Найти интервалы возрастания и убывания функции решение онлайн. Возрастание и убывание функций, экстремумы
Функция
называетсявозрастающей
на интервале
,
если для любых точек
выполняется неравенство
(большему значению аргумента соответствует
большее значение функции).
Аналогично, функция
называетсяубывающей
на интервале
,
если для любых точек
из этого интервала при выполнении
условия
выполняется неравенство
(большему значению аргумента соответствует
меньшее значение функции).
Возрастающие на
интервале
и убывающие на интервале
функции называютсямонотонными
на интервале
.
Знание производной дифференцируемой функции позволяет находить интервалы ее монотонности.
Теорема (достаточное
условие возрастания функции).
функции
положительна на интервале
,
то функция
монотонно возрастает на этом интервале.
Теорема (достаточное
условие убывания функции).
Если производная дифференцируемой на
интервале
функции
отрицательна на интервале
,
то функция
монотонно убывает на этом интервале.
Геометрический
смысл
этих теорем состоит в том, что на
интервалах убывания функции касательные
к графику функции образуют с осью
тупые углы, а на интервалах возрастания
– острые (см.рис.
1).
Теорема (необходимое
условие монотонности функции).
Если
функция
дифференцируема и
(
)
на интервале
,
то она не убывает (не возрастает) на этом
интервале.
Алгоритм нахождения
интервалов монотонности функции
:

Пример.
Найти интервалы монотонности функции
.
Точка
называетсяточкой
максимума функции
такое, что для всех
,
удовлетворяющих условию
,
выполнено неравенство
.
Максимум функции – это значение функции в точке максимума.
На рис
2 показан
пример графика функции, имеющей максимумы
в точках
.
Точка
называетсяточкой
минимума функции
,
если существует некоторое число
такое, что для всех
,
удовлетворяющих условию
,
выполнено неравенство
.
Нарис.
2 функция
имеет минимум в точке
.
Для максимумов и минимумов есть общее название – экстремумы . Соответственно точки максимума и точки минимума называются точками экстремума .
Функция, определенная на отрезке, может иметь максимум и минимум только в точках, находящихся внутри этого отрезка. Нельзя также путать максимум и минимум функции с ее наибольшим и наименьшим значением на отрезке – это понятия принципиально различные.
В точках экстремума у производной есть особые свойства.
Теорема (необходимое
условие экстремума).
Пусть в точке
функция
имеет экстремум. Тогда либо
не существует, либо
.
Те точки из области
определения функции, в которых
не существует или в которых
,
называютсякритическими
точками функции
.
Таким образом, точки экстремума лежат среди критических точек. В общем случае критическая точка не обязана быть точкой экстремума. Если производная функции в некоторой точке равна нулю, то это еще не значит, что в этой точке функция имеет экстремум.
Пример.
Рассмотрим
.
Имеем
,
но точка
не является точкой экстремума (см.рис
3).
Теорема (первое
достаточное условие экстремума).
Пусть в точке
функция
непрерывна, а производная
при переходе через точку
меняет знак. Тогда
– точка экстремума: максимума, если
знак меняется с «+» на «–», и минимума,
если с «–» на «+».
Если при переходе
через точку
производная не меняет знак, то в точке
экстремума нет.
Теорема (второе
достаточное условие экстремума).
Пусть в точке
производная дважды дифференцируемой
функции
равна
нулю (
),
а ее вторая производная в этой точке
отлична от нуля (
)
и непрерывна в некоторой окрестности
точки
.
Тогда
– точка экстремума
;
при
это точка минимума, а при
это точка максимума.
Алгоритм нахождения экстремумов функции с помощью первого достаточного условия экстремума:
Найти производную.
Найти критические точки функции.
Исследовать знак производной слева и справа от каждой критической точки и сделать вывод о наличии экстремумов.
Найти экстремальные значения функции.
Алгоритм нахождения экстремумов функции с помощью второго достаточного условия экстремума:

Пример.
Найти экстремумы функции
.
Определение возрастающей функции.
Функция y=f(x)
возрастает
на интервале X
,
если для любых и выполняется
неравенство .
Другими словами – большему значению
аргумента соответствует большее значение
функции.
Определение убывающей функции.
Функция y=f(x)
убывает
на интервале X
,
если для любых и выполняется
неравенство
.
Другими словами – большему значению
аргумента соответствует меньшее значение
функции.
ЗАМЕЧАНИЕ: если функция определена и непрерывна в концах интервала возрастания или убывания (a;b) , то есть при x=a и x=b , то эти точки включаются в промежуток возрастания или убывания. Это не противоречит определениям возрастающей и убывающей функции на промежутке X .
К примеру, из свойств основных элементарных функций мы знаем, что y=sinx определена и непрерывна для всех действительных значений аргумента. Поэтому, из возрастания функции синуса на интервале мы можем утверждать о возрастании на отрезке .
Точки экстремума, экстремумы функции.
Точку называют точкой максимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называютмаксимумом функции и обозначают .
Точку называют точкой минимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называютминимумом функции и обозначают .
Под
окрестностью точки понимают
интервал ,
где -
достаточно малое положительное число.
Точки минимума и максимума называют точками экстремума , а значения функции, соответствующие точкам экстремума, называют экстремумами функции .
Не путайте экстремумы функции с наибольшим и наименьшим значением функции.
На первом рисунке наибольшее значение функции на отрезке достигается в точке максимума и равно максимуму функции, а на втором рисунке – наибольшее значение функции достигается в точке x=b , которая не является точкой максимума.
Достаточные условия возрастания и убывания функции.
На основании достаточных условий (признаков) возрастания и убывания функции находятся промежутки возрастания и убывания функции.
Вот формулировки признаков возрастания и убывания функции на интервале:
если производная функции y=f(x) положительна для любого x из интервала X , то функция возрастает на X ;
если производная функции y=f(x) отрицательна для любого x из интервала X , то функция убывает на X .
Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:
Рассмотрим пример нахождения промежутков возрастания и убывания функции для разъяснения алгоритма.
Пример.
Найти промежутки возрастания и убывания функции .
Решение.
Первым шагом является нахождение обрасти определения функции. В нашем примере выражение в знаменателе не должно обращаться в ноль, следовательно, .
Переходим
к нахождению производной функции:
Для
определения промежутков возрастания
и убывания функции по достаточному
признаку решаем неравенства и на
области определения. Воспользуемся
обобщением метода интервалов. Единственным
действительным корнем числителя
является x
= 2
,
а знаменатель обращается в ноль при x=0
.
Эти точки разбивают область определения
на интервалы, в которых производная
функции сохраняет знак. Отметим эти
точки на числовой прямой. Плюсами и
минусами условно обозначим интервалы,
на которых производная положительна
или отрицательна. Стрелочки снизу
схематично показывают возрастание или
убывание функции на соответствующем
интервале.
Экстремумы функции
Определение 2
Точка $x_0$ называется точкой максимума функции $f(x)$, если существует такая окрестность данной точки, что для всех $x$ из этой окрестность выполняется неравенство $f(x)\le f(x_0)$.
Определение 3
Точка $x_0$ называется точкой максимума функции $f(x)$, если существует такая окрестность данной точки, что для всех $x$ из этой окрестность выполняется неравенство $f(x)\ge f(x_0)$.
Понятие экстремума функции тесно связано с понятием критической точки функции. Введем её определение.
Определение 4
$x_0$ называется критической точкой функции $f(x)$, если:
1) $x_0$ - внутренняя точка области определения;
2) $f"\left(x_0\right)=0$ или не существует.
Для понятия экстремума можно сформулировать теоремы о достаточных и необходимых условиях его существования.
Теорема 2
Достаточное условие экстремума
Пусть точка $x_0$ является критической для функции $y=f(x)$ и лежит в интервале $(a,b)$. Пусть на каждом интервале $\left(a,x_0\right)\ и\ (x_0,b)$ производная $f"(x)$ существует и сохраняет постоянный знак. Тогда:
1) Если на интервале $(a,x_0)$ производная $f"\left(x\right)>0$, а на интервале $(x_0,b)$ производная $f"\left(x\right)
2) Если на интервале $(a,x_0)$ производная $f"\left(x\right)0$, то точка $x_0$ - точка минимума для данной функции.
3) Если и на интервале $(a,x_0)$, и на интервале $(x_0,b)$ производная $f"\left(x\right) >0$ или производная $f"\left(x\right)
Данная теорема проиллюстрирована на рисунке 1.
Рисунок 1. Достаточное условие существования экстремумов
Примеры экстремумов (Рис. 2).
Рисунок 2. Примеры точек экстремумов
Правило исследования функции на экстремум
2) Найти производную $f"(x)$;
7) Сделать выводы о наличии максимумов и минимумов на каждом промежутке, используя теорему 2.
Возрастание и убывание функции
Введем, для начала, определения возрастающей и убывающей функций.
Определение 5
Функция $y=f(x)$, определенная на промежутке $X$, называется возрастающей, если для любых точек $x_1,x_2\in X$ при $x_1
Определение 6
Функция $y=f(x)$, определенная на промежутке $X$, называется убывающей, если для любых точек $x_1,x_2\in X$ при $x_1f(x_2)$.
Исследование функции на возрастание и убывание
Исследовать функции на возрастание и убывание можно с помощью производной.
Для того чтобы исследовать функцию на промежутки возрастания и убывания, необходимо сделать следующее:
1) Найти область определения функции $f(x)$;
2) Найти производную $f"(x)$;
3) Найти точки, в которых выполняется равенство $f"\left(x\right)=0$;
4) Найти точки, в которых $f"(x)$ не существует;
5) Отметить на координатной прямой все найденные точки и область определения данной функции;
6) Определить знак производной $f"(x)$ на каждом получившемся промежутке;
7) Сделать вывод: на промежутках, где $f"\left(x\right)0$ функция возрастает.
Примеры задач на исследования функций на возрастание, убывание и наличие точек экстремумов
Пример 1
Исследовать функцию на возрастание и убывание, и наличие точек максимумов и минимумов: $f(x)={2x}^3-15x^2+36x+1$
Так как первые 6 пунктов совпадают, проведем для начала их.
1) Область определения - все действительные числа;
2) $f"\left(x\right)=6x^2-30x+36$;
3) $f"\left(x\right)=0$;
\ \ \
4) $f"(x)$ существует во всех точках области определения;
5) Координатная прямая:
Рисунок 3.
6) Определить знак производной $f"(x)$ на каждом промежутке:
\ \}