Химические свойства молибдена. Молибден — свойства и область применения
Молибден или лат. Molybdaemon представляет собой пластичный металл светло-серого цвета (см. фото). В чистом виде в 1817 году он был выделен в Й.Берцелиусом. В свободном виде в природе не встречается, а сульфид его очень схож по внешнему виду с сульфидом свинца и практически до XVIII столетия эти минералы называли одним словом – молибден, что с древнегреческого переводится как «свинец».
В настоящее время известно около 20 минералов этого вещества – это молибдаты и сульфидные руды. Широкое применение нашел в металлургии при производстве высококачественных сталей в качестве легирующей добавки. Чистый элемент используют при производстве зеркал для мощных газодинамических лазеров, а еще он входит в состав микроудобрений. Соединения этого макроэлемента, такие как оксиды, молибдаты и сульфиды используют в химической промышленности как катализаторы, пигменты красителей, компоненты глазурей. Также молибден есть в составе растений и клетках животных. В некоторых странах молибден добавляют в микроудобрения для повышения содержания азота в почвах, таким образом, повышая урожайность выращиваемых сельскохозяйственных культур.
В последние несколько лет есть предпосылки считать, что благодаря ему не развиваются некоторые онкологические заболевания желудочно-кишечного тракта. Любопытный факт – некоторые ученые полагают, что на Марсе нет жизни, из-за отсутствия на этой планете молибдена.
Действие молибдена
Действие макроэлемента на организм человека определили при изучении фермента ксантиноксидазы всего лишь полвека назад. Хотя и до сих пор не совсем понятен механизм действия этого элемента на организм человека. При дальнейшем исследовании характеристик элемента ученые установили, что молибден в организме играет такие роли:
- Содержится в ферментах, участвующих синтезе мочевой кислоты, которая является конечным продуктом обмена белка, способствуют ее удалению из организма, тем самым препятствуя возникновению подагры.
- Как антиоксидант нормализует функцию мужской половой функции.
- Активирует выработку аминокислот, способствуя накоплению азота.
- Является одним из важных составляющих в процессе дыхания тканей.
- Участвует в метаболизме углеводов и жиров.
- Задерживая фтор в организме, препятствует разрушению зубной ткани и предотвращает возникновения кариеса.
- Содействует утилизации железа в организме, тем самым предотвращая анемию.
- Отвечает за регуляцию процессов роста и обмена веществ.
- Делает более эффективной работу антиокислителей, таких например как витамины В12, С и Е.
- Является участником в процессе образования гемоглобина.
- Позитивно влияет на микрофлору кишечника.
- Выводит токсины и помогает справиться с отравлениями.
Суточная норма
Медики до настоящего времени так и не сошлись во мнении по поводу того, какое же количество молибдена необходимо получать человеку для обеспечения суточной нормы. Одни называют цифру 75-250 мкг в сутки, другие цифру несколько больше – 300-400 мкг в сутки. Но эта цифра еще варьируется в зависимости от возраста и веса. В любом случае, какие бы цифры не озвучивали врачи, человек при обычном сбалансированном питании получает 50-100 мкг в сутки этого макроэлемента, обеспечивая, таким образом, необходимый минимум.
Молибден поступает в организм с пищей и довольно хорошо всасывается слизистой желудка и стенками тонкого кишечника.
Учитывайте, что потребление большого количества алкоголя, сладостей и препаратов с содержанием меди могут привести к необходимости повышения нормы потребления элемента.
Недостаток молибдена в организме
Недостаток этого макроэлемента встречается редко и причинами его служат вегетарианство, продолжительные стрессовые ситуации, вынужденный прием внутривенного питания, а также врожденные дефекты.
Дефицит элемента может привести к достаточно серьезным последствиям – различные болезни мозга, глаз, почек, крови, нарушение функций вестибулярного аппарата. Происходит сбой в обмене веществ, развиваются аллергические реакции, депрессивные состояния. Человек чувствует общую слабость организма. У некоторых может появиться одышка и сердечная аритмия.
Избыток молибдена
Избыток элемента является редким явлением, но все же в промышленных условиях, при недостатке меди и приеме препаратов, где молибден содержится, эта вероятность возрастает.
Очень токсичными соединения молибдена назвать сложно. Получить дозу, опасную для жизнедеятельности в обычных условиях довольно трудно. Она составляет 10-15 мг в день, но наш организм устроен таким образом, что чем больше молибдена поступает, тем хуже он усваивается. И все же при передозировке наблюдаются следующие симптомы: анемия, замедление роста, развитие подагры. В случае переизбытка этого вещества назначают препараты меди и серы.
Продукты, в которых содержится молибден, следует употреблять в пищу для поддержания необходимого количества его в организме. Они довольно распространены для каждого человека, так что составить рацион не составит труда:
- Листовые овощи зеленого цвета, капуста, шпинат, фасоль, горох, чечевица, семечки подсолнечника.
- Злаки и зерновые культуры: пшеница, гречка, просо, ячмень и др.
- Мясо и субпродукты (печень, почки).
- Молочные продукты и яйца.
- Грибы.
Показания к назначению
Препараты, содержащие молибден назначают при остром дефиците этого макроэлемента, в основном, спровоцированном специфической диетой. Для поддержания нормального количества зачастую рекомендуют откорректировать питание, и тогда с проблемой дефицита этого важного элемента вы не столкнетесь.
Молибден находит широкое применение в металлургической промышленности в качестве легирующего элемента при производстве специальных сталей.
Молибден применяется также как главная составляющая жаропрочных сплавов, особенно в последние годы в связи с развитием газотурбостроения (газовые турбины, ракеты, реактивные двигатели и т.д.).
Добавки молибдена повышают прочность, предел упругости, сопротивление ползучести при повышенных температурах, а также коррозионную стойкость стали.
Чистый молибден в виде ленты и проволоки используется для нагревателей в печах электросопротивления и в виде жести в электровакуумной и радиотехнической промышленности. Карбид молибдена используется при изготовлении твердых сплавов.
В химической промышленности молибден используется для производства красителей и специальных составов, повышающих огнестойкость пропитываемых ими тканей и дерева, а также при изготовлении удобрений для сельского хозяйства (кристаллы, содержащие 97% дигидрата молибдена), катализаторов и смазочных веществ (дисульфит молибдена).
Молибден поддается прокатке, штамповке и ковке.
Молибденовый порошок, получаемый восстановлением трехокиси молибдена или аммониевого соединения молибдена в атмосфере водорода, служит исходным материалом для получения металлических штабиков, которые используются для изготовления сплавов или производства прутков, проволоки, листов, труб и других изделий из чистого молибдена.
Молибден, предназначенный для производства специальных сплавов, выпускается по техническим условиям ЦМТУ 4787-56 высокой чистоты с содержанием молибдена 99,98%; примеси олова, свинца, кадмия, висмута и сурьмы не должны превышать 0,0001% каждого; меди, цинка, магния, алюминия, кремния, мышьяка, серы и фосфора - 0,001% и железа - 0,005%, а всего примесей должно быть менее 0,02%.
В настоящее время в полупромышленном масштабе получают молибден чистоты 99,99%.
Молибден высокой чистоты выпускается в виде порошка или штабиков квадратного сечения размерами от 10х10 до 25х25 мм и длиной 350-460 мм.
Молибденовые штабики, предназначенные для производства проволоки, прутков, листов, труб и других изделий, изготовляются по техническим условиям ТУОР 7-53 сечением не менее 14,5х14,5 мм и длиной более 450 мм. Химический состав таких штабиков должен быть (% к металлу): не более 0,03 R2O3 (сумма окислов трехвалентных металлов), 0,03Si02, 0,005 никеля и 0,008 окиси магния и кальция; остальное молибден.
Так как металлический молибден получается металлокерамическим способом, то свойства молибдена зависят от предварительной его обработки
Механические свойства молибдена в зависимости от состояния приведены в табл. 39.
Основным недостатком молибдена является большая скорость окисления его при высоких температурах (в потоке воздуха при 1000° скорость окисления 0,5-1,25 мм/час), уже при температуре порядка 800° на поверхности металла образуется окисел молибдена М0О3, который испаряется со значительной скоростью. В сухом воздухе при 500° молибден почти не окисляется. Для защиты поверхности молибдена от окисления его плакируют другими металлами (никелем, сплавом платины с родием и др.) или легируют некоторыми элементами, предотвращающими образование М0О3.
Кислород является вредной примесью в молибдене и допускается не более 0,003%. При большем содержании кислорода выделяющаяся при охлаждении металла и распологающаяся по границам зерен окись молибдена сообщает ему хрупкость и делает не пригодным для обработки давлением.
Развитие высокотемпературной техники потребовало создать молибденовые сплавы с высокой температурой рекристаллизации, высокой твердостью и прочностью при повышенной температуре и хорошей коррозионной стойкостью. Легирующие добавки позволили значительно улучшить свойства молибдена при высоких температурах.
Влияние различных добавок при комнатной температуре на твердость молибдена приведено на рис. 43, а при повышенных температурах - на рис. 44.
Предел прочности и удлинение некоторых молибденовых сплавов в зависимости от температуры отжига приведены на рис. 45.
Установлено, что в твердых растворах легирующие добавки с большим атомным радиусом, чем у молибдена, сильно тормозят рекристаллизацию, а с меньшим атомным радусом - мало влияют на рекристаллизацию. Например цирконий (атомный радиус 1,55 А) значительно повышает температуру рекристаллизации при незначительном его добавлении в молибден, а ниобий (атомный радиус 1,43 А) начинает влиять на рекристаллизацию при добавках его выше 1%. Сильно повышают температуру рекристаллизации молибдена добавки бериллия, марганца, ванадия и хрома.
Легирующие добавки значительно улучшают механические свойства сплавов молибдена, повышают их коррозионную стойкость, прочность и твердость при высоких температурах. Сплавы молибдена с кремнием обладают высокой жаростойкостью при высоких температурах (1500°).
Молибден с добавкой 0,5% титана обладает более удовлетворительной прочностью при температурах выше 800°, чем другие сплавы.
Хром в количестве 1,2% несколько уменьшает окисляемость молибдена при высоких температурах, но делает молибден хрупким, уменьшая его способность к ковке. Молибден, содержащий 0,1% бериллия, хорошо поддается термообработке.
01.04.2019
Все мы знаем, что транспортерная лента выступает в качестве тяговой и несущей части конвейера ленточного типа. Такие изделия производят из разнообразных полимерных...
01.04.2019
Современные утюги очень практичные и удобные. Однако и они требуют регулярного ухода. От состояния утюга зависит качество глажки одежды. Важно, чтобы он был всегда...
01.04.2019
Из нашего материала вы узнаете, что делать, если забился унитаз, как можно прочистить его самостоятельно без вантуза и троса, и почему он засоряется....
01.04.2019
Известная корпорация из Черногории под названием Uniprom, под контролем которой находится алюминиевое предприятие Kombinat Aluminijuma Podgorica, сделала заявление о...
01.04.2019
В наше время, сдавая металлолом, вы имеете уникальную возможность получить максимально быстро неплохой доход, при этом у владельца лома отсутствуют какие-либо...
01.04.2019
На сегодняшний день промышленный демонтаж является весьма популярной услугой, которую необходимо заказывать для сноса строения и х модернизации. Вся процедура состоит из...
31.03.2019
Любая отрасль производства развивается и растёт. Технологии, бывшие прорывными десять лет, уже не кажутся чем-то необычным, что нередко ведёт к потери прибыли, как...
29.03.2019
На территории Объединённых Арабских Эмиратов корпорация United Iron & Steel Company передала в использование комплекс, который состоит из двухтактного агрегата...
29.03.2019
На сегодняшний день электрические лебедки являются не просто востребованными конструкциями, а попросту необходимыми изделиями для подъёма грузов. В таких агрегатах...
Оно произошло лишь в последней четверти прошлого века. В 1885 г. на Путиловском заводе выплавили сталь, в которой содержалось 0,52% углерода и 3,72% молибдена. Свойства ее оказались почти такими же, как у вольфрамовой стали; прежде всего привлекала ее большая твердость и как следствие - пригодность для изготовления металлорежущего инструмента. Всего 0,3% молибдена увеличивали твердость стали в такой же степени, как 1% вольфрама, но это узнали уже позже.
Влияет и на качество чугуна. Добавка молибдена позволяет получить мелкокристаллический чугун с повышенной прочностью и износоустойчивостью.
В 1900 г. на Всемирной промышленной выставке в Париже была выставлена сталь, содержавшая и обладавшая замечательным свойством: резцы из нее закалялись в процессе работы. А за 10 лет до этого, в год столетия со дня открытия элемента № 42, был разработан процесс выплавки ферромолибдена - сплава молибдена с железом. Добавляя в плавку определенные количества этого сплава, начали выпускать специальные сорта стали. наряду с хромом, никелем, кобальтом нашел широкое применение как легирующий элемент, причем сталь легируют обычно не техническим молибденом, а ферромолибденом - так выгоднее.
Тем временем приближалась первая мировая война. Военные ведомства европейских держав требовали от промышленности крепкой брони для кораблей и укреплений, особо прочной стали для пушек. Орудийные стволы начали изготовлять из хромомолибденовых и никельмолибдено-вых сталей, отличающихся высоким пределом упругости и в же время поддающихся токарной обработке с высокой степенью точности. Из хромомолибденовой делали бронебойные снаряды, судовые валы и другие важные детали.
Фирма «Винчестер» применила эту сталь для изготовления винтовочных стволов и ствольных коробок. Появлялось все больше тяжелых моторов. Для них нужны были крупные шариковые и роликовые подшипники, выдерживающие большую нагрузку. И для этой цели подошли хромомолибденовые и никельмолибденовые стали. В наше время, когда ежегодно добывают из недр Земли миллионы тонн молибденовых руд, 90% всего молибдена поглощает черная металлургия.
Молибден и авиация
Когда самолеты перестали делать из дерева и парусины, понадобились не только мощные моторы и легкие металлические листы обшивки, но и жесткий каркас из металлических трубок. Вначале авиация довольствовалась трубами из углеродистой стали, но размеры самолетов все росли… Потребовались трубы значительно большего диаметра, но с малой толщиной стенки. Трубы из хромована-диевой стали в принципе могли бы подойти, но эта сталь не выдерживала протяжки до нужных размеров, а в местах сварки такие трубы при охлаждении «отпускались» и теряли прочность.
Выйти из этого тупика удалось благодаря хромомолибденовой стали. Трубы из нее хорошо протягивались, прекрасно сваривались и, что главное, в тонких сечениях не «отпускались» при сварке, а, наоборот, самозакалялись на воздухе. Количество молибдена в стали, из которой их протягивали, было крайне невелико: 0,15-0,30%.
Электричество и радиотехника
Нити накаливания обычных электрических ламп делают из вольфрама, более тугоплавкого, чем все прочие , и дающего наибольшую светоотдачу. Но если впаять вольфрамовую нить в стеклянный стерженек в центре лампочки, он вскоре треснет из-за теплового расширения нити.
Когда исследовали физические свойства молибдена, обнаружили, что у него ничтожно малый коэффициент теплового расширения. При нагреве от 25 до 500° С размеры молибденовой детали увеличатся всего на 0,0000055 первоначальной величины. И даже при нагреве до 1200° С молибден почти не расширяется. Поэтому вольфрамовые нити накаливания стали подвешивать на молибденовых крючках, впаянных в . В дальнейшем молибден сыграл еще большую роль в электровакуумной технике. К вакуумным приборам электрический ток подводится через молибденовые прутки, впаянные в специальное , имеющее одинаковый с молибденом коэффициент теплового расширения (это носит название молибденового) .
Жаропрочные сплавы
Техника сверхскоростных и космических полетов ставит перед металлургами задачу получать все более жаростойкие материалы. Прочность при высоких температурах зависит прежде всего от типа кристаллической решетки и, конечно, от химической природы материала. Температурный предел эксплуатации титановых сплавов 550- 600° С, молибденовых - 860, а титано-молибденовых - 1500° С!
Чем объяснить столь значительный скачок? Его причина - в строении кристаллической решетки. В объемно-центрированную структуру молибдена внедряются посторонние атомы, на этот раз атомы титана. Получается так называемый твердый раствор внедрения, структуру которого можно представить так. Атомы молибдена, металла-основы, располагаются по углам куба, а атомы добавленного металла, титана,-в центрах этих кубов. Вместо объем-по-центрированной кристаллической решетки появляется гранецентрированная, в которой процессы разупрочнения под действием температур происходят намного менее ий-
В таком целенаправленном изменении кристаллической структуры металлов состоит один из основных принципов легирования.
Другая причина столь резкого увеличения жаропрочности кроется в том, что сплавляются очень непохожие - молибден и . Это общее правило: чем больше разница между атомами легирующего металла и металла-основы, тем прочнее образующиеся связи. Металлическая связь как бы дополняется химической.
Легирование, однако, вовсе не последнее слово в решении проблемы жаропрочных сплавов. Уже в наше время обнаружены необычайные свойства нитевидных кристаллов, или «усов». Прочность их по сравнению с металлами, обычно используемыми в технике, поразительно велика. Объясняется это тем, что кристаллическая структура усов практически лишена дефектов, и техника сверхскоростных полетов берет на вооружение усы, создавая с их помощью композиционные жаропрочные материалы. Один из таких материалов - это окись алюминия, армированная молибденовыми усами, другой представляет собой начиненный топ же арматурой технический . По сравнению с обычным титаном этот материал может работать в жестких условиях в 1000 раз дольше.
Что можно противопоставить огненному смерчу, обрушивающемуся на космический корабль при входе в плотные слои атмосферы? Прежде всего теплозащитную обмазку и охлаждение. Да, охлаждение, подобное в принципе охлаждению автомобильных двигателей с помощью радиаторов. Только работать здесь должны более энергоемкие процессы. Много тепла нужно на испарение веществ, но еще больше на сублимацию - перевод из твердого состояния непосредственно в газообразное. При высоких температурах сублимировать способны молибден,
В статье “Молибден. Свойства, применение, производство, продукция” подробно рассматривается тугоплавкий металл молибден . Описаны свойства молибдена, указаны области его применения. Также перечислены различные марки молибдена с указанием их особенностей.Статья освещает процесс производства молибдена от стадии обогащения руды до стадии получения заготовок в виде штабиков и слитков. Отмечаются характерные особенности каждой стадии.
Особое внимание в статье уделяется продукции (проволока, прутки, листы, полосы, порошок и др.). Описаны процессы изготовления той или иной продукции из молибдена, ее характерные особенности и области применения.
Глава 1. Молибден. Свойства и области применения молибдена
Молибден (обозначается Mo) - химический элемент VI группы 5-го периода таблицы Д.И. Менделеева, имеет номер 42; переходный металл светло-серого цвета. Он относится к разряду тугоплавких металлов, имеет температуру плавления t пл = 2620 °С. Рассматривая различные применения молибдена в качестве металла, наиболее важными свойствами следует считать плотность, температуру плавления, электрическое сопротивление, коэффициент линейного расширения.§1. Свойства молибдена
Основные физические и механические свойства молибдена представлены в таблице. Стоит также заметить, что электропроводность молибдена выше по сравнению с электропроводностью железа и ниже, чем аналогичное свойство меди. По механической прочности молибден немного уступает вольфраму, но, в тоже время, легче поддается обработке давлением.Свойство | Значение |
---|---|
Физические свойства | |
Атомный номер | 42 |
Атомная масса, а.е.м. (г/моль) | 95,94 |
Атомный диаметр, нм | 0,273 |
Плотность, г/см 3 | 10,2 |
Температура плавления, °С | 2620 |
Температура кипения, °С | 4830 |
Удельная теплоемкость, Дж/(г К) | 0,248 |
Теплопроводность, Вт/(м K) | 138 |
Электрическое сопротивление, мкОм см | 5,7 |
Коэффициент линейного термического расширения, 10 -6 м/мК | 4,9 |
Механические свойства | |
Модуль Юнга, ГПа | 329,3 |
Модуль сдвига, ГПа | 122,0 |
Коэффициент Пуассона | 0,30 |
Временное сопротивление s B , МПа | 800-900 |
Относительное удлинение d, % | 0-15 |
§2. Марки молибдена
Марка молибдена | Характеристика марки |
---|---|
МЧ | Молибден чистый без присадок |
МЧВП | Молибден чистый без присадок, полученный с помощью вакуумной плавки |
МРН | Молибден без присадок. Молибден разного назначения. Температура рекристализации молибдена этой марки может быть несколько выше, чем у молибдена марки МЧ за счет большего содержания примесей |
МК | Молибден с кремнещелочной присадкой. Характеризуется значительно более высокой температурой рекристализации, по сравнению с молибденом марки МЧ и более высокой прочностью при изгибе в отожженном состоянии |
МР | Сплавы молибдена и рения |
ЦМ | Молибден с присадкой циркония и/или титана |
МВ | Сплавы молибдена и вольфрама |
Жаропрочные материалы на основе молибдена можно разделить на четыре группы:
- практически чистый молибден;
- низколегированные малоуглеродистые сплавы;
- низколегированные высокоуглеродистые сплавы;
- высоколегированные сплавы.
Во вторую группу входят такие сплавы молибдена, как ЦМ5, ЦМ6, ЦМ-2А, ВМ-1, ТСМ4 с типичным содержанием углерода (по массе) 0,004-0,05% С, а также сплавы ЦМ10 и ТСМ-7 с пониженным содержанием углерода. Сплавы ЦМ5 и ЦМ6 относятся к системе молибден-цирконий (Mo-Zr), а сплавы ЦМ-2А, ВМ-1 легированы одновременно небольшими добавками титана и циркония. Сплав ТСМ4, помимо циркония, содержит небольшие концентрации никеля и углерода, это сплав системы молибден-цирконий-никель-углерод (Mo-Zr-Ni-C). Среди сплавов второй группы наиболее широко распространен малолегированный сплав ЦМ-2А, отличающийся достаточной технологичностью и более высокой жаропрочностью по сравнению с чистым молибденом. Сплав ЦМ-2А наименее склонен к хладноломкости после деформации. Рекристаллизация повышает его склонность к хрупкости. Сплав ВМ-1 по составу и свойствам близок к сплаву ЦМ-2А. Сплав ЦМ5 более жаропрочен, чем ЦМ-2А. Сплав ЦМ6 с меньшим содержанием циркония и углерода уступает сплаву ЦМ5 по жаропрочности, но является более технологичным, менее склонен к хладноломкости в рекристаллизованном состоянии, хорошо сваривается.
В третью группу (низколегированные высокоуглеродистые сплавы) входит ВМ-3 с повышенным содержанием углерода, доходящим (по массе) до 0,25-0,50%. Чтобы связать весь углерод в карбиды, этот сплав легирован большим количеством титана и циркония; дополнительное упрочнение обеспечивает ниобий. Карбиды титана (TiC) и циркония (ZrC) улучшают жаропрочность сплава. В то же время карбид молибдена (Mo 2 C) оказывает негативное влияние на технологические свойства сплавов. Его присутствие снижает пластичность как при комнатной, так и при высокой температуре. Для исключения образования Mo 2 C титан, цирконий и углерод вводят в сплавы в определенных пропорциях.
К четвертой группе (высоколегированные сплавы) относятся ЦМВ30, ЦМВ50 и МР47ВП. Для сплавов ЦМВ30 и ЦМВ50 характерна высокая жаропрочность, обусловленная их легированием большими количествами вольфрама, а сплав МР47ВП системы молибден-рений (Mo-Re) отличается высокими прочностными свойствами при умеренных температурах и большой технологичностью. Жаропрочность последнего сплава может быть существенно повышена введением карбидов ZrC и ТiС.
§3. Области применения молибдена
Тугоплавкий металл молибден нашел широкое применение в современной промышленности как в качестве легирующей добавки к различным сплавам, так и в качестве конструкционного материала .Основные направления применения молибдена
1. Легирующий элемент в различных сталях и сплавах цветных металлов
В качестве легирующей добавки молибден активно используется в черной металлургии при производстве сталей и чугунов. В состав конструкционных сталей входит до 0,5 % данного тугоплавкого металла. Благодаря молибдену значительно улучшается структура конструкционной стали. Она становится более однородной и мелкозернистой. Добавление молибдена позволяет улучшить механические свойства сталей и сплавов, а именно: предел упругости, сопротивление износу и удару. Одно из ценных свойств молибдена – его способность устранять отпускную хрупкость аустенитной стали.
Молибден активно применяется при производстве различных инструментальных сталей. Стали, из которых изготавливают штампы, обычно содержат 1-1,5 % данного тугоплавкого металла, быстрорежущие стали – 5-8,5 %. Молибден повышает красностойкость инструментальных сталей, их твердость, прочность, сопротивление образованию закалочных трещин, износу.
Хромистые и хромоникелевые стали также имеют в своем составе молибден. Он снижает хрупкость и повышает жаропрочность данных сталей в условиях длительной работы. Введение 2-4 % молибдена в нержавеющие хромоникелевые стали улучшает их коррозионную стойкость.
Тугоплавкий металл молибден также включают и в состав чугунов. Введение в чугун 0,2-0,5 % молибдена повышает вязкость, сопротивление износу и улучшает свойства при высоких температурах, а также уменьшает склонность к росту зерен.
2. Антикоррозионные и жаропрочные сплавы
Очень часто молибден входит в состав жаропрочных и кислотостойких сплавов. Металлы кобальт и никель , как правило, являются основой жаропрочных сплавов (50-60 %), также такие сплавы содержат хром (20-28 %) и молибден (3-10 %). В качестве примера можно привести жаропрочный сплав, который используется для изготовления лопаток и дисков роторов газовых турбин: Ni – 37 %, Co – 20 %, Cr – 18 %, Fe – 17 %, Mo – 3 %, Ti – 2,8 %
Кислотостойкие сплавы, содержащие 17-28 % молибдена, а также хром, вольфрам и железо, устойчивы к воздействию всех минеральных кислот (например, серная кислота, соляная кислота и другие), кроме плавиковой.
3. Конструкционный материал в аэрокосмической и атомной технике
Благодаря своим свойствам молибден используется в качестве конструкционного материала в аэрокосмической и атомной технике. Конструкционные металлы и сплавы, применяемые в аэрокосмической отрасли, должны отличаться хорошей жаропрочностью и окалиностойкостью. Данными свойствами обладают тугоплавкие металлы вольфрам, молибден, ниобий и другие, однако, ниобий и молибден имеют большую удельную прочность при температуре до 1370 °С по сравнению с вольфрамом, поэтому более предпочтительны в качестве конструкционных материалов, работающих при указанной и более низких температурах.
Молибден используется для изготовления обшивки и элементов каркаса сверхзвуковых самолетов и ракет, а также теплообменников, оболочек возвращающихся на землю ракет и капсул, тепловых экранов, передних кромок ракет, носовых конусов ракет, обшивки кромок крыльев сверхзвуковых самолетов.
Молибден с присадками ниобия, ванадия, титана и других металлов, которые повышают жаропрочность, применяется для изготовления ответственных деталей ракетных двигателей и газовых турбин: сопловые и рабочие лопатки газовых турбин, выхлопные сопла и камеры сгорания прямоточных реактивных двигателей.
Металл молибден является тугоплавким и достаточно хорошо устойчив к воздействию жидких металлических теплоносителей типа лития и свинцововисмутового сплава. Указанные свойства молибдена позволяют использовать его в качестве конструкционного материала в энергетических атомных реакторах при температуре до 800 °С. Из тугоплавкого металла молибден изготовляют контейнеры, оболочки, трубы и другие элементы активной зоны реактора.
4. Материал для изготовления оборудования для обработки металлов давлением
Жаропрочность молибдена, его тугоплавкость, высокая теплопроводность и низкий коэффициент расширения позволяют использовать данный метал для изготовления элементов оборудования, предназначенного для горячей обработки металлов давлением. Так из молибдена производят оправки прошивных станов, матрицы, пресс-штемпели. Стоит заметить, что по данным экспериментов прошивные пуансоны для прошивки заготовок из нержавеющей стали, изготовленные из сплава молибдена с 0,5% титана, прошивают до момента выхода из строя в 100 раз больше заготовок по сравнению с пуансонами из других материалов. Также из тугоплавкого металла молибден производят пресс-формы и стержни машин для литья под давлением сплавов меди, цинка и алюминия.
5. Материал для изготовления нагревателей высокотемпературных печей
Проволоку, ленту и прутки из молибдена применяют в качестве нагревателей высокотемпературных электрических печей . Температура в таких печах может достигать 1700 - 2000 °С. Стоит заметить, что молибденовые нагреватели должны работать только в защитной атмосфере (обычно, водород, аргон) или в вакууме.
Молибденовые прутки применяют также в качестве электродов в печах для плавки стекла. Как правило, для данных целей используют прутки диаметром от 25 до 150 мм и длиной до 1,8 м. Также встречаются плавильные печи с электродами в виде молибденовых пластин. Стоит заметить, что молибден практически не вступает в реакцию с расплавленным стеклом. Это позволяет использовать данный металл для изготовления деталей стеклоплавильных печей.
6. Материал для производства электроламп и электровакуумной техники
Такие свойства, как жаропрочность, высокая электропроводность, высокая температура плавления, позволяют применять молибден в производстве электроламп и электровакуумных приборов. Молибденовая проволока применяется для изготовления крючков, которые поддерживают вольфрамовую нить в лампе накала. Также молибден используют в качестве керна для навивки вольфрамовой проволоки.
Молибденовые прутки служат для ввода тока в различные электровакуумные приборы и колбы мощных источников света. Листы из молибдена применяются для производства анодов генераторных ламп. Также из данного метала изготовляют сетки приемно-усилительных ламп, вспомогательные электроды генераторных ламп, катоды газоразрядных трубок.
Молибден также нашел применение и в рентгеновской технике. Например, из него производят фокусирующие электроды, вводы катодов.
Глава 2. Производство молибдена
§1. Процесс получения тугоплавкого металла молибден
Молибден принято относить к широкой группе редких металлов. Помимо данного металла в эту группу входят вольфрам, ванадий и другие. Для редких металлов характерны сравнительно небольшие масштабы производства и потребления, а также малая распространенность в земной коре. Например, как правило, содержание молибдена в рудах составляет сотые и тысячные доли процента. Ни один редкий металл не получают непосредственным восстановлением из сырья. Сначала сырье перерабатывается на химические соединения. Кроме того, все редкометаллические руды подвергаются дополнительному обогащению перед переработкой.В процессе получения редкого металла можно выделить три основных стадии:
- Разложение рудного материала - отделение извлекаемого металла от основной массы перерабатываемого сырья и концентрирование его в растворе или осадке.
- Получение чистых химических соединений - выделение и очистка химического соединения.
- Выделение металла из полученного соединения - получение чистых редких металлов.
Процесс получения молибдена состоит из нескольких стадий.
- Обогащение молибденовой руды. Оно производится с помощью флотации. В результате обогащения получают молибденитовые концентраты, содержащие 90 - 95 % MoS 2 . Промышленность выпускает концентраты трех марок: КМ1 (содержит не менее 50% молибдена), КМ2 (содержит не менее 48% молибдена) и КМ3 (содержит не менее 47% молибдена). В молибденитовых концентратах контролируется содержание примесей - фосфора, мышьяка, олова, меди и кремнезема. Если обогащению подвергаются полиметаллические молибденовые руды, то, как правило, содержание молибдена в концентратах составляет 15-20%.
- Получение трехокиси (ангидрида) молибдена MoO 3 , который служит исходным сырьем для производства металлического молибдена. Сначала получают огарок (оксид молибдена MoO 3 , содержащий большое количество примесей) из молибденитового концентрата (MoS 2) путем окислительного обжига последнего. Далее из огарка получают молибденовый ангидрид (чистый MoO 3). Для этого могут применяться такие процессы, как возгонка или гидрометаллургическая (химическая) переработка огарка. В результате получают чистую трехокись молибдена с содержанием последнего не менее 99,975%
- Получение молибденового порошка. Исходным сырьем для получения чистого металла служит ангидрид молибдена MoO 3 . Для производства чистого молибденового порошка проводят процесс восстановления ангидрида водородом. Восстановление осуществляется в три стадии: восстановление MoO 3 до MoO 2 при температуре 450-600 °С; восстановление MoO 2 при температуре 950 °С до металла, содержащего 0,5-1,5% кислорода; уменьшение содержания кислорода в металле ниже 0,25-0,3% путем восстановления при температуре 1000-1100 °С. В результате получают чистый молибденовый порошок, имеющий среднюю крупность зерен около 0,5-2 мкм.
- Получение компактного молибдена. Компактный молибден, как правило, в виде штабиков или слитков является заготовкой для производства полуфабрикатов, таких, как проволока, пруток, лента и так далее.
§2. Получение компактного молибдена
Существуют два способа получения компактного молибдена. Первый заключается в применении методов порошковой металлургии. Второй - с помощью плавки в печах различного принципа действия.Методы порошковой металлургии
Данный способ получения ковкого молибдена является наиболее распространенным, так как позволяет более равномерно распределять присадки, которые улучшают физико-механические свойства молибдена. В качестве присадок могут использоваться титан (Ti), цирконий (Zr), ванадий (V) и другие металлы.
Процесс получения компактного молибдена методом порошковой металлургии состоит из нескольких стадий:
- прессование штабиков из металлического порошка - формовка;
- низкотемпературное (предварительное) спекание заготовок;
- спекание (сварка) заготовок;
- обработка заготовок с целью получения полуфабрикатов - молибденовой проволоки, прутков и других полуфабрикатов; обычно заготовки обрабатывают под давлением (ковкой) или подвергают механической обработке резанием (например, шлифование, полирование).
Предварительное спекание штабиков обычно проводят в муфельных или трубчатых печах при температуре 1110-1200 °С. Спекание (сварку) осуществляют при температуре 2200-2400 °С в специальных аппаратах для высокотемпературного спекания. Если заготовки крупногабаритные, то для их спекания предпочтительнее использовать печь с косвенным нагревом. Примером подобной печи является вакуумная печь непрерывного действия для высокотемпературного спекания штабиков косвенным нагревом, где в качестве нагревателей используются графитовые стержни. Стоит заметить, что предварительное спекание штабиков осуществляется в среде водорода, что способствует упрочнению заготовки и повышению электропроводности.
Плавка
Плавка используется для получения компактного молибдена в виде крупногабаритных заготовок (от 200 до 2000 кг), предназначенных для проката, вытяжки труб, производства изделий методом литья. Осуществляется плавка в электрических дуговых печах с расходуемым электродом и/или электронно-лучевая плавка. В результате плавки получаются молибденовые слитки.
При дуговой плавке в качестве электродов служат пакеты спеченных молибденовых прутков, которые, в свою очередь, получают путем сваривания (спекания) штабиков. Подобные прутки, как правило, имеют длину 1-2,5 м и объединяются в пакеты по 4-16 прутков, а в некоторых случаях и больше.
После дуговой плавки молибденовые слитки содержат следующие примеси (приблизительно), %: O 2 – 1-3 ? 10-4, H 2 – 1-2 ? 10-5, N 2 – 10-3-10-4. В результате электронно-лучевой плавки удается избавиться от большого числа примесей, среди которых кислород, азот, углерод, железо, медь, никель, марганец, кобальт. Стоит заметить, что при получении молибденовых слитков любым из приведенных способов для глубокой очистки молибдена от кислорода (содержание в металле
Глава 3. Продукция из молибдена. Прутки, проволока, листы (полосы), порошок
Промышленность выпускает большое количество продукции из тугоплавкого металла молибден. В данном контексте стоит выделить продукцию круглого сечения - молибденовые прутки и проволоку, плоский прокат – полосы, листы и ленты из молибдена, а также порошки.Заготовками для производства перечисленной выше продукции могут служить спеченные молибденовые штабики (изготовлены методом порошковой металлургии) или слитки (изготовлены методом литья). Большинство продукции из металла молибден получают путем обработки заготовок давлением. В зависимости от типа и размера заготовок технологические процессы производства продукции могут значительно отличаться.
§1. Молибденовые прутки
ПроизводствоМолибденовые прутки – один из самых распространенных видов продукции из тугоплавкого металла молибден. Помимо самостоятельного назначения прутки из молибдена также могут служить заготовками для изготовления проволоки.
Исходными материалами для производства прутков являются спеченные молибденовые штабики квадратного сечения со стороной 40 мм и меньше, а также слитки плавленого молибдена различных размеров.
В процессе получения молибденовых прутков из штабиков последние подвергаются ротационной ковке. Ковка молибденовых прутков осуществляется в несколько этапов. На каждом этапе получают прутки определенных диаметров, при этом условия ковки специальным образом изменяются в зависимости от диаметра поступающей заготовки.
Устройство ротационной ковачной машины
1 - станина, 2 - вал, 3 - ролики, 4 - стальная обойма, 5 - ковочные плашки, 6 - спеченный штабик
На первом этапе штабики нагревают до тепературы 1350-1400 °С. Непосредственно ковку осуществляют при температуре около 1300 °С. В результате термической обработки плотность пористых штабиков увеличивается, а поры на границах зерен внутри кристаллов исчезают. В итоге прочность материала на растяжение резко повышается и в несколько раз превосходит прочность спеченного штабика. Как правило, для нагрева используются печи сопротивления с нагревателями из молибдена и водородной атмосферой. Для подогрева больших штабиков иногда применяют муфельные печи, в которые в зависимости от размеров муфеля можно помещать одновременно несколько штабиков. Печи размещаются рядом с ковочной машиной, чтобы избежать чрезмерного охлаждения штабиков во время их извлечения из печи и введения в рабочий канал машины. Подача заготовок в ковочную машину осуществляется вручную. На данном этапе получают прутки, диаметр которых составляет 20-25 мм. На следующих этапах температуру ковки постепенно уменьшают с уменьшением диаметра прутков. Ковку прутков, имеющих диаметр 2,5-3 мм, осуществляют при температуре 950-1000 °С.
Когда длина прутков значительно возрастает, переходят на непрерывную ковку. Данный переход осуществляют при диаметре прутка 3 мм, если исходными заготовками были штабики сечением 10х10 или 12х12 мм. Подача прутков в ковочную машину осуществляется механически, а для подогрева используется газовая печь. При непрерывной ковке прутки покрывают смазкой – аквадагом или гидроколлагом (водные коллоидные суспензии графита). Смазка предохраняет пруток от окисления и уменьшает износ матриц ковочной машины.
К недостаткам ротационной ковки можно отнести трудоемкость процесса и неровность поверхности получаемых прутков. При нагреве заготовок возникают значительные потери молибдена вследствие его окисления. Для снижения потерь и улучшения пластических свойств молибдена разработаны процессы ковки в атмосфере инертного газа.
Помимо спеченных штабиков заготовками для производства молибденовых прутков могут служить слитки. Слитки плавленого молибдена имеют грубую крупнозернистую структуру и значительно труднее поддаются обработке давлением, чем спеченные заготовки. Поэтому горячую ковку можно применять только для слитков диаметром до 100 мм. Ковка осуществляется при температуре 1400-1450 °С. Заготовки диаметром 150 мм и больше обрабатывают методом прессования. Ковка таких заготовок может привести к образованию трещин.
Перед прессованием слиток нагревают до температуры 760 °С, покрывают специальной эмалью, на которую затем накатывают тонкоизмельченное стекло. Стекло в данном случае выступает в качестве смазки. Затем заготовку нагревают до 1260 °С и еще раз покрывают стеклом. Далее осуществляется прессование. После прессования слитки подвергают горячей ковке при температуре 1425 °С. У полученного в результате ковки прутка обрезают концы. Затем пруток обтачивают на глубину до 25 мм с целью удаления стекла и слоя окалины. В дальнейшем прутки могут подвергаться ковке для получения необходимого размера.
Стоит заметить, что изделия из спеченных и плавленых заготовок молибдена не отличаются по свойствам.
Применение
Одним из направлений применения продукции из молибдена является изготовление нагревателей высокотемпературных электрических печей (см. ). Молибденовые прутки могут использоваться в качестве таких нагревателей. Как правило, нагреватели из молибденовых прутков являются свободноизлучающими, то есть тепло передается от нагревателя непосредственно нагреваемому изделию, за счет чего достигается более эффективное использование мощности печи. Крепление таких нагревательных элементов должно быть очень надежным, чтобы исключить их провисание. Нагреватели из молибденовых прутков обладают высокой прочностью. Они используются в высокотемпературных электрических печах, обладающих большой мощностью.
Молибденовые прутки применяются для изготовления вводов электровакуумных приборов. Широкое распространение в данной области прутки из молибдена получили благодаря тому, что данный металл имеет достаточно высокую электропроводность и малый коэффициент термического расширения, отлично согласующийся с коэффициентом термического расширения тугоплавкого стекла, из которого сделаны корпусы электровакуумных приборов. Прутки из молибдена применяют для изготовления вводов, рассчитанных на большую силу тока, например, для вводов стеклянных вентилей.
Одной из наиболее важных областей применения молибденовых прутков является производство проволоки, где молибденовые прутки выступают в качестве заготовок (см. ).
Список литературы
- Агте К., Вацек И. «Вольфрам и молибден» .
- Зеликман А.Н «Молибден» .
- Елагин В.И., Колачев Б.А., Ливанов В.А. «Металловедение и термическая обработка цветных металлов и сплавов» .
- Уткин Н.И. “Металлургия цветных металлов” .
- http://ru.wikipedia.org
- http://slovari.yandex.ru
- http://www.сайт
Биологическая роль молибдена
5. Химические свойства молибдена, его оксидов и гидроксидов
Литой и плотно спеченный молибден при комнатной и слегка повышенной температуре стоек против действия воздуха и кислорода. При нагревании до темно-красного каления поверхность металла быстро тускнеет и около 600°С молибден загорается, выделяя белый дым - возгон МоО3. Налет окисла легко разрушается и при длительном нагревании происходит полное сгорание металла до МоО3. Молибденовый порошок окисляется при еще более низкой температуре, а наиболее мелкий порошок способен самовозгораться на воздухе. При нагревании во влажной атмосфере, в среде восстановительного или инертного газа, не очищенных тщательно от кислорода и паров воды, наблюдается постепенное более или менее полное окисление металла по реакции:
При нагревании молибдена в токе SO2 образуется смесь окислов и дисульфида молибдена, в токе НСl - летучие хлориды (МоСІ3) и оксихлориды молибдена.
В растворах, содержащих окислитель (кислород, HNO3, НС1О3 и др.), молибден окисляется. Растворы при недостатке окислителя окрашиваются в синий цвет. Азотная кислота, одна и в смеси с соляной и серной - окисляет и растворяет металл:
При избытке кислоты из бесцветного раствора выпадает белый или слегка желтоватый осадок молибденовой кислоты Н2МоО4. Концентрированная HNO3 задерживает растворение, создавая пассивирующую пленку окислов. Разбавленная НС1 довольно хорошо растворяет компактный металл: за 18 ч потеря массы 20-30%. В концентрированной НС1 растворение более медленное: за 18 ч при 110°С потеря массы 0,34%
Фтористый водород и плавиковая кислота быстро действуют на молибден, переводя его во фториды. Разбавленная H2SO4 (d=l,3 г/мл) слабо действует на молибден даже при 110°. Концентрированная H2SO4 (d= 1,82 г/мл) на холоду действует слабо: за 18 ч потеря массы 0,24%. При 200 - 250°С растворение идет быстрее. Фосфорная и органические кислоты воздействуют на металл слабо, но в присутствии окислителей (в том числе воздуха) растворимость заметно увеличивается.
Растворы щелочей и аммиака действуют на молибден медленно, но их действие усиливается окислителями с повышением температуры. При растворении молибдена в щелочах получаем молибдаты щелочных метал лов, реакция будет ускоряться при использовании расплавов щелочей:
Молибден стоек к действию влаги без аэрации, при аэрации молибден будет окисляться при условии, что он находится в контакте с другим менее активным металлом и есть гальванический элемент. В таком гальваническом элементе будет окисляться более активный металл.
Рассмотрим реакции взаимодействия молибдена с неметаллами. Молибден довольно активно реагирует с неметаллами (кремнием, бором, галогенами, серой и т. п.), учитывая то что молибден имеет несколько степеней окисления то получается в таких реакциях несколько продуктов.
С водородом
Молибден не реагирует с водородом с получением химических соединений. Имеет место только физическое растворение водорода в молибдене с образованием нестойких связей. Растворимость водорода в молибдене растет с повышением температуры до 0,5 см3 в 100 граммах металла.
С галогенами
С молибденом фтор образует летучие фториды. Хлор и бром ре6агируют с ним при температуре красного каления. Йод реагирует с молибденом очень медленно. В присутствии влаги реакция с галогенами ускоряется и она становится возможной даже на холоду.
Молибден образует гексафторид MoF6, пентафторид MoF5, тетрафторид MоF4 и трифторид MоF3; гексахлорид МоС16, пентахлорид МоС15, тетрахлорид МоС13, трихлорид МоС13 и комплексный псевдодихлорид [Мо6(С1)8]С14; тетрабромид МоВг4, трибромид МоВг3 и комплексный псевдодибромид [Мо6Вг8]Вг4. С иодом достоверно известно лишь два соединения - дииодид МоІ2 и трииодид МоІ3. Помимо этих соединений, известен ряд оксигалогенидов и несколько менее достоверных соединений.
Гексафторид молибдена получается действием сухого фтора в смеси с азотом на металл (в платиновой трубке), трифторида брома на металл при 250°, безводного HF на MoCl5:
2МоС15 + 12HF = 2MoF6 + 10НС1 + Н2
Гексафторид конденсируется при -70°С в виде белых кристаллов и отгоняется под вакуумом при 40°. Плавится при 17,5°С и кипит при 35°С. Молекула имеет октаэдрическую структуру с атомом металла в центре октаэдра и атомами фтора в вершинах его. Устойчив в сухом воздухе, хлоре, двуокиси серы. Гидролизуется:
MoF6 + 4Н2О = Н2МоО4 + 6HF
Образует с фторидами щелочных металлов комплексные соли типа Me2(MоF8).
Трифторид молибдена получается нагреванием МоВг3 в токе безводного HF. При нормальных условиях твердый. При нагревании во влажном воздухе диссоциирует:
4MoF3 + 6Н2О + 3O2 = 4МоО3 + 12HF
В сухом воздухе устойчив до 800°. При действии водорода восстанавливается до металла. Водой на холоду медленно разлагается.
У молибдена (VI) выделены два оксифторида - MoOF4 и MоO2F2. Это твердые, белые, тяжелые кристаллические вещества, получающиеся фторированием молибдена в присутствии кислорода или обменными реакциями МоО3 с фторидами.
MoCl6 термически очень неустойчив и чувствителен к малейшим следам влаги. Получен недавно длительным кипячением тионилхлорида с МоО3. МоС15 получается хлорированием молибдена в отсутствие воды и воздуха при 600 - 750°С. Кристаллизуется в виде темно-зеленых тригональных бипирамид. Температура плавления 194°С, температура кипения 238°С. Плотность МоС15 2,9275. Он растворяется в безводном эфире,спиртах, углеводородах, кетонах, альдегидах, сероуглероде, аминах с образованием комплексов. При нагревании в отсутствии кислорода разлагается:
МоС15 = МоС13 + С12
Водород при 900°С восстанавливает его до металла:
2МоС15 + 5Н2 > 10НС1 + 2Мо
Восстанавливать можно над накаленной металлической нитью в токе его пара в смеси с водородом. В этом случае на нити осаждается плотный слой молибдена, но при 250° образуется трихлорид:
МоС15 + Н2 > МоСІ3 + 2НС1
При нагревании МоС15 в сухом воздухе образуется оксихлорид МоО2С12. При нагревании во влажном воздухе МоС15 полностью разлагается, образуя окси - и гидроксихлориды. В воде полностью гидролизируется с большим выделением тепла.
Тетрахлорид молибдена получается хлорированием МоО3 смесью СІ2 и ССІ4. При нагревании без доступа влаги и кислорода МоСІ4 диспропорционирует на MoCl5 и MoCl3. При нагревании в присутствии влаги и кислорода образуются оксихлориды и гидроксихлориды. С рядом веществ, в том числе органических, тетрахлорид образует продукты присоединения.
Трихлорид МоС13 получается в виде твердого красного вещества частичным восстановлением MoCl5 водородом при 250°, а также пропусканием смеси паров МоС15 с инертным газом над молибденом.
Трихлорид разлагается, не плавясь. Сублимирует в токе инертного газа. Устойчив в сухом воздухе при нормальной температуре, а при нагревании переходит в оксихлориды. При нагревании в инертном газе разлагается на МоСІ4 и комплексные нелетучие хлориды. Водой и водными растворами щелочей разлагается соответственно при нагревании и на холоду. С аммиаком образует комплексы. Окислителями окисляется до Н2МоО4. В соляной кислоте не растворяется. Растворяется в солянокислых растворах МоО3, образуя комплексы.
Все бромиды получаются действием Вг2 на Мо в среде СО. Так, черно-зеленые иглы тетрабромида получаются около 600°С при атмосферном давлении, тетрабромид - преимущественно при 350 - 500°С. При более низком давлении или несколько более высокой температуре получается смесь бромидов, в том числе комплексных. Известны также красно-оранжевые кристаллы диоксибромида МоО2Вг2 и желтые игольчатые кристаллы бромомолибденовой кислоты H3(MoO3Br3).
Достоверно известен лишь диодид молибдена Mol2. Получается он взаимодействием паров йода с металлом выше 1000°С:
Другие йодиды молибдена неизвестны.
Сера не реагирует с молибденом до температуры 400 - 450°С, при более высокой температуре образуется дисульфид молибдена MoS2:
Сероводород реагирует с молибденом при высокой температуре, образуя MoS2. В парах хлоридов серы образуются сульфохлориды молибдена.
Непрямыми методами были получены сульфиды молибдена MoS3, Mo2S5, Mo2S3. Первые два диссоциируют при температурах выше 400°С.
Помимо этих простых сульфидов известны также и полисульфид Mo(S2)2, тиомолибдаты Ме2MoS4. Высший сульфид MoS3 образуется при пропускании сероводорода через растворы молибдатов щелочных металлов:
Дисульфид молибдена - важнейший минерал молибдена. Он образуется в земной коре в высотемпературных условиях. Имеет сложную слоистую гексагональную кристаллическую решетку. Пары воды окисляют при красном калении. Кислоты-окислители разлагают, переводя его в, неокисляющие кислоты не действуют на него. Сульфиды щелочных металлов и щелочи разлагают при сплавлении.
С азотом молибден не реагирует, азот незначительно растворяется в молибдене. Нитриды молибдена добыты другим путем.
При температуре 400 - 745°С порошок молибдена реагирует с аммиаком с получением нитридов молибдена: МоN, Mo2N, в-фаза, содержащая 28% азота. Во всех трех фазах были установлены определенные кристаллические структуры. В вакууме при нагревании они легко разлагаются.
Нитриды, как и карбид Мо2С и бориды, являются соединениями, в которых валентные соотношения не сохранены. Мо3N и Mo2N относятся к так называемым фазам внедрения, в которых атом неметалла внедряется между атомами металла, при этом сохраняется кристаллическая структура последнего. МоN имеет более сложную структуру и не может быть отнесен к фазам внедрения.
С углеродом
Молибден с углеродом образует два карбида: Мо2С и МоС. Это очень твердые, тяжелые, тугоплавкие металлоподобные соединения. Они близки по свойствам к фазам внедрения, имеющим металлический характер (проводимость, внешний вид и т. п.), обусловливаемый особенностями их атомно-кристаллической структуры. Мо2С образуется при 2400°С. Это темно-серый порошок, получаемый обычно науглероживанием в твердой фазе смеси молибденового порошка и сажи при 1400- 1500°С. Может быть также получен науглероживанием накаленной молибденовой проволоки из газовой фазы или взаимодействием МоО3 с СО и углеводородами. МоС плавится при 2650°С. Карбиды молибдена, благодаря своей твердости и тугоплавкости, играют важную роль в инструментальной и других отраслях современной техники.
Молибден образует с окисью углерода под высоким давлением гексакарбонил Мо (СО)6. Он диссоциирует при 150°С. Это ромбоэдрические белые кристаллы, возгоняющиеся при пониженном давлении и комнатной температуре, растворимые в эфире и бензоле. С органическими основаниями образует комплексы. При разложении Мо(СО)6 в зависимости от условий образуется металлическое зеркало или порошок из мелких гранул молибдена.
С кислородом
Литой и плотно спеченный слиток молибдена при нормальной и несколько повышенной температуре стоек к действию кислорода и воздуха. При нагревании до темно-красного каления поверхность металла быстро тускнеет и при 600°С молибден загорается выделяя дым - возгон МоО3. Налет окисла легко разрушается и при длительном нагревании происходит полное сгорание металла до МоО3.
Молибденовый порошок окисляется при более низкой температуре, а мелкодисперсный порошок молибдена может самовозгораться на воздухе или в токе кислорода.
Рассмотрим ряд оксидов молибдена. Для молибдена были идентифицированы оксиды с химической формулой МоО3, и МоО2. Ковалентность молибдена в оксидах равна 3 и 2. Кроме того, получены оксиды промежуточного между МоО3 и МоО2 состава: Мо8О23, Мо9О26, Мо4О11, Мо17О47. характер связи в оксидах в основном ионный, частично ковалентный.
МоО и Мо2О3 не выделены в свободном состоянии, хотя ранее в литературе и упоминалось о их выделении. Рентгенографически идентифицирована фаза, содержащая кислород в количестве, соответствующему составу Мо3О. оксид МоО2 более тугоплавок и термодинамически устойчив чем оксид МоО3.
Поскольку молибден относится к металлам, то его оксиды должны проявлять основные свойства. Но оксиды МоО3, и МоО2 проявляют не основные свойства, а кислотные. Они дают ряд соединений общей формулой Н2МоО4 и Н2МоО3. основные свойства проявляет оксид Мо2О3.
МоО3 характерен гидрат состава Н2МоО4 и Н2МоО4 ЧН2О. Н2МоО4 - белые мелкие кристаллы гексагональной формы. Дигидрат Н2МоО4 Ч Н2О образуется при стоянии подкисленного раствора молибдатов в течении нескольких недель, а также при внесении затравки Н2МоО4 Ч Н2О в сильно подкисленный раствор парамолибдата аммония. Н2МоО4 - молибденовая кислота, кислота средней силы, например, она более сильная чем угольная кислота и вытесняет ее из ее солей:
Гидраты окислов с валентностью металла между VI и IV получены в виде соединений МоО(ОН)3 и Мо(ОН)5. сила этих электролитов очень слабая, они малорастворимы в воде.
МоО2 характерен гидрат состава Н2МоО3, который в свободном состоянии не выделен, выделен только в растворах, также получены его соединения состава Ме2МоО3. слабый электролит.
Также при действии аммиака на растворы молибдатов получен Мо(ОН)3 - аморфный порошок черного цвета, не растворим в воде и растворах щелочей, легко растворяется в минеральных кислотах и при отсутствии окислителей дает ионы Мо+3.
Рассмотрим свойства Н2МоО4
Молибденовая кислота реагирует при повышенной температуре с оксидами, гидроксидами, карбонатами щелочных и щелочноземельных металлов давая соответствующие молибдаты.
Состояние молибденовой кислоты в растворах зависит от кислотности и разбавлености последних. При большом разбавлении (<10-4 моль/л, РН>6,5) молибденовая кислота находится в растворе в виде простых молекул. В более концентрированных растворах и при РН меньше шести: РН<6 происходит полимеризация молекул. Степень сложности образованных комплексов также зависит от температуры.
Рассмотрим свойства Мо(ОН)3
Сухой Мо(ОН)3 - это аморфный порошок, не растворимый в воде и растворах щелочей. Он проявляет основные свойства. Легко растворяется в растворах минеральных кислот, при этом образуются соли Мо3+.
Экологическое влияние отходов молибденовой промышленности
При переработке молибденовых руд большое количество молибдена теряется на разных этапах переработки сырья. При этом возможно как отравление персонала работающего на предприятии так и негативное влияние на природу.
Токсичность молибдена проявляется при поступлении молибдена более 15 мг в сутки. При поступлении таких количеств молибдена наблюдаются следующие симптомы:
· истощение, токсикоз;
· подагра (при сопутствующем дефиците кальция);
· нарушение функций иммунитета;
· изменение функций костного мозга, тимуса, селезенки;
· хронический профессиональный молибденоз (повышение содержания мочевой кислоты и молибдена в сыворотке крови, артрозы, гипотония, анемия и лейкопения, желудочно-кишечные заболевания, атаксия, резкие нарушения обмена веществ).
«молибденовая подагра» (болезнь Ковальского), которая часто встречается в Армении.
При поступлении молибдена в больших количествах он усваивается растениями, растения содержат молибден в листьях и побегах. При этом они становятся токсичны. Растения имеют свойство извлекать и концентрировать молибден в зеленой массе, поэтому его содержание в ней будет выше, чем в почве. Это приведет к отравлению молибденом животных. Поэтому отвалы после переработки молибденовых руд следует покрывать слоем земли для упреждения разноса ветром породы. Также такие отвалы следует изолировать от грунтовых вод, поскольку молибден может просачиваться в грунтовые воды и отравлять их.
Гидроксиды d-металлов получали химическим осаждением из 0,5 М и растворов соответствующих хлоридов металлов и 1,5 М растворов гидроксида натрия, при этом протекала реакция MeCln + nNaOH = Me(OH)nv + nNaCl...
Влияние соединений d-металлов на скорость диссоциации молекулы воды в биполярной мембране
Для выделения частиц гидроксидов переходных металлов из полидисперсного порошка, полученного измельчением в фарфоровой ступке, использовалась разработанная при выполнении данной работы лабораторная установка (рисунок 4)...
Влияние соединений d-металлов на скорость диссоциации молекулы воды в биполярной мембране
Использование разработанной в данной работе лабораторной установки для фракционирования частиц гидроксидов позволяет выделять фракции частиц с диаметром менее 5 мкм (рисунок 10...
Задача осуществления прививочной полимеризации тетрафторэтилена
На палладиевом катализаторе тетрафторэтилен присоединяет водород с образованием 1,1,1,2 -- тетрафторэтана. При освещении актиничным светом тетрафторэтилен подвергается галогенированию...
Получение фосфорнокислого цинка
Цинк - химически активный металл, обладает выраженными восстановительными свойствами, по активности уступает щелочно-земельным металлам. Проявляет амфотерные свойства. Стандартный электродный потенциал - 0,76 В...
Практическое применение и свойства неодима
Неодим - активный металл, по своему поведению при реакциях похож на лантан. Во влажном воздухе он покрывается оксидно-гидроксидной пленкой. 4Nd + 6H2O + 3O2 > 4Nd(OH)3. Неодим пассивируется в холодной воде, не реагирует со щелочами и этанолом...
Расчет процесса электролиза цинка из сульфатного раствора
Цинк является довольно активным металлом. Он легко взаимодействует с кислородом, галогенами, серой и фосфором: 2 Zn + О2 = 2 ZnО (оксид цинка); (1) Zn + Сl2 = ZnСl2 (хлорид цинка); (2) Zn + S = ZnS (сульфид цинка); (3) 3 Zn + 2 Р = Zn3Р2 (фосфид цинка)...
При плавлении разлагается (tпл = 1450?С). Растворимость CaSO4 повышается в присутствии MgCl2, NaCl, HNO3, HCl. Реагирует с концентрированной серной кислотой, восстанавливается углеродом при спекании...
Тригалогениды галлия
Химические свойства и область применения полиэтилентерефталата
Полиэтилентерефталат имеет высокую химическую стойкость к бензину, маслам, жирам, спиртам, эфиру, разбавленным кислотам и щелочам. Полиэтилентерефталат не растворим в воде и многих органических растворителях...
Химические свойства простых циклических эфиров на примере этилоксирана
Благодаря особенностям молекулярной структуры, окись этилена является весьма реакционноспособным соединением и легко вступает в реакции с различными соединениями с разрывом C-O связи и раскрытием цикла...
Химия элементов: молибден
МОЛИБДЕН - (Molybdenum), Mo - химический элемент 6 (VI Б) группы периодической системы, атомный номер 42, атомная масса 95,94. Известен 31 изотоп молибдена с 83Мо по 113Мо. Из них стабильные: 92Мо, 94Мо - 98Мо. Шесть этих изотопов и 100Мо (ТЅ = 1...
