Углеволокно в строительстве. Где следует осуществлять внешнее армирование карбоном. Углеволокно: характеристика материала и особенности его использования

Данная статья описывает основные аспекты метода усиления конструкций углеволокном , а если точнее – технологию внешнего армирования строительных конструкций композитными материалами на основе углеродных волокон. Данный материал служит для ознакомления с основами данной технологии, вариабельностью применяемых материалов, но не может использоваться в качестве технологического, или проектного руководства в виду своей поверхностности и обобщенности.

Усиление конструкций углеволокном – относительно новый для России метод – первые реализованные в нашей стране объекты датированы 1998 годом. Заключается этот метод в наклеивании на поверхность конструкции высокопрочного углеволокна, воспринимающего на себя часть усилий, тем самым повышая несущую способность усиленного элемента. В качестве клея применяются специальные конструкционные адгезивы (связующее) на основе эпоксидных смол, либо минерального вяжущего. Благодаря высоким физико-механическим характеристикам углеволокна, повысить несущую способность конструкции можно практически без потери полезного объема помещений и увеличения собственного веса здания – толщина усиливающих элементов обычно составляет от 1 до 5 мм.

Следует понимать, что «углеволокно » - это материал (например, как бетон), а не конечное изделие. Из углеволокна изготавливают целый набор материалов, некоторые из которых применяются в строительстве – углеродные ленты, ламели и сетки .

В подавляющем большинстве случаев усиление углеволокном применяется для железобетонных конструкций – это обусловлено высокими технико-экономическими показателями реализации таких проектов. Однако, данная технология применима и к металлическим, деревянным и каменным зданиям и сооружениям.

Конструктивные решения.

При проектировании усиления конструкций углеволокном необходимо руководствоваться Сводом правил СП 164.1325800.2014 "Усиление железобетонных конструкций композитными материалами. Правила проектирования."

Усиление плит перекрытий и балок выполняется путем наклейки углеволокна в наиболее напряженных зонах – обычно в центре пролета по нижней грани конструкции. Это повышает их несущую способность по изгибающим моментам. Для решения таких задач подходят все виды углеродных материалов – ленты, ламели и сетки.





Кроме того, для балок часто требуется выполнить усиление приопорных зон на повышение несущей способности при действии поперечных сил (по наклонной трещине). Для этого выполняется наклейка U-образных хомутов из углеродных лент, или сеток.


Углеродные ленты и ламели иногда применяются в совокупности , так как их способ монтажа и адгезивные составы схожи. Применение углеродных сеток, как правило, исключает использование лент и ламелей в связи с производством «мокрых» видов работ.


Усиление колонн происходит путем их оклейки углеродными лентами, или сетками в поперечном направлении. Таким образом достигается эффект «бондажирования» и происходит сдерживание поперечных деформаций бетона по схожему принципу с «бетоном в трубе», или «трехосным сжатием».


Выполнение работ. Подготовка поверхности.

При усилении железобетонных конструкций углеволокном выполнение работ начинается с разметки конструкции – отчерчиваются зоны в которых будут располагаться элементы усиления. Затем эти зоны очищаются от отделочных материалов, загрязнений и цементного молочка до обнажения крупного заполнителя бетона. Для этого применяют, либо угол-шлифовальные машинки с алмазными чашками, либо водо-пескоструйные установки.


Качество подготовленного основания (поверхности на которую приклеивают углеволокно) напрямую влияет на совместность работы конструкции с элементом усиления, поэтому при подготовке основания, в обязательном порядке, контролируют следующие параметры:

  • ровность поверхности;
  • прочность и целостность материала усиливаемой конструкции;
  • температуру поверхности конструкции;
  • отсутствие загрязнений и пыли;
  • влажность;
  • и другие (полный перечень и допустимые значения контролируемых параметров приводятся в технологических картах на выполнение строительных работ).

Приготовление компонентов.

Углеродные материалы поставляются смотанными и упакованными в полиэтилен. Очень важно не испачкать их в пыли, которой после шлифования бетона будет очень много, иначе углеродное волокно невозможно будет пропитать связующим , т.е. получится производственный брак. Поэтому, заготовительную зону следует застелить плотным полиэтиленом и уже по нему отматывать требуемую длину углеродного материала. Обрезка углеродных лент и сеток может осуществляться канцелярским ножом, или ножницами по металлу, а углеродных ламелей – угол-шлифовальной машинкой с отрезным кругом по металлу.

Адгезивы, как правило, применяются двухкомпонентные – т.е. требуется смешивать два материала в определенной пропорции. Необходимо четко следовать инструкции производителя и при дозировании использовать весы, или мерную посуду . Смешивание составов происходит путем постепенного добавления одного компонента в другой при постоянном перемешивании низко оборотистой дрелью. Ошибки дозирования, или неправильное вмешивание одного компонента в другой, могут привести к закипанию адгезива .

В последние годы, большинство производителей поставляют адгезив в комплектах – т.е. в двух ведрах с уже дозированными объемами компонентов. Таким образом можно просто вмешать содержимое одного ведра в другое (ведро специально поставляется большего объема (полупустым)) и получить готовый адгезивный состав.

Полимерцементные адгезивы (для углеродных сеток) поставляются в мешках и затворяются водой согласно инструкции, как любой ремонтный материал.

Следует помнить, что адгезив имеет ограниченный срок жизни – порядка 30-40 минут и он резко сокращается при повышении температуры выше 20°С, поэтому объем приготовляемого адгезива не должен превышать физических возможностей его выработки.

Монтаж углеволоконных материалов.

В зависимости от вида углеволоконного материала технология его монтажа существенно отличается:

Монтаж углеродных лент может осуществляться по «мокрому», или «сухому» методу. В обоих случаях на основание наносится слой адгезива, но при «мокром» методе углеродная лента сначала пропитывается адгезивом, а потом прикатывается валиком к основанию, а при «сухом» - лента прикатывается к основанию, а потом сверху ее пропитывают слоем адгезива. Пропитка углеродной ленты осуществляется путем нанесения на ее поверхность слоя адгезива и вдавливания его малярным валиком, или шпателем, добиваясь того, что бы верхний слой связующего проник вглубь углеволокна, а нижний слой связующего вышел наружу. Углеродные ленты могут укладываться в несколько слоев, но при наклейке на потолочную поверхность, не рекомендуется за одну смену выполнять более 2-х слоев – материал начинает «сползать» под собственным весом.


Следует помнить, что после полимеризации адгезива, его поверхность будет гладкой и качественно нанести на нее отделку будет невозможно. Поэтому, еще по «свежему» элементу усиления необходимо нанести слой крупного песка.

При монтаже углеродных ламелей адгезив наносится и на конструкцию, и на усиливающий элемент. После этого, ламель прикатывается к основанию малярным валиком, или шпателем.





Монтаж углеродной сетки выполняется на увлажненную поверхность бетона. Сначала наносится первый слой полимерцементного состава. Он может наноситься как ручным, так и механизированным способом – торкретом . По «свежему» слою полимерцемента раскатывается углеродная сетка с небольшим вдавливанием в состав. Удобнее всего это делать шпателем. Затем необходимо выдержать технологическую паузу до начала схватывания состава. Срок схватывания зависит от выбранного состава и температуры окружающей среды, но требуемое состояние – полимерцемент с трудом продавливается пальцем. После этого наносится закрывающий слой полимерцемента.


Защитные покрытия.

Необходимо помнить, что адгезивы на основе эпоксидных смол горючи , а кроме того – подвержены охрупчиванию при воздействии ультрафиолетовых лучей. Поэтому, применяя их необходимо предусматривать огнезащиту элементов усиления на класс огнестойкости не ниже заявленного для усиливаемой конструкции.


Если Вам нужно выполнить Усиление конструкций углеволокном - позвоните нам и мы проконсультируем Вас и поможем составить план решения Вашей задачи.

Двадцать первый век пестрит инновациями, и строительная сфера тому не исключение.

Один из новейших и набирающих популярность материалов - углеродное (карбоновое) волокно - занял достойное место, частично вытеснив стеклохолст и подобные ему армирующие материалы.

Углеродная ткань: характеристики и особенности

Говоря строго, углеродное волокно не является изобретением нашего столетия. Его уже давно используют в авиа- и ракетостроении, обывателю же этот материал знаком в виде углепластиковых удочек и кевлара. Пройдя долгий этап освоения и совершенствования технологии, индустрия, наконец, стала готова обеспечивать углеродной тканью другие отрасли, в том числе и строительную.

Главная особенность углеродных нитей - высокий показатель удельной прочности на растяжение по отношению к собственному весу. Изделия, армированные углепластиком, сохраняют наивысшее из известных сопротивление на разрыв, при этом по материалоёмкости и общему весу они гораздо выгоднее распространённой на сегодняшний день стали.

В исходном виде углеволокно представляет собой тонкую микрофибру, которая может быть сплетена в нити, из которых, в свою очередь, может быть выткан холст любых размеров. За счёт правильной ориентации молекул, их прочной связи и достигается столь высокая прочность. В остальном волокна просто выполняют функцию армирования при любом типе конструктивного наполнителя, от эпоксидных смол до бетона.

Одна из наиболее выраженных особенностей углеволокна - его высокая сорбирующая способность. Выгода от применения карбона для укрепления элементов внутренней отделки состоит в том, что углерод не позволяет естественным примесям, красителям или растворителям проникать в воздушную среду жилых помещений. В то же время сорбционные процессы протекают абсолютно безвредно для самого волокна.

Преимущества использования

В общем и целом для строительства интересны два свойства углеволокна. Первое - структурное разностороннее укрепление - используется для придания материалу повышенной твёрдости и прочности на сжатие. Армирование структуры выполняется фиброй толщиной 5–10 мкм при различной длине волокон. Имеет смысл структурно укреплять отделочные поверхности и несущую конструкцию зданий.

Вторая цель карбоновых волокон в строительной отрасли - закладное армирование - выполняется дополнительно переработанной первичной фиброй, принимающей вид холста, ровинга, нитей, канатов и укреплённых полимерными смолами стержней. В этом случае карбоновое волокно не укрепляет сам заполнитель в целом, но служит надёжной нервущейся основой для него.

Но в чём выгода карбоновых волокон, и почему их следует предпочесть менее экзотичным материалам? Начнём с того, что по физико-химическим свойствам ближайший конкурент углеволокна - фибра стеклянная, которая достаточно широко распространена в виде стеклохолста для внутренних штукатурных работ. Однако стекло имеет гораздо более низкое сопротивление разрыву и больший вес, в то время как углеродный полимер не только прочен, но и гораздо лучше сцепляется с окружающим его твёрдым материалом за счёт высокой собственной адгезии.

Облицовка и структура, укреплённые таким образом, отличаются также увеличенной прочностью на сдвиг и скручивание, что для стали, стекла и других синтетических материалов всегда было существенной проблемой.

Однако не обходится без сложностей. В частности, при внутренней отделке зданий ставится вопрос о пожарной безопасности углеволокна. В присутствии кислорода оно выгорает уже при температурах около 350–400 °С, однако будучи «законсервированным» в безвоздушной среде, карбон сохраняет свои свойства даже при нагреве выше 1700 °C. Более высокую жаростойкость гарантирует фибра и её производные, покрытые разного рода карбидами - это надо учитывать при выборе материала для отделочных работ.

Применение в отделочных работах

Широкий ряд материалов декоративной отделки требует основания, абсолютно не подверженного образованию трещин. Сюда относится акриловая покраска, полимерные покрытия для пола, венецианская штукатурка и другие тонкие и хрупкие составы.

Если для фальшстен из ГКЛ эта проблема не стоит особенно остро, то иные материалы за счёт более выраженного линейного расширения требуют особого подхода. Для примера возьмём укрепление и изоляцию стыков однослойной обшивки, выполненной из ОСП. Практически любая шпаклёвка или клей раскрошится прямо внутри шва за год-два.

Такие стыки следует заполнять прочным полимерным клеем, а затем накрывать прилегающие края на 25–30 мм лентой из тонких карбоновых нитей и снова покрыть слоем наполнителя, тщательно разгладив заделку шпателем.

Подобная обработка в большинстве случаев не требует последующего выравнивания поверхности. Обшивка принимает монолитную прочность, а возникающие структурные перенапряжения полностью компенсируются свойствами ОСП.

Подобный принцип может применяться и при финишном выравнивании оштукатуренных стен акриловой шпаклёвкой. В этом случае углеткань - бесспорный лидер в вопросах придания ударопрочности и стойкости к трещинообразованию. Монтаж выполняется по аналогии со стеклохолстом:

  1. Сперва тонкая сплошная обмазка поверхности.
  2. Затем укладка полотна и его разглаживание.
  3. После чего можно сразу же приступать к финишному выравниванию.

Холст никак себя не проявляет на внешнем виде готовой поверхности ни до высыхания состава, ни после.

Использование углеродной фибры

Повышение прочности несущих элементов зданий, отлитых по месту или фабрично, возможно за счёт добавления углеволокна в жидкий состав наполнителя. Фибру из карбона уже сейчас можно приобрести в достаточно больших количествах, что позволит уменьшить толщину стен, колонн и прочих элементов бетонной конструкции, испытывающих вертикально-осевую нагрузку на сжатие. За счёт этого освобождается достаточно много пространства для структурной изоляции или утепления конструкций.

Особенно интересен этот материал будет для любителей свайно-ростверковых фундаментов, где работа карбоновой пряжи полностью наглядна. Столб, сохраняющий прочность на сжатие в 12–15 т с учётом всех рекомендуемых запасов надёжности, имеет толщину около 80 мм. Внутри него всего две нитки полимерной арматуры, а по двум другим сторонам уложены пряди углеродного ровинга.

Много ли требуется углеволокна для армирования бетона? Отнюдь, всего 0,05–0,12 % от массы готового ЖБИ. Концентрация может быть и выше, если речь идёт, например, о гидротехнических сооружениях или о бетонных фермах перекрытий.

Системы внешнего армирования

Структура, укреплённая карбоновым волокном, настолько прочна, что может применяться даже в качестве опоясывающего армирования для элементов сильно нагруженных конструкций. Начиная от высотного домостроения и заканчивая каркасными сборными конструкциями, внешний пояс армирования предоставляет небывалую устойчивость к эксплуатационным перегрузкам.

Суть в том, что сам сердечник элемента, содержащий закладную арматуру, отливается как обычно, но при минимальном защитном слое бетона по сторонам. После снятия опалубки изделие, будь то колонна или армирующий пояс, обматывается слоем углеродного полотна или толстой нитью, а затем заливается пескобетоном с содержанием фибры. Такой подход избавляет от нужды использовать тяжёлый гранитный бетон при полном наследовании его прочностных характеристик. Более того, даже минимальный слой укреплённого углеродом бетона существенно снижает корродирование закладной арматуры.

Частным случаем наружного армирования можно назвать оклеивание узлов соединений лоскутами или лентой из углеволокна, углеродной тканью с сопутствующей пропиткой эпоксидными смолами. Такое соединение демонстрирует втрое более высокую прочность, чем обычное, что неоценимо для стропильных систем и в особенности крепления ферм к мауэрлату.

Углеродное волокно - материал, состоящий из тонких нитей диаметром от 5 до 15 мкм, образованных преимущественно атомами углерода. Атомы углерода объединены в микроскопические кристаллы, выровненные параллельно другу. Выравнивание кристаллов придает волокну большую прочность на растяжение.

Впервые получение и применение углеродных нитей было предложено и запатентовано известным американским изобретателем - Томасом Эдисоном - в 1880 г. в качестве нитей накаливания в электрических лампах.

ПОЛУЧЕНИЕ УГЛЕРОДНОГО ВОЛОКНА Углеродные волокна обычно получают обработкой химических или природных органических волокон, при которой в материале волокна остаются, главным образом, атомы углерода (99 %).

В строительстве углеволокно применяется для наружного армирования и для усиления конструкций - в качестве армирующего наполнителя, обладающего значительной устойчивостью к деформациям, а также к трещинам при резких перепадах температур.

Достоинства: Бетонные стеновые панели можно делать намного тоньше. Вес панелей становиться намного легче (до 75%). Не требуется дополнительная теплоизоляция потому, что углеволокно не проводит тепло или холод. Обладает высокой огнестойкостью. Этот новый материал уже используется для производства стеновых сендвич панелей. Недостатки: Этот материал довольно дорогой по сравнению с аналогами. Материал имеет способность отражать электрические волны, что может быть недостатком в некоторых случаях. Процесс изготовления композитов более трудоемкий, чем изготовление металла

Состав композитных стержней: -Волокна (армирующий материал) -Смола (полимер) Прочие составляющие композитных стержней: -Наполнители -Добавки Волокно, главным образом, отвечает за механическую прочность. Смола- за химическую стойкость.

Основное назначение волокна: - выдерживать нагрузки; - обеспечивать прочность; - расположены по направлению основных нагрузок. Основные функции смолы: - передача напряжения между волокнами; - обеспечение боковой поддержки и предотвращение вспучивания; - защита волокон от механических повреждений и отрицательного влияния внешних факторов.

Углепластики представляют собой особо прочные материалы из переплетенных нитей углеродного волокна. Они отличаются высокой плотностью – до 2 000 кг/м 3, жесткостью, легкостью и превосходят сталь по ряду параметров. Именно поэтому углепластиковая арматура интересна в качестве достойной альтернативы металлическим прутам.

По своему внешнему виду данное изделие почти ничем не отличается от предшественницы – металлической арматуры. Оно тоже имеет вид тонких прутьев или стержней с различным диаметром поперечного сечения (4 - 20 мм).

Стержень композитной арматуры условно можно разделить на две части: Сердечник, задающий основные прочностные характеристики арматуры, который представляет собой параллельные волокна, связанные связующим на основе эпоксидных смол. Внешний слой, отвечающий за свойства сцепления с бетоном, представляет собой нанесённый на эпоксидное связующее песок, который увеличивает адгезию с бетоном, т. к. сцепление происходит по всей длине стержня.

Композитная арматура предназначена для применения в бетонных конструкциях с преднапряженным и ненапряженным армированием. Коррозионно-устойчивые композитные стержни могут защитить мосты и объекты гражданской инфраструктуры от разрушающего воздействия коррозии.

Нержавеющая композитная арматура имеет ряд преимуществ перед обычной металлической арматурой. Достоинства композитной арматуры Композитная арматура не подвержена коррозии и устойчива к воздействию агрессивных сред, в том числе, к щелочной среде бетона. Композитная арматура имеет в 3 раза большую прочность на разрыв, нежели стальная. В связи с этим проводится равнопрочная замена арматуры, при которой стальная арматура заменяется на композитную с уменьшением сечения. Это позволяет снизить вес, и стоимость арматуры, и сохранить физико -механические характеристики. Композитная арматура в 9 раз легче стальной при равнопрочной замене. Так 1 п. м. стальной арматуры диаметром 12 мм весит 0, 89 кг, а равный по прочности 1 п. м. композитной арматуры диаметром 8 мм весит 0, 10 кг. Это позволяет экономить на транспортировке и уменьшает вес конструкции.

Композитная арматура позволят экономить до 50% при её применении вместо стальной. Помимо того, что арматура стоит на 30 -40% дешевле, существенная экономия достигается за счёт улучшения логистики поставок. Композитная арматура обладает низкой теплопроводностью. Например, у стеклопластиковой арматуры теплопроводность 0, 48 Вт/м К, а у стальной – 56 Вт/м К, т. е. в 100 раз меньше. Являясь диэлектриком, композитная арматура радиопрозрачна и магнитоинертна. Не теряет прочность под воздействием низких температур. Диапазон эксплуатационных температур от -70 °С до +100 °С.

Недостатки композитной арматуры Модуль упругости композитной арматуры в 3, 5 раза ниже стальной. По этой причине её можно применять в фундаментах, дорожных плитах и т. д. , но её применение в перекрытиях требует дополнительных расчетов. Низкая огнестойкость материала. При нагреве до 600?С, арматура из углепластика начинает быстро размягчаться. Поэтому при строительстве нужно предпринять дополнительные меры по теплоизоляции, в случае пожара. Композитную арматуру невозможно сваривать – только вязать проволокой или клеить. Из композитной арматуры невозможно изготовить гнутые изделия на месте монтажа. Изготовление нестандартных гнутых элементов возможно только в заводских условиях.

Монтаж По технологии укладки, композитная арматура аналогична традиционным стальным материалам. В большинстве случаев, легкая масса композитных стержней, фактически ускоряет процесс монтажа арматуры.

ФИЗИКО-МЕХАНИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА РАЗЛИЧНЫХ МАТЕРИАЛОВ Волокно (проволока) Плотность r, м? Температура плавления Тпл, °C Временное сопротивление sB, МПа Модуль упругости при растяжении Е, ГПа Алюминий 2 687 660 620 73 Асбест 2 493 1 521 1 380 172 Углерод 1 413 3 700 2 760 200 Полиамид 1 136 249 827 2, 8 Полиэфир 1 385 248 689 4, 1 Сталь 7 811 1 621 4 130 200

В статье изложена информация об углеволокне, его особенностях, свойствах и характеристиках. Мы расскажем об истории его создания, а также озвучим познавательные факты. Вы узнаете, как применить углеволокно в быту и строительстве, а также, как своими силами отремонтировать пластик.

Изделия из тканей, волокон, шнуров и лент, выполненных из современных углеводородов, успешно конкурируют по всем эксплуатационным показателям с привычными нам изделиями из стали и бетона . При этом они имеют в десятки, а порой и в сотни раз меньшую толщину и вес. Как можно объяснить человеку с устоявшимися взглядами тот факт, что пропитанный отвердевшей смолой холст толщиной всего 3 мм прочнее по всем показателям, чем техническая фанера 15 мм? Только опытным и демонстративным путём.

Углеволокно — материал будущего, родом из прошлого

Материал был открыт Томасом Эдисоном в 1880 году в рамках исследований нити лампы накаливания. В последние 10 лет, с подачи зарубежных коллег в виде поставок дорогостоящих изделий из углеволокна, отечественные разработчики и производители занялись реанимацией углеводородных проектов, начатых в советский период, по всем направлениям.

Всем известно, что углерод востребован в любой форме, в каждой отрасли промышленности. Это производство буквально всего, что сделано не из металла, стекла, дерева или бетона. Но главным его преимуществом является то, что он способен не только дополнить традиционные материалы, но и заменить их с выгодой для человека и природы.

Видеорепортаж о российском производстве углеволокна

Углеволокно в строительстве

Этот современный материал начинает пользоваться спросом у ремонтников и строителей. Причины этого кроются в свойствах его компонентов:

  1. Высокая прочность нитей, из которых создано полотно.
  2. Исключительная адгезия полимерного связующего (эпоксидного клея).

Комбинация этих свойств даёт высокую эффективность при устройстве наружного армирования железобетонных, кирпичных и деревянных конструкций. Усиленный таким образом элемент получает дополнительно до 65% прочности на изгиб и до 120% прочности на сжатие. Это звучит маловероятно, но проведённые согласно ГОСТ, ТУ и СНиП испытания подтверждают это.

Испытания балок, армированных углеволокном, на видео

Усиленные углеволокном ж/б элементы — испытания на видео

Тому, кто собирается строить каменный дом или бассейн , делать капитальный ремонт, или реставрацию, стоит задуматься о карбоновом усилении. Существенное увеличение прочности позволяет уменьшить объём материала основы. То есть, холст держит огромные нагрузки, главное, было бы на что его наклеить.

Так, армирование композитом увеличивает прочность на сжатие почти вдвое с 280 кН до 520 кН (см. видео испытаний). Это значит, что объём опорного элемента — несущей стены, колонны, столба — можно смело уменьшать на 60-80%. Особое значение это имеет для отдалённых районов, куда затруднена доставка тяжёлого стройматериала.

Вторая основная область применения карбона в строительстве — реставрация несущих каменных элементов. Оклеечным армированием восстанавливают опоры и балки бетонных мостов. Это наиболее ответственные государственные объекты и их надёжность доверяют углеволокну. В частном строительстве нагрузки в десятки раз ниже, а значит, усиление фундамента или углов стен будет с огромным запасом прочности. Это прекрасная альтернатива традиционным способам — подливка фундамента бетоном или установка подобных стен.

Ещё одно полезное свойство композитного материала — его нетоксичность и безвредность после полимеризации. В готовом виде он имеет глянцевую поверхность и не вступает в реакцию с водой. Это будет интересно для того, кто решил возвести бассейн, водоём, кессон, силосную яму, отстойник или каменный септик . Для этого достаточно будет возвести стены в полкирпича с кладочной сеткой и оклеить с обеих сторон углеволокном. Застывший материал будет служить гидроизоляцией. Его монтаж аналогичен устройству армировочной сетки для утеплителя.

Стоимость таких работ будет составлять:

  1. Углеволоконный холст — от 20 до 30 у. е. за 1 м 2 .
  2. Полимерное связующее с отвердителем — от 3 до 5 у. е. по расходу на 1 м 2 .
  3. Услуги по усилению каменных конструкций под ключ в среднем по России стоят 125 у. е. за 1 м 2 . В стоимость входит расчёт, доставка, материал и работа.

Применение углеволокна для ремонта

Свойства холста быть сначала гибким и эластичным, а после пропитки смолой исключительно прочным, можно (и нужно!) использовать и в повседневной жизни. В основном это касается ремонта или замены сломанных пластиковых деталей. С помощью этого материала можно склеить практически всё, а то, что склеить по каким-то причинам нельзя, можно воссоздать, используя испорченную деталь в качестве матрицы.

Ремонт стержня из стеклопластика

Рассмотрим возможность ремонта рукоятки молотка или топора при помощи углеволоконного рукава. Большинство полупрофессиональных ударных инструментов имеют рукояти из материала на основе стекловолокна — того же, что используют для производства высококачественных хоккейных клюшек.

Для ремонта потребуется:

  1. Инструмент — тиски, ротационная шлифмашина с наждачной бумагой, направляющая струбцина, строительный фен, кисти.
  2. Материал — рукав из углеволокна или холста, высокопрочный двухкомпонентный клей, полимерная смола и отвердитель. Всего клеящей смеси потребуется около 50 мл.
  3. Защитные средства — очки, респиратор, резиновые перчатки.

Порядок работы:

  1. Зачистить края разлома шлифмашиной, сохраняя место контакта.
  2. Зажать в тисках одну часть и выставить на струбцине вторую, примерив по плоскости.
  3. Нанести на контактные поверхности (разлом) клей и соединить две части на струбцине. Обмазать клеем место разлома. Тщательно проверить соосность обеих частей. Время выдержки — 6-8 часов (по инструкции).
  4. Снять струбцину и зачистить место соединения, сделав заглубление в тело стержня на 1-2 мм.
  5. Сделать разметку. Т. к. оклейка рукавом будет производиться в два этапа, верхний слой перекроет нижний. От оси соединения отложить для первого слоя — 3,5 см, для второго — 6 см в каждую сторону. Отрезать два куска рукава по размерам.
  6. Сделать полимерный раствор из смолы и отвердителя в пропорциях согласно инструкции и обильно нанести его на место соединения по меньшей разметке.
  7. Завести отрезок рукава к месту приклеивания и аккуратно уложить его на клей и обжать руками.
  8. Затем нанести ещё один слой клея и завести второй (больший) отрезок рукава. Прижать его аналогичным образом. Пропитать весь участок клеем.
  9. Создать временный зажим — приложить с двух сторон полосы упругого материала, замотать скотчем и сдавить струбцинами (не очень туго). Время выдержки — 6-8 часов.
  10. 1Зачистить место соединения шлифмашиной и довести вручную.
  11. Технически изделие готово, его можно использовать с обычной нагрузкой через 12 часов. Отремонтированное изделие можно окрасить.

Ремонт рукоятки из стеклопластика на видео

Технологию ремонта предлагает фирма SRS (значит, речь идёт о профессиональном спорте — нетрудно представить, какие нагрузки выдерживает изделие после ремонта).

С помощью углеволокна указанным способом можно также починить вещи, которые ранее было принято заменять:

  1. Ножки мебели.
  2. Ручки пылесоса, зонта или ножа.
  3. Корпуса бытовой и офисной техники, инструмента.
  4. Оправы очков (понадобится карбоновая нить или лента).
  5. Любую неметаллическую деталь автомобиля, мототехники, велосипеда — от бампера до дверной ручки.
  6. Пластиковое окно или подоконник и многое другое.

Безусловно, весь спектр достоинств и возможностей передового многофункционального материала невозможно отобразить в одной статье. Домашнему мастеру достаточно знать о нём одно — для того, кто имеет в арсенале холст и ленту из углеволокна и эпоксидные компоненты, проблемы ломаного пластика не существует.

Поисковые теги:

Что такое углепластик и каково его место в ряду строительных материалов


Прошел год с момента подписания Дмитрием Медведевым правительственного распоряжения № 1307-р от 24 июля 2013 года об утверждении плана мероприятий «Развитие отрасли производства композитных материалов». Тогда же министр регионального развития Игорь Слюняев приказом № 306 в соответствии с поручением Президента от 12 ноября 2012 года утвердил отраслевую программу внедрения композиционных материалов, конструкций и изделий из них в строительном комплексе России. Что делается и что еще предстоит сделать в этом плане?

Что это такое

Сам факт того, что слово «композит» сегодня звучит на самом высоком уровне, является показателем обеспокоенности руководства страны состоянием этого сегмента стройиндустрии. Ведь уровень применения современных композиционных материалов в производстве - один из критериев, по которому оценивается степень развития страны в целом. А нынешние меры, предпринимаемые Западом для изоляции России, еще сильнее выявляют проблемы нашей зависимости от импорта, в том числе от составляющих для изготовления композиционных материалов.

Под термином «композит» сегодня понимают современный материал, состоящий из полимерной (керамической, металлической, углеродной или другой) основы, армированной наполнителями. В качестве последних также используют разные материалы, из которых наиболее широко распространены стекло-, базальто- и углеволокно, а также сплетенные из них холсты.

А что же карбон, он же углепластик? Это продукт высоких технологий - композиционный материал, где наполнителем служит углеродное волокно или ткань, а связующим (матрицей) является полимер (например, эпоксидная смола), который затвердевает при определенных условиях. У разных полимеров - разные условия отверждения: повышение температуры, наличие катализаторов, специальных отвердителей и пр.

Волокна в углепластике - ?5-10 мкм и состоят из цепочек атомов углерода, выстроенных в кристаллическую решетку. Жгуты из таких волокон имеют очень высокое сопротивление на растяжение. Так, прочность на разрыв у углеволокна в четыре раза выше, чем у лучших марок стали. При этом его плотность вчетверо меньше. Опыт показывает, что порвать тонкий стержень из углепластика?5 мм можно только при нагрузке 2,5 тонны. Для сравнения: образец из чугуна таких же размеров рвется уже при 150 кг.

В поперечном направлении волокна углерода имеют существенно меньшую прочность, поэтому чтобы реализовать прочностные характеристики волокон в изделии, нужно располагать их в матрице, ориентируя в нужных направлениях. Фактически затвердевший массив матрицы и компенсирует недостаток прочности волокон в их поперечном направлении. Как его получают Процесс получения углеволокна весьма энергоемок. Графитовые нити получают в несколько этапов при нагреве вискозных или полиакрилонитрильных (ПАН) волокон в разных средах. Органические нити доводятся до стадии обугливания, в результате чего и появляется материал из чистого углерода. Поэтому конечный продукт выходит весьма дорогим.

Точно так же существуют и разные технологии получения углепластиков, которые отличаются формой, размерами и свойствами изделий - весом, прочностью, огнестойкостью и пр. Это могут быть ленты и полотна из углеволокна, которые пропитывают на объекте эпоксидной смолой. Готовые профили для конструкций мостов или прутки арматуры, в которых нити наполнителя «замоноличены» затвердевшим полимером. Изготавливают и так называемые препреги - полотна углеволокна, заранее пропитанные смолами, из которых в заводских условиях при высоких температуре и давлении формуют готовые детали.

Кстати, именно такие изделия востребованы в авиа- и ракетостроении, поскольку только указанные технологии позволяют получить легкие, исключительно прочные и термостойкие детали конструкций. Поэтому-то разработчикам и удается создавать более совершенные модели самолетов и космических кораблей.

Но вернемся на землю. Посмотрим, насколько востребованы композиты, и карбон в том числе, в строительстве.

Армирование бетона

Использование арматуры нового типа для бетонных конструкций - одно из очевидных применений композитов в строительстве. Композитная арматура - это стержни из стеклянных, базальтовых, углеродных или арамидных волокон , пропитанных полимерным связующим и отвержденных. Тип использованного волокна определяет и характер полученной арматуры. Довольно распространены изделия с наполнителем из стекловолокна - стеклопластиковая арматура (АСП), из базальтовых волокон - базальтопластиковая (АБП), из углеродных волокон - углепластиковая. Для сцепления с бетоном на поверхности композитной арматуры в процессе производства формируются специальные ребра или наносится покрытие из песка.

Стальная арматура в железобетоне подвержена коррозии, а вот композитный материал в этом плане выгодно отличается от нее благодаря высокой коррозионной стойкости, особенно у базальтопластика. Однако и у базальтопластиковой, и у стеклопластиковой арматуры есть свои недостатки: низкий модуль упругости (примерно в 3-4 раза ниже, чем у стальной) и заметная потеря прочности при нагреве. Поэтому подобную композитную арматуру чаще используют в качестве гибких связей для трехслойных стен из кирпича и других штучных материалов или для соединения несущих железобетонных стен с кирпичной облицовкой и пр. с целью снижения теплопередачи ограждений.

В этом плане углепластиковая арматура имеет лучшие характеристики, чем стекло- и базальтопластика. Это абсолютная коррозионная стойкость (инертность ко всем агрессивным средам), высокая прочность, долговечность (ожидаемый срок службы - 75 лет), низкий вес. Использование углепластиковой арматуры позволяет изготавливать более длинные силовые секций в сборных конструкциях. Но и стоимость такого композита в разы больше, что, в общем-то, и ограничивает его применение.

Усиление конструкций

Одно из важных направлений использования углепластика - когда на поверхности балки, стойки и пр. с помощью специального клея фиксируют сверхпрочную углеткань. При этом обеспечивается повышение прочности элементов в растянутых зонах и приопорных участках в зоне действия поперечных сил, а также сжатых элементов. Так, в 2003 году углеродные ленты использовали для усиления балок пролетов автодорожного моста на 104-м км трассы Москва-Нижний Новгород.

Усиливать можно стальные, деревянные и даже каменные конструкции - столбы, пилоны, простенки. Также это могут быть кирпичные или бетонные стены, поврежденные после просадки фундамента, или ограждения с проемами (окнами, дверями, технологическими отверстиями). Натурные испытания кирпичных столбов, проведенные в лаборатории каменных конструкций ЦНИИСК в 2004 году, например, показали полутора-двукратное увеличение несущей способности кирпичных столбов, усиленных бандажами из углехолста.

Готовые изделия из композита

В строительстве полимерные композиты - это материалы для изготовления градирен, емкостей для транспортировки и хранения химически активных веществ, трубопроводы разного назначения, элементы конструкций мостов, ограждения на автодорогах, плавательные бассейны, передвижные домики, выставочные павильоны и многое другое.

Как видим, композиты имеют весьма широкую область применения, но если сравнивать Россию с промышленно развитыми странами, наши успехи пока скромны. Если до конца 80-х прошлого века в сфере разработки композитов мы шли с Западом нога в ногу, то после развала СССР наше развитие в этой области приостановилось. Между тем потребность в композитных материалах не уменьшается, а только возрастает. Но из-за крайне медленного развития собственного производства мы все больше и больше становимся зависимыми от импорта. Чтобы как-то уйти от этой зависимости, необходимо решить ряд проблем технического и организационного характера, требующих не только огромных средств, но и времени.

Прежде всего, необходимо создать условия для роста серийного производства углеродных композитов. Сегодня холдинговая компания «Композит» является единственным игроком, оказывающим влияние на развитие российского рынка углеродного волокна . А отсутствие конкуренции на рынке углеродного волокна не способствует ни снижению цены на него, ни росту объемов производства. Привлечь инвесторов в достаточно новую, наукоемкую сферу без быстрого возврата вложенных средств очень сложно - для этого нужны весомые рычаги. Можем ли мы своими силами изготовить необходимое оборудование или придется закупать дорогостоящие станки за рубежом? Это к вопросу об импортозамещении. Четкого ответа на этот вопрос пока нет.

Для производства новых композитов, их применения и эксплуатации изделий из них нужны квалифицированные специалисты. Их подготовка - часть большой комплексной работы. И пока мы с этим тянем, в правительстве обсуждается вопрос о том, что надо привлекать мигрантов, уже обученных у себя на родине.

На бумаге все гладко…

Существенно тормозит внедрение углеродных композитов затягивание процесса принятия нормативной документации, регламентирующей применение новых материалов, особенно в строительстве. Например, отсутствие СНиПов в области применения углеродных композитов ставит практически непроходимый барьер для проектов в Госстройэкспертизе.

Конечно, сам факт создания плана мероприятий «Развитие отрасли производства композитных материалов» намечает пути решения этих проблем , но при этом данной «дорожной картой» …не устанавливается направление бюджетных ассигнований на реализацию предусмотренных документом мероприятий».

Время покажет, как чиновники отрапортуют о решении поставленных задач. Не исключено, что это будет большой «бумажный» успех.

Подготовил Владислав ТИХОМИРОВ

Фото infuture.ru, mvtb.ru, nowing.ru, nanonewsnet.ru, avito.st