Расстояние от венеры до солнца. Расстояние от солнца до венеры

Венера

Венера — вторая внутренняя планета солнечной системы с периодом обращения в 224,7 Земных дней. Планета получила своё название в честь богини любви Венеры из римского пантеона.

Венера самая близкая из планет к Земле.Планета скрыта облаками чудес и загадок. Большая полуось орбиты Венеры - среднее расстояние от Солнца - составляет 0,723 а.е. (108,2 млн. км). Орбита практически круговая, ее эксцентриситет равен 0,0068 - самый маленький в Солнечной системе. Наклонение орбиты к плоскости эклиптики: i = 3°39".Расстояние ОТ Земли ДО Венеры меняется от 40 до 259 миллионов километров. Скорость движения по орбите - 35 км/с. Период обращения по орбите - 224,7 земных суток, а период вращения вокруг оси - 243,023 земных суток. Особенностью вращения вокруг своей оси является то,что Венера вращается в обратную сторону,такое движение называют ретроградное.Плотность нашей соседки равна 5,24 г/см3. Радиус Венеры - 0,949 R (6052 км) - был измерен в шестидесятых годах методами радиолокации: поверхность планеты постоянно закрыта плотными облаками. Венера имеет практически сферическую форму. Ускорение свободного падения на поверхности составляет 8,87 м/с2.Венеру иногда называют сестрой земли.И правда,в чем то они схожи:Венера не намного меньше Земли (95% диаметра Земли, 80% массы Земли).Обе имеют некоторое количество кратеров, говорящих о том, что поверхности планет относительно молоды.
У обеих планет похожие плотности и химические составы.




Парниковый эффект имеет место и в атмосферах других планет. Но если в атмосфере Марса он поднимает среднюю температуру у поверхности на 9°, в атмосфере Земли - на 35°, то в атмосфере Венеры этот эффект достигает 400 градусов! Зарегистрированный максимум температур на поверхности +480°C.

Венера подходит к Земле ближе, чем все остальные планеты. Однако плотная облачная атмосфера не позволяет видеть ее поверхность непосредственно, и все исследования проводятся с помощью радаров или автоматических межпланетных станций. Некоторые ученые раньше считали, что планета всюду покрыта океаном. Почти все изображения Венеры и ее поверхности сделаны в условных цветах, так как съемка производилась радиоволнами. С помощью радиоволн же было установлено, что Венера вращается в обратном, нежели почти все планеты, направлении.

Первые две автоматические станции "Венера" в шестидесятых годах не смогли достигнуть планеты, сойдя с траектории. Следующие станции разрушились, не выдержав суровых условий атмосферы, и лишь спускаемый аппарат "Венера-7" 15 декабря 1970 года достиг поверхности и проработал на ней 23 минуты, успев провести массу исследований в атмосфере, измерить температуру на поверхности (около 500°С) и давление (100 атмосфер). Средняя плотность поверхностных пород равна 2,7 г/см3, что близко к плотности земных базальтов. Аппараты "Венера-13" и "Венера-14" выяснили, что грунт Венеры состоит на 50 % из кремнезема, 16 % - алюминиевых квасцов и на 11 % из окиси магния.
У планеты нет магнитного поля и радиационных поясов. Период вращения планеты и координаты ее Северного полюса, полученные в результате совместной обработки бортовых радиолокационных и доплеровских измерений "Магеллана" и "Венеры-15, -16" для 20 опорных точек поверхности Венеры, оказались следующими: Период вращения Т=243.0183 земных суток. Прямое восхождение = 272.57. Склонение = 67.14.



Момент, когда планеты находятся на максимальном сближении друг с другом, называется оппозицией. Расстояние между планетами может изменяться даже в оппозиции. Ближайшее расстояние от Земли до Венеры составляет 38 миллионов километров.

А самое дальнее — 261 млн. км. В то время как это кажется удивительно большим, это ничто по сравнению с дистанцией между другими планетами. Попробуйте представить себе, как далеко находится Земля от Нептуна.

Относительная близость Венеры помогает объяснить, почему это второй по яркости объект в ночном небе. Она имеет видимую звездную величину около -4,9. Она также может полностью исчезнуть с ночного неба, когда находится на самой дальней, от нас, точке орбиты.

Видимая звездная величина зависит также от отражательной способности облаков из серной кислоты, которые доминируют в ее атмосфере. Эти облака отражают большую часть видимого света, увеличивая альбедо планеты.

Транзиты планеты

Венера будет периодически проходить по диску Солнца. Это называется транзитом по диску Солнца. Эти транзиты происходят парами с более чем столетним интервалом. С появлением телескопа, транзиты были обнаружены в 1631, 1639, 1761, 1769 и 1874, 1882 годах. Самые последние произошли 8 июня 2004 года и 6 июня 2012 года.

Венера всегда ярче любой звезды. Когда расстояние от нее до Земли наименьшее, яркость планеты в небе Земли наибольшая.

Она может быть легко заметна, когда Солнце находится низко над горизонтом. Она всегда находится примерно в 47 ° от Солнца.

Планета вращается быстрее, чем Земля, поэтому обгоняет ее каждые 584 дня. Когда это происходит, ее легче видеть утром, сразу после восхода Солнца.

· · · ·

Планета Венера — наша ближайшая соседка. Венера подходит к Земле ближе, чем любая другая планета, на расстояние 40 млн км и ближе. Расстояние от Солнца до Венеры составляет 108 000 000 км, или 0,723 а.е.

Размеры Венеры и масса близки к земным: диаметр планеты всего на 5 % меньше диаметра Земли, масса — 0,815 массы Земли, сила тяжести — 0,91 земной. При этом Венера очень медленно вращается вокруг своей оси в направлении, обратном вращению Земли (т. е. с востока на запад).

Несмотря на то, что в XVII-XVIII вв. различные астрономы неоднократно сообщали об открытии естественных спутников Венеры. В настоящее время известно, что таковые у планеты отсутствуют.

Атмосфера Венеры

В отличие от других планет земной группы, изучение Венеры с помощью телескопов оказалось невозможным, так как еще М. В.Ломоносов (1711 — 1765) , наблюдая 6 июня 1761 г. прохождение планеты на фоне Солнца, установил, что Венера окружена «знатною воздушною атмосферой, таковой (лишь бы не большею), какова обливается около нашего шара земного».

Атмосфера планеты простирается до высоты 5500 км, а ее плотность в 35 раз превосходит плотность земной. Атмосферное давление в 100 раз выше чем на Земле, и достигает 10 млн Па. Строение атмосферы этой планеты представлено на рис. 1.

Последний раз прохождение Венеры на фоне диска Солнца в России астрономы, ученые и любители, смогли наблюдать 8 июня 2004 г. А 6 июня 2012 г. (т. е. с 8-летним интервалом) этот удивительный феномен можно будет наблюдать снова. Последующее прохождение состоится только через 100 лет.

Рис. 1. Строение атмосферы Венеры

В 1967 г. советский межпланетный зонд «Венера-4» впервые передал сведения об атмосфере планеты, которая на 96 % состоит из углекислого газа (рис. 2).

Рис. 2. Состав атмосферы Венеры

Из-за высокой концентрации углекислого газа, который подобно пленке удерживает тепло у поверхности, на планете наблюдается типичный парниковый эффект (рис. 3). Благодаря парниковому эффекту возле поверхности Венеры исключено всякое существование жидкой воды. Температура воздуха на Венере составляет примерно +500 °С. В таких условиях органическая жизнь исключается.

Рис. 3. Парниковый эффект на Венере

22 октября 1975 г. советский зонд «Венера-9» совершил посадку на Венере и впервые передал на Землю телерепортаж с этой планеты.

Общие характеристики планеты Венера

Благодаря советским и американским межпланетным станциям в настоящее время известно, что Венера — планета со сложным рельефом.

Здесь обнаружены гористые участки местности с перепадом высот 2-3 км, вулкан с диаметром основания 300-400 км и вы
сотой около 1 км, огромная котловина (протяженностью 1500 км с севера на юг и 1000 км с запада на восток) и относительно ровные участки. В приэкваториальной области планеты имеется более 10 кольцевых структур, подобных кратерам Меркурия, диаметром от 35 до 150 км, но сильно сглаженных и плоских. Кроме этого, в коре планеты есть разлом длиной 1500 км, шириной 150 км и глубиной около 2 км.

В 1981 г. станции «Венера-13» и «Венера-14» исследовали образцы грунта планеты и передали на землю первые цветные фотографии Венеры. Благодаря этому мы знаем, что поверхностные породы планеты близки по составу к земным осадочным породам, а небо над горизонтом Венеры оранжево-желто-зеленое.

В настоящее время полеты людей на Венеру маловероятны, но на высоте 50 км от планеты температура и давление близки к условиям на Земле, поэтому здесь возможно создание межпланетных станций для изучения Венеры и для подзарядки космических кораблей.

Часть 1. ПЛАНЕТА ВЕНЕРА



Что же представляет собой планета Венера?

Общие сведения о Венере



Венера - вторая после Меркурия планета Солнечной системы. Она находится в 1,38 раза ближе к Солнцу, чем Земля. Среднее расстояние Венеры от Солнца - 108,1 млн. км**; минимальное расстояние Венеры от Земли - 40 млн. км.
По размерам Венера очень мало отличается от Земли. Ее радиус составляет 6 051 км**. Масса Венеры меньше земной на 18%, средняя плотность планеты = 5,2 г/см3 .

Венера вращается практически по круговой орбите (эксцентриситет орбиты равен 0,0068) а продолжительность ее года составляет 224,7 земных суток.
Особенностью движения Венеры в космосе является то, что она вращается вокруг своей оси по часовой стрелке, т. е. с востока на запад. Все остальные планеты, кроме Урана, который "лежит на боку", наоборот, вращаются против часовой стрелки, т. е. с запада на восток.

Для наблюдателя на поверхности Венеры Солнце восходит на западе, а заходит на востоке, хотя в действительности облачная атмосфера полностью закрывает небо.

Период вращения Венеры вокруг оси очень длителен - около 243 земных суток, что больше, чем период обращения вокруг Солнца, равный 224,7 суток. Именно поэтому на Венере сутки продолжаются больше года, а календарь совершенно необычен.
Поскольку ось вращения Венеры почти перпендикулярна к орбитальной плоскости (наклон 3° 24"), там отсутствуют сезоны года: один день похож на другой, с равной продолжительностью и одинаковой погодой. Эта погодная однотипность еще больше усиливается специфичностью венерианской атмосферы - ее сильным парниковым эффектом.

Исследование атмосферы, климата, рельефа, вулканической и тектонической активности и химического состава горных пород на Венере стало возможно после запуска советских и американских космических аппаратов к этой планете. С 1967 по 1985 гг. Венеру изучали советские автоматические межпланетные станции (АМС) "Венера-4" - "Венера-16", "Вега-1" и "Вега-2", а также американские космические аппараты (КА) "Маринер-5", "Маринер-10", "Пионер-Венера", "Пионер-Венера-1" и "Пионер-Венера-2", которые в совокупности доставили на ее поверхность 14 спускаемых аппаратов-зондов.
С 1990 по 1994 гг. на орбите Венеры работал КА "Magellan". Данные, полученные "Магелланом", позволили картировать 98 % поверхности Венеры с разрешением 120 м.

С апреля 2006 г. на орбите Венеры начала исследования АМС "Venus Express" Европейского экономического сообщества (ESA), запущенная с космодрома "Байконур" 9 ноября 2005 г. К этим исследованиям присоединились несколько наземных телескопов в обсерваториях по всему миру. Их основная цель - изучение атмосферы, плазменной оболочки, поверхности и подповерхностного слоя Венеры.

Атмосфера Венеры


Венера имеет очень мощную, плотную и облачную атмосферу, не позволяющую увидеть ее поверхности. Давление у поверхности планеты - около 90 атм.

Освещенность дневной стороны поверхности Венеры примерно такая же, как на Земле в пасмурный летний полдень. Небо на Венере имеет яркий желто-зеленый оттенок.

Атмосфера Венеры на 96-97 % состоит из углекислого газа. Около 3-3,5 % приходится на азот, остальные 0,5 % составляют угарный газ, аргон, сернистый газ, хлористый водород, фтористый водород, пары воды и кислород. Самые верхние слои атмосферы Венеры почти целиком водородные. Водородная атмосфера простирается до высоты 5 500 км.
При помощи зондов было обнаружено, что в атмосфере ниже облаков содержится приблизительно от 0,1 до 0,4 % водяного пара и 60 миллионных частей свободного кислорода.

Крайне незначительное содержание водяного пара в атмосфере Венеры - одна из главных ее загадок. Ведь главным источником атмосфер планет земной группы считаются вулканические газы, большую часть которых составляют водяной пар и углекислый газ. На Земле они находятся в объемном соотношении 5:1. По оценкам специалистов, общее количество углекислого газа на Венере и Земле приблизительно одинаково, только на Земле он связан в осадочных породах и отчасти поглощен водными массами океанов, а на Венере сконцентрирован в атмосфере. Следовательно, в соответствии с приведенной выше пропорцией Венера должна была бы иметь гидросферу, сопоставимую с земной, с толщиной эквивалентного слоя воды на поверхности около 2,7-3 км. Почему же этого не наблюдается?
Ответ на этот вопрос был получен в конце 2007 года АМС "Venus Express". С помощью спектрометра "Spicar/Soir" и анализатора плазмы и нейтрального газа "Aspera", установленных на станции, было обнаружено, что ионы кислорода, водорода и гелия покидают атмосферу Венеры. Причем, кислород и водород находятся в таком же соотношении, что и в молекулах воды (1:2). По мнению сотрудника Денверского музея природы и науки (США) доктора Дэвида Гринспуна (David Grinspoon) и сотрудника Института космической физики в Кируне (Швеция) Станислава Барабаша, это доказывает водное происхождение этих ионов. Получается, что водяной пар раньше присутствовал в атмосфере Венеры в гораздо большем количестве, чем теперь, но затем был расщеплен солнечным ультрафиолетовым излучением на ионы, которые были вынесены из верхних частей атмосферы солнечным ветром.
Другое подтверждение наличия большого количества водяного пара на Венере в былые времена было получено благодаря анализу уровня "тяжелого" водорода дейтерия, который остается в атмосфере дольше, чем обычный водород. По его содержанию можно судить, сколько водяного пара было раньше. Д. Гринспун считает, что его вполне могло хватить, чтобы покрыть Венеру 4-километровым слоем воды. Это немного превышает суммарный объем воды в океанах и атмосфере Земли.

В атмосфере Венеры присутствуют три зоны облачности: верхняя (67-58 км), средняя (58-52 км) и нижняя (52-48 км). Над верхней зоной до высоты 80 км простирается надоблачная дымка; имеется также подоблачная дымка из горячего едкого тумана, опускающаяся до высоты 32 км. На высотах 50-70 км со скоростью 100-140 м/сек. дуют ураганные ветры. АМС "Venus Express" получила убедительные доказательства того, что на Венере происходят грозы с молниями. Молнии были зафиксированы на высоте 56 км.
Верхняя, самая плотная, зона облаков состоит из аэрозолей (мелких капелек) серной кислоты, а точнее, ее концентрированного (75-80 %) водного раствора. В средней и нижней зонах облаков присутствуют частицы более крупного размера, вероятно, тонкие кристаллические пластинки солей соляной и плавиковой кислот. Серная кислота находится в переходном состоянии между жидкой и твердой фазами. Содержание водяного пара в облачном покрове не превышает 10-10 от общей смеси газов.

Считается, что серная кислота в атмосфере Венеры образуется из сернистого газа, источником которого являются вулканы Венеры.

Температура атмосферы Венеры понижается с высотой. На поверхности она достигает приблизительно + 460°…+ 470°С и мало меняется днем и ночью. В верхней границе тропосферы (на высоте 100-110 км) температура понижается до - 113°…- 93°С.

Благодаря сильнейшему парниковому эффекту на Венере стоит ужасная жара. Атмосфера, представляющая собой плотное одеяло из углекислого газа, удерживает пришедшее от Солнца тепло. В результате скапливается такое количество тепловой энергии, что температура атмосферы гораздо выше, чем в духовке.
По данным исследований "Venus Express", в ядовитой атмосфере Венеры находятся пары свинца и висмута, температуры плавления которых составляют соответственно +327°С и +271°С. Эти пары осаждаются на возвышенностях Венеры, образуя металлическую корку из сплава свинца и висмута с температурой плавления +500°С, которая характеризуется очень высокой отражательной способностью.
По расчетам специалистов Вашингтонского университета (США), процесс образования металлической корки на возвышенностях Венеры происходит от нескольких тысяч до нескольких миллионов лет.

Облачный слой Венеры обладает весьма высоким альбедо- 0,77. Иначе говоря, более 3/4 (или 78 %) солнечной радиации отражается облаками и только менее 1/4 (22 %) проходит вниз, причем солнечное излучение достигает поверхности Венеры в виде многократно рассеянного излучения. Температура облачных слоев колеблется от -70°C до -40°C.
Альбедо Земли - 0,33. Это значит, что поверхность Земли поглощает в 1,5 раза больше энергии от Солнца, чем Венера. Тем не менее температура на поверхности Венеры намного выше, чем на Земле. Это связано с парниковым эффектом, который поднимает температуру на Венере на 400°С**.

Климат Венеры


На Венере нет ни океанов, ни морей. У ее поверхности , где плотность атмосферы в 90 раз больше земной , не дуют сильные ветры, не идут дожди. Погода здесь практически неизменна и в течение суток, и в течение года. Колебания температуры у поверхности планеты не превышают 5-15°С.

  • Перевод

Рис. 1: Земля (синяя), Венера (серая) и Солнце (оранженвое), не в масштабе.

По поводу прохождения Венеры по диску Солнца 2012 года написано уже много статей . О том, как редко случается это событие, и почему именно: по идее, Венера, движущаяся вокруг Солнца чаще, чем Земля, должна проходить между Землёй и Солнцем во время каждого своего оборота (рис. 1), но из-за того, что орбиты двух планет не выровнены (не находятся в одной плоскости, см. рис. 2), Венера часто проходит выше или ниже Солнца с точки зрения Земли.

Но вместо того, чтобы повторять слова других, я хочу добавить несколько деталей, которые не так легко найти в интернете.

Вы, возможно, читали, что при помощи техники, основанной на рассуждениях астронома Эдмунда Галлея (известного кометой Галлея), сделанных им с 1678 по 1716 года, а также Джеймса Грегори до него, прохождение Венеры 1716 года был использован для определения расстояния от Земли до Солнца (и до Венеры, и всех остальных планет) с погрешностью в 2% - высочайшая из достигнутых на то время. Надеялись, что точность будет в 10 раз выше, но в процесс вмешался неожиданный оптический эффект под названием "эффект чёрной капли " - по поводу точных причин его возникновения до сих пор идут споры. Но вы могли не прочесть, что это измерение - и множество других измерений расстояний в астрономии, вплоть до достаточно близко расположенных звёзд - основано на принципе , на том же геометрическом факте, который используется нашими глазами и мозгом для восприятия глубины, или нашей способности чувствовать, насколько далеко от нас находятся объекты, просто взглянув на них.



Рис. 2: Земля (синяя), Венера (серая) и Солнце (оранжевое), не в масштабе. Орбита Венеры (чёрный круг в сером прямоугольнике) наклонена относительно орбиты Земли (синий круг в голубом прямоугольнике). Градус наклона сильно преувеличен. Поскольку Земля и Венера вращаются вокруг Солнца с разными скоростями, они могут проходить мимо друг друга в любых точках орбит.

Верх: большую часть при таком проходе Венера находится выше или ниже (зелёная линия) линии, соединяющей Землю и Солнце (красная линия), поэтому прохождения Венеры по диску Солнца не происходит.

Внизу: В редких случаях линия, соединяющая Землю и Солнце, совпадает с линией пересечения плоскостей орбит, и Венера находится вблизи этой же линии, что и ведёт к прохождению.

Без параллакса тоже несложно определить относительное расстояние от Венеры до Солнца - то есть, отношение радиуса орбиты Венеры L V к радиусу орбиты Земли L E . Поэтому в астрономии эпохи Возрождения довольно рано были высчитаны относительные расстояния от планет до Земли и Солнца. Но чтобы определить L V и L E отдельно, необходимо измерить параллакс, и прохождение Венеры может его обеспечить. Прохождение Венеры в 1760-х дало довольно точное измерение величины L E - L V , «абсолютного» расстояния от Земли до Венеры; это позволило узнать L E , L V , и расстояния до всех остальных планет с погрешностью в пару процентов. До этого, в конце XVII в, было сделано измерение расстояния от Земли до Марса, имевшее погрешность около 10%; оно тоже было основано на параллаксе, но это совсем другая история.

Предварительное замечание: Земля и Венера, и даже Солнце очень малы по сравнению с расстояниями между ними, поэтому нарисовать точные изображения практически невозможно. На иллюстрациях всё время приходится рисовать планеты большими, чем они есть на самом деле, по отношению к расстояниям между ними, просто чтобы вы смогли понять концепцию. Имейте это в виду! Все мои иллюстрации сделаны не в масштабе.

Относительные размеры орбит Венеры и Земли



Рис. 3

Чтобы понять основную причину простоты определения L V /L E , предположим, что орбиты Земли и Венеры круговые и выровненные - они лежат в одной плоскости (как показано на рис. 1, изометрически, и на рис. 3 - вид «сверху»). На самом деле, орбиты Земли и Венеры немного вытянутые и не выровнены (рис. 2). Но эллиптичность и несовпадение плоскостей не сильно важны для наших рассуждений, поэтому сперва мы сможем их проигнорировать, а потом вновь вспомнить, чтобы получить более точные ответы.

Здесь мы применим классическую для физики технологию: сделаем приближение, достаточное для текущей задачи, и не будем углубляться больше, чем нужно. Это очень мощный способ размышления о науке и о знании вообще - на любой вопрос достаточно ответить с определённым уровнем точности, поэтому можно использовать простейшую технику из тех, что дадут вам нужный уровень точности. Этот метод прекрасно используется столетиями и применим не только к физике.

Поэтому мы примем приближение, по которому орбиты круговые и выровнены, и получим примерно правильные ответы, с погрешностью в несколько процентов. Этого будет достаточно для того, чтобы продемонстрировать основные концепции, чего я и добиваюсь. Поверьте мне, что можно сделать гораздо более точные вычисления - или же можете самостоятельно стать экспертом в этом вопросе. Но наше приближение не только даст очень неплохой ответ, но и сможет показать, почему так легко вычислить отношение L V к L E , но не сами значения L V и L E .

В течение года, когда Земля и Венера вращаются вокруг Солнца с разными скоростями, относительное положение Земли и Венеры по отношению к Солнцу меняется. Если в определённый день (день, месяц, год) я решу нарисовать картинку с Солнцем в центре и с Землёй слева, как на рис. 2, тогда Венера может оказаться в любом месте своей орбиты. Это значит, что с точки зрения Земли, угол между Венерой и Солнцем в небе будет меняться в зависимости от даты. Это показано на рис. 3, где угол назван g. Угол легко измерить; найдите Венеру в небе после заката или перед восходом и измерьте угол между Венерой и Солнцем; см. рис. 4.


Рис. 4

Из рис. 3 видно, что у g есть максимальный размер - угол между оранжевой и фиолетовой линиями. Перемещаясь по орбите, Венера с каждым закатом будет появляться в другом месте; некоторое время она будет несколько ночей подряд подниматься всё выше над горизонтом, а затем постепенно начнёт появляться ниже. Наблюдая за Венерой несколько ночей подряд и измеряя g, мы можем определить максимальное значение g, которое я назову g max .

Из рис. 3 очевидно, что (как показано на рис. 4) g max меньше 90°, поскольку фиолетовая линия должна лежать между оранжевой и красной, перпендикуляром. Геометрически это следствие того, что Венера всегда находится ближе к Солнцу, чем Земля. Эти углы объясняют, почему Венера всегда видна либо сразу после захода или перед рассветом (за исключением тех дней, когда она расположена за Солнцем). Венера не может быть в зените после наступления темноты, поскольку для этого ей надо было бы находиться слева от красной линии.


Рис. 5

Теперь мы можем определить отношение радиусов двух орбит - L V к L E - используя g max . Это простейшая геометрия, см. рис. 5. Суть в том, что когда Венера находится на максимальном угле от Солнца, линия между Солнцем и Венерой перпендикулярна линии между Землёй и Венерой, поэтому линии, соединяющие эти три объекта, образуют прямоугольный треугольник. Отсюда получаем при помощи стандартной тригонометрии:

И отсюда же, при помощи других простейших геометрических формул, мы получаем отношения между расстояниями до других планет.

Это не совсем точно, по причинам, указанным в начале; орбиты планет - эллипсы, и не лежат водной плоскости. Иначе говоря, L V и L E не сохраняются в течение года, а g max применяется немного сложнее, в трёх измерениях, как на рис. 2, а не в двух, как на рис. 1, 3 и 5. Но при помощи точных измерений положения Венеры и Солнца в небе возможно определить точные орбиты Венеры и Земли вокруг Солнца и улучшить расчёты. Смысл тот же; все измерения положения Венеры и Солнца в небе позволяют лишь измерить относительные размеры орбит Венеры и Земли. Но точные величины L V и L E так определить нельзя. Тут нужен другой подход.

Прохождение Венеры, параллакс и расстояние до Солнца

Причина, по которой прохождение Венеры позволяет измерить абсолютные величины орбит Земли и Венеры - этот процесс можно наблюдать с высокой точностью с разных мест земного шара, в результате чего у вас будут две перспективы видимого местонахождения Венеры по отношению к Солнцу, измеренные из разных мест с известным расстоянием между ними. Измерение параллакса позволяет определить абсолютную величину расстояние от Земли до Венеры из угла параллакса и расстояния между двумя точками измерения на Земле - точно так же, как разный вид объекта для левого и правого глаза позволяет нашему мозгу выдавать для нас ощущение глубины - чувство расстояния до объектов.


Рис. 6

Для демонстрации позвольте мне нарисовать то, как это будет выглядеть с крупной планеты. На рис. 6 показана планета, с которой мы будем наблюдать прохождение (это будет Земля) и проходящая перед звездой планета (это будет Венера). Я представлю упрощённую ситуацию (просто чтобы геометрия стала более простой и основную концепцию было проще увидеть), в которой планеты и звезда выровнены, поэтому с точки зрения наблюдателя на экваторе проходящая планета будет проходить по экватору звезды. Сверху на рис. 6 показан вид «сбоку»; обратите внимание на красную линию, идущую от экватора наблюдающей планеты к звезде через экватор планеты, проходящей по диску звезды.

В случае идеального выравнивания, наблюдатель на экваторе внешней планеты увидит, как внутренняя планета проходит по экватору звезды. Это показано в виде красной линии внизу рис. 6. Но наблюдатель с южного полюса внешней планеты увидит, как внутренняя планета проходит звезду по пути (фиолетовая линия) к северу от экватора звезды (в случае северного полюса всё будет наоборот). Если измерить угол a в небе между путями, по которым двигается проходящая планета, и знать радиус R наблюдающей планеты, мы сможем нарисовать прямоугольный треугольник, соединяющий проходящую планету, центр наблюдающей планеты и полюс наблюдающей планеты, с малым углом &alpha. Простая тригонометрия даст нам расстояние D между планетами во время прохождения, где


Рис. 7

То же верно для Земли, Венеры и Солнца, кроме того, что Земля и Венера так малы по сравнению с расстоянием между ними и Солнцем, что угол a окажется равным порядка 1/20°! (Это довольно малая величина, но вполне измеримая, хотя для точного измерения расстояния до Солнца, которое хотели получить астрономы XVIII века, потребовалось бы довольно сложное технически точное измерение величины небольшого угла). Такой маленький угол я не нарисую, поэтому придётся вам поверить мне на слово, что происходящее является доведённой до предела версией того, что я изобразил на рис. 6, с планетами и звездой (Солнцем) гораздо меньшими, чем нарисованы там, по отношению к расстояниям. Даже изображение на рис. 7 делает планеты гораздо больше, чем они есть. Но идея остаётся неизменной: расстояние D EV между Землёй и Венерой во время прохождения можно определить, измерив угол параллакса a (внизу рис. 7; отметьте, что угловой диаметр Солнца равен порядка 1/2°).

Однако осталось ещё много вопросов:

  • Я рассказал, как измерить D EV , расстояние от Земли до Венеры во время прохождения. Но разве нашей целью было не измерить L E и L V , расстояние от Земли до Солнца и от Венеры до Солнца?
  • Никто не отправлялся на южный полюс Земли, чтобы наблюдать прохождение Венеры в 1761 или 1769 году.
  • Я предположил идеально выровненные орбиты Земли, Венеры и положение Солнца, такие, что из точки на экваторе Земли можно было бы видеть Венеру, двигающуюся по экватору Солнца. Но это на самом деле не так, и даже близко не похоже на типичное прохождение (и в 2012-м такого тоже не было).
  • Угол a достаточно мал, чтобы его можно было точно измерить - особенно во времена до фотографии и мгновенных сообщений, в отсутствие чётких указаний на местоположение северного полюса Солнца, из-за чего сложно точно сравнить измерения пути Венеры, сделанные с двух разных точек Земли. Однако первичной целью было измерить угол не хуже, чем 1 часть из 500 (0,2%) (хотя из-за эффекта чёрной капли результат получился ближе к 1 части из 50 (2%)).
Как же справиться с этими проблемами?

Первое, как пройти от измерения D EV до измерения нужных величин, L E и L V ? Это просто - все взаимоотношения нам уже известны, в частности, мы уже знаем L E /L V (примерно, из рис. 4, или, если подойти к вопросу более тщательно, можно подсчитать и точнее) из максимального угла g max между Венерой и Солнцем с точки зрения Земли. Нам также известно D EV = L E - L V = L E (1 - L V /L E) из рис. 7. Поэтому мы можем получить приближённое значение L E при помощи:


где a - угол параллакса, измеренный во время транзита, а g max - максимальный угол между Венерой и Солнцем (рис. 5). Более точные измерения требуют более сложной геометрии, однако с той же основной идеей.

Второе, даже если бы орбиты планет были идеально выровнены, два измерения пути Венеры не нужно измерять с экватора и полюса Земли. Их можно измерить с двух любых широт. Геометрия становится немного сложнее, но не сильно, а принцип остаётся (см. рис. 8).


Рис. 8

Третье, даже без идеального выравнивания появится небольшой угол параллакса при измерении величин с двух разных точек Земли, и если хорошо измерить этот угол, это измерение можно превратить (через чуть более сложные уравнения) в измерение D. Это показано на рис. 8, внизу.

Четвёртый вопрос - исторически сложная проблема измерения углового сдвига пути Венеры во время прохождения на угол a ведёт нас к альтернативной попытке измерения времени - либо времени прохождения, либо просто начала и конца прохождения, а не углов. Первый вариант был предложен Галлеем на основе идей Грегори, а второй, в качестве дальнейшего улучшения, предложил Жозеф Никола Делиль . Метод Галлея не требовал синхронизации часов в разных местах Земли; метод Делиля требовал, поэтому основывался на более передовой часовой технологии.

Даже в XVII или XVIII веке гораздо проще выполнить точное измерение интервала, или моментов начала и завершения затмения, чем точно измерить местоположение Венеры относительно диска Солнца, особенно при отсутствии фотографии. На рис. 9 можно видеть, что фиолетовый и красный пути Венеры, пересекающей Солнце, имеют немного отличные длины из-за того, что они не пересекают его в одном месте, а это значит, что длительность прохождения будет отличаться на время, связанное с углом параллакса. К сожалению, всё оказывается сложнее, чем выглядит на первый взгляд - Земля вертится и движется вокруг Солнца, поэтому наблюдатель проходит довольно значительное расстояние во время прохождения Венеры по диску Солнца. Поэтому требуется много усилий (вычисления довольно сложны, хотя с современными компьютерами они гораздо проще) для определения разницы временных интервалов начала и конца прохождения, наблюдаемого двумя разными наблюдателями на Земле, в зависимости от расстояния до Солнца.

Галлей в начале XVIII века понимал все необходимые геометрические принципы (если вычесть устаревшую английскую фразеологию и стиль из его текстов, вы будете удивлены, как современно звучат его сложные утверждения, и вы увидите, что учёные ещё триста лет назад были очень похожи на сегодняшних учёных, обладали таким же интеллектом и им не хватало только научной технологии сегодняшнего дня).


Рис. 9

Всё это говорит о том, что параллакс - различие в видимом положении, приписываемом Венере по отношению к Солнцу с точки зрения наблюдателей, измеряющих его в одно и то же время но с разных мест на Земле - исторически был очень важным методом, с помощью которого был определён размер Солнечной системы. Сегодня нам доступны и более мощные методы, но вам может быть интересным тот факт, что то, что вы видите сегодня в небе, имеет величайшую историческую важность, или же вы просто можете наслаждаться видом Венеры, величаво движущейся вокруг нашей звезды.

Теги:

  • венера
  • солнце
  • земля
  • прохождение венеры
  • Matt Strassler
Добавить метки