыта

Намотайте проволоку вплотную виток к витку на карандаш, не доходя до его краев по 1 см. Кончился один ряд - наматывайте другой сверху в обратную сторону. И так, пока не закончится вся проволока. Не забудьте оставить свободными два конца проволоки по 8–10 см. Чтобы витки после намотки не разматывались, закрепите их скотчем. Зачистите свободные концы проволоки и подсоедините их к контактам батарейки.

Что произошло?

Получился магнит! Попробуйте поднести к нему маленькие железные предметы - скрепку, шпильку. Притягиваются!

Повелитель воды

Что необходимо приготовить?

  • Палочку из оргстекла (например, ученическую линейку или обычную пластмассовую расчёску).
  • Сухую тряпочку из шёлка или шерсти (например, шерстяной свитер).

Проведение опыта

Откройте кран, чтобы текла тонкая струйка воды. Сильно потрите палочку или расчёску о приготовленную тряпочку. Быстро приблизьте палочку к струйке воды, не касаясь её.

Что произойдёт?

Струя воды изогнётся дугой, притягиваясь к палочке. Попробуйте то же самое сделать с двумя палочками и посмотрите, что получится.

Волчок

Что необходимо приготовить?

  • Бумагу, иголку и ластик.
  • Палочку и сухую шерстяную тряпочку из предыдущего опыта.

Проведение опыта

Управлять можно не только водой! Вырежьте полоску бумаги шириной 1–2 см и длиной 10–15 см, изогните по краям и посередине, как показано на рисунке. Воткните иголку острым концом в ластик. Уравновесьте заготовку-волчок на иголке. Подготовьте «волшебную палочку», потрите её о сухую тряпочку и поднесите к одному из концов бумажной полоски сбоку или сверху, не касаясь её.

Что произойдёт?

Полоска станет раскачиваться вверх-вниз, как качели, или будет крутиться, как карусель. А если вы сможете вырезать из тонкой бумаги бабочку, то опыт будет ещё интереснее.

Лед и пламя

(опыт проводится в солнечный день)

Что необходимо приготовить?

  • Небольшую чашку с круглым дном.
  • Кусочек сухой бумажки.

Проведение опыта

Налейте в чашку воды и поставьте в морозилку. Когда вода превратится в лёд, выньте чашку и поставьте в ёмкость с горячей водой. Через некоторое время лёд отделится от чашки. Теперь выйдите на балкон, положите кусочек бумажки на каменный пол балкона. Куском льда сфокусируйте солнце на бумажке.

Что произойдёт?

Бумага должна обуглиться, ведь в руках уже не просто лед… Вы догадались, что сделали лупу?

Неправильное зеркало

Что необходимо приготовить?

  • Прозрачную банку с плотно закрывающейся крышкой.
  • Зеркало.

Проведение опыта

Налейте в банку воды с излишком и закройте крышкой, чтобы внутрь не попали пузыри воздуха. Приставьте банку к зеркалу крышкой вверх. Теперь можно смотреться в «зеркало».

Приблизьте лицо и посмотрите внутрь. Там будет уменьшенное изображение. Теперь начинайте наклонять банку в сторону, не отрывая от зеркала.

Что произойдёт?

Отражение вашей головы в банке, само собой, будет тоже наклоняться, пока не окажется перевёрнутым вниз, при этом ног так и не будет видно. Поднимите банку, и отражение вновь перевернётся.

Коктейль с пузырьками

Что необходимо приготовить?

  • Стакан с крепким раствором поваренной соли.
  • Батарейку от карманного фонарика.
  • Два кусочка медной проволоки длиной примерно по 10 см.
  • Мелкую наждачную бумагу.

Проведение опыта

Зачистите концы проволоки мелкой наждачной шкуркой. Подсоедините к каждому полюсу батарейки по одному концу проволочек. Свободные концы проволочек опустите в стакан с раствором.

Что произошло?

Вблизи опущенных концов проволоки будут подниматься пузырьки.

Батарейка из лимона

Что необходимо приготовить?

  • Лимон, тщательно вымытый и насухо вытертый.
  • Два кусочка медной изолированной проволоки примерно 0,2–0,5 мм толщиной и длиной 10 см.
  • Стальную скрепку для бумаги.
  • Лампочку от карманного фонарика.

Проведение опыта

Зачистите противоположные концы обеих проволок на расстоянии 2–3 см. Вставьте в лимон скрепку, прикрутите к ней конец одной из проволочек. Воткните в лимон в 1–1,5 см от скрепки конец второй проволочки. Для этого сначала проткните лимон в этом месте иголкой. Возьмите два свободных конца проволочек и приложи к контактам лампочки.

Что произойдёт?

Лампочка загорится!