Гладкая эндоплазматическая сеть осуществляет в клетке. Гладкая Эндоплазматическая сеть

Эндоплазматический ретикулум один из важнейших органоидов в эукариотической клетке. Его второе название эндоплазматическая сеть. ЭПС бывает двух разновидностей: гладкая (агранулярная) и шероховатая (гранулярная). Чем более активный обмен веществ в клетке, тем большее там количество ЭПС.

Строение

Это обширный лабиринт из каналов, полостей, везикул, "цистерн", которые тесно связаны и сообщаются друг с другом. Этот органоид покрыт мембраной, которая сообщается как с цитоплазмой, так и с клеточной наружной мембраной. Объем полостей различный, но все они содержат гомогенную жидкость, которая позволяет осуществлять взаимодействие между ядром клетки и внешней средой. Иногда имеются ответвления от основной сети в виде одиночных пузырьков. Шероховатая ЭПС отличается от гладкой наличием на внешней поверхности мембраны большого количества рибосом.

Функции

  • Функции агранулярной ЭПС. Она принимает участие в образовании стероидных гормонов (например, в клетках коры надпочечников). ЭПС, содержащаяся в клетках печени, участвует в разрушении некоторых гормонов, лекарственных препаратов и вредных веществ, и в процессах преобразования глюкозы, которая образуется из гликогена. Также агранулярная сеть производит фосфолипиды, необходимые для строительства мембран всех типов клеток. А в ретикулуме клеток мышечной ткани происходит депонирование ионов кальция, необходимых для сокращения мышц. Такой вид гладкой эндоплазматической сети по-другому называют саркоплазматическим ретикулумом.
  • Функции гранулярной ЭПС. Прежде всего в гранулярном ретикулуме происходит производство белков, которые впоследствии будут выведены из клетки (например, синтез продуктов секреции железистых клеток). А также в шероховатой ЭПС проходит синтез и сборка фосфолипидов и многоцепочечных белков, которые затем транспортируются в аппарат Гольджи.
  • Общими функциями, как для гладкого эндоплазматического ретикулума, так и для шероховатого является разграничительная функция. За счет этих органоидов клетка делится на компартменты (отсеки). И дополнительно эти органеллы являются транспортерами веществ из одной части клетки в другую.

В области нексуса (длиной 0,5 – 3 мкм) плазмолеммы сближаются на расстояние 2 нм и пронизываются многочисленными белковыми каналами (коннексонами), связывающими содержимое соседних клеток. Через эти каналы (диаметром 2 нм) могут диффундировать ионы и небольшие молекулы. Характерно для мышечных тканей.

Синапсы - это области передачи сигнала от одной возбудимой клетки другой. В синапсе различают пресинаптическую мембрану (принадлежащую одной клетке),синаптическующель и постсинаптическую мембрану (ПоМ) (часть плазмолеммы другой клетки). Обычно сигнал передаётся химическим веществом - медиатором, воздействующим на специфические рецепторы в ПоМ. Характерны для нервной ткани.

Мембранных органеллы:

Эндоплазматическая сеть (ЭПС) - впервые в эндоплазме фибробласта обнаружил Портер, делится на два типа - гранулярную и агранулярную (или гладкую).

Гранулярная ЭПС представляет собой совокупность плоских мешков (цистерн), вакуолей и трубочек, со стороны гиалоплазмы мембранная сеть покрыта рибосомами. В связи с этим, иногда используют другой термин - шероховатый ретикулум. На рибосомах гранулярной ЭПС синтезируются такие белки, которые затем либо выводятся из клетки (экспортные белки),
либо входят в состав определённых мембранных структур (собственно мембран, лизосом и т.д.).

Функции гранулярной ЭПС :

1) синтез на рибосомах пептидных цепей экспортируемых, мембранных, лизосомных и т.п. белков,

2) изоляция этих белков от гиалоплазмы внутри мембранных полостей и концентрирование их здесь,

3) химическая модификация этих белков, а также связывание их с УВ или др. компонентами

4) их транспорт (внутри ЭПС и с помощью отдельных пузырьков).

Таким образом, наличие в клетке хорошо развитой гранулярной ЭПС свидетельствует о высокой интенсивности белкового синтеза - особенно в отношении секреторных белков.

Гладкая ЭПС в отличие от гранулярной лишена рибосом. Выполняет функции:

1)синтез углеводов, липидов, стероидных гормонов (поэтому она хорошо выражена в клетках синтезирующих эти гормоны н-р, в коре надпочечников, гонад);

2)дезинтоксикация ядовитых веществ (хорошо выражена в клетках печени, особенно после отравлений), депонирование ионов кальция в цистернах (в скелетной и сердечной мышечной ткани, после высвобождения стимулируют сокращение) и транспорт синтезированных веществ.

Комплекс Гольджи (впервые эту органеллу обнаружил Камилло Гольджи в 1898 г в виде зачерненной серебром сети) - это скопление 5-10 лежащих друг на друге плоских мембранных цистерн, от которых отшнуровываются мелкие пузырьки. Каждое такое скопление называется диктиосомой. В клетке может быть много диктиосом, соединённых с ЭПС и друг с другом цистернами и трубочками. По положению и функции, в диктиосомах различают 2 части: проксимальная (cis-) часть обращена к ЭПС. Противоположная часть называется дистальной (trans-). При этом к проксимальной части мигрируют пузырьки от гранулярной ЭПС, обрабатываемые" в диктиосоме белки постепенно перемещаются от проксимальной части к дистальной и, наконец, от дистальной части отпочковываются секреторные пузырьки и первичные лизосомы.


Функции комплекса Гольджи :

1) сегрегация (отделение) соответствующих белков от гиалоплазмы и концентрирование их,

2) продолжение химической модификации этих белков, н-р связывание с УВ.

3) сортировка данных белков на лизосомальные, мембранные и экспортные,

4)включение белков в состав соответствующих структур (лизосом, секреторных пузырьков, мембран).

Лизосомы (Дедюв в 1949 г.) - это мембранные пузырьки, содержащие ферменты гидролиза биополимеров, они образуются, отпочковываясь от цистерн комплекса Гольджи. Размеры - 0,2-0,5 мкм. Функция лизосом - внутриклеточное переваривание макромолекул. Причём, в лизосомах разрушаются как отдельные макромолекулы (белки, полисахориды и т.д.),
так и целые структуры - органеллы, микробные частицы и пр.

Различают 3 типа лизосом , которые представлены на электронограмме.

Первичные лизосомы - данные лизосомы имеют гомогенное содержимое.

Очевидно, это вновь образованные лизосомы с исходным раствором ферментов (около 50 различных гидролитических ферментов). Маркерный фермент - кислая фосфатаза.

Вторичные лизосомы образуются либо путём слияния первичных лизосом с пиноцитозными или фагоцитозными вакуолями,
либо путём захвата собственных макромолекул и органелл клетки. Поэтому вторичные лизосомы обычно больше по размеру первичных,
а их содержимое часто является неоднородным: например, в нём обнаруживаются плотные тельца. При наличии таковых говорят о фаголизосомах (гетерофагосомах) или аутофагосомах (если данные тельца - фрагменты собственных органелл клетки). При различных повреждениях клетки количество аутофагосом обычно возрастает.

Телолизосомы или остаточные (резидуальные) тельца , появляются тогда,

когда внутрилизосомальное переваривание не приводит к полному разрушению захваченных структур. При этом непереваренные остатки (фрагменты макромолекул, органелл и других частиц) уплотняются,
в них часто откладывается пигмент, а сама лизосома во многом теряет свою гидролитическую активность. В неделящихся клетках накопление телолизосом становится важным фактором старения. Так, с возрастом в клетках мозга, печени и в мышечных волокнах накапливаются телолизосомы с т.н. пигментом старения - липофусцином.

Пероксисомы видимо, как и лизосомы, образуются путём отшнуровывания мембранных пузырьков от цистерн комплекса Гольджи. Обнаруживаются в большом количестве в клетках печени. Однако пероксисомы содержат иной набор ферментов. В основном, это оксидазы аминокислот. Они катализируют прямое взаимодействие субстрата с кислородом причём, последний превращается в пероксид водорода, Н 2 О 2 - опасный для клетки окислитель.

Поэтому пероксисомы содержат и каталазу - фермент, разрушающий Н 2 О 2 до воды и кислорода. Иногда в пероксисомах обнаруживается кристаллоподобная структура (2) - нуклеоид.

Митохондрии - (в конце прошлого века Альтман избирательно окрасил их кислым фуксином) имеют две мембраны - наружную и внутреннюю - из которых вторая образует многочисленные впячивания (кристы ) в матрикс митохондрии. Митохондрии отличаются от прочих органелл ещё двумя интересными особенностями. Они содержат собственную ДНК - от 1 до 50 небольших одинаковых циклических молекул. Кроме того, митохондрии содержат собственные рибосомы , которые по размеру несколько меньше цитоплазматических рибосом и видны как мелкие гранулы. б) Данная система автономного синтеза белков обеспечивает образование примерно 5 % митохондриальных белков. Остальные белки митохондрий кодируются ядром и синтезируются цитоплазматическими рибосомами.

Главная функция митохондрий - завершение окислительного распада питательных веществ и образование за счёт выделяющейся при этом энергии АТФ - временного аккумулятора энергии в клетке.

2. Наиболее известны 2 процесса. –

а) Цикл Кребса - аэробное окисление веществ, конечными продуктами которого являются СО2, выходящий из клетки и НАДН - источник электроноа переносимых дыхательной цепью.

б) Окислительное фосфорилирование - образование АТФ в ходе переноса электронов (и протонов) на кислород.

Перенос электронов производится по цепи промежуточных переносчиков (т.н. дыхательной цепи), которая вмонтирована в кристы митохондрий.
Здесь же находится и система синтеза АТФ (АТФ-синтетаза, которая сопрягает окисление и фосфорилирование АДФ до АТФ). В результате сопряжения этих процессов, энергия, освобождаемая при окислении субстратов, хранится в макроэргических связях АТФ и в дальнейшем обеспечивает выполнение многочисленных функций клеток (н-р, мышечное сокращение). При заболеваниях в митохондриях происходит разобщение окисления и фосфорилирования, в результате энергия образуется в виде тепла.

в) Другие процессы, проходящие в митохондриях: синтез мочевины,
распад жирных кислот и пирувата до ацетил-КоА.

Вариабельность структуры митохондрий. В мышечных волокнах, где потребности в энергии особенно велики, митохондрии содержат
большое количество плотно расположенных пластинчатых (ламинарных) крист. В клетках печени количество крист в митохондриях значительно меньше. Наконец, в клетках коры надпочечников кристы имеют тубулярную структуру и выглядят на срезе как мелкие везикулы.

К немембранным органеллам относят:

Рибосомы - образуются в ядрышке ядра. В 1953 г. их обнаружил Паладе, в 1974 г. ему была присуждена нобелевская премия. Рибосомы состоят из малой и большой субъединиц, имеют размеры 25х20х20 нм, включают рибосомные РНК и рибосомные белки. Функция - синтез белка. Рибосомы могут либо располагаться на поверхности мембран гранулярной ЭПС, либо свободно располагаться в гиалоплазме, образуя скопления - полисомы. Если в клетке хорошо развита гр. ЭПС, то она синтезирует белки на экспорт (н-р, фибробласт), если в клетке слабо развита ЭПС и много свободных рибосом и полисом, то эта клетка малодифф-я и синтезирует белки для внутреннего употребления. Области цитоплазмы богатые рибосомами и гр. ЭПС дают + р-цию на РНК при окраске по Браше (РНК окрашив-ся пиронином в розовый цвет).

Филаменты - это фибриллярные структуры клетки. Существует 3 вида филаментов: 1) микрофиламенты - это тонкие нити, образованные глобулярным белком актином (диаметром 5-7 нм) образуют в клетках более или менее густую сеть. Как видно на снимке, основное направление пучков микрофиламентов (1) - вдоль длинной оси клетки. 2) второй тип филаментов называют миозиновыми филаментами (диаметр 10-25 нм) в мышечных клетках они тесно связаны с актиновыми филаментами, образуя мифибриллу. 3) филаменты третьего типа называются промежуточными их диаметр 7-10 нм. Не принимают непосредственного участия в механизмах сокращения, а могут влиять на форму клеток (скапливаясь в тех или иных местах и, образуя опору для органелл, часто собираются в пучки, образуя фибриллы). Промежуточные филаменты имеют тканеспецифическую природу. В эпителии они образованы белком кератином, в клетках соединительной ткани - виментином, в гладких мышечных клетках - десмином, в нервных клетках (приведённых на снимке) они называются нейрофиламентами и тоже образованы особым белком. По характеру белка, можно определить из какой ткани развилась опухоль (если в опухоли обнаружен кератин, то она имеет эпителиальную природу, если виметин - соединительнотканную).

Функции филаментов - 1) образуют цитоскелет 2) участвуют во внутриклеточном движении (перемещении митохондрий, рибосом, вакуолей, втягивание цитолеммы при фагоцитозе 3) участвуют в амебовидном движении клеток.

Микроворсинки - производные плазмолеммы клеток длиной около 1 мкм, диаметром около 100 нм, в их основе имеются пучки микрофиламентов. Функции : 1) увеличивают поверхность клеток 2) в кишечном и почечном эпителии выполняют функцию всасывания.

Микротрубочки тоже образуют в клетке густую сеть. Сеть
начинается от перинуклеарной области (от центриоли) и
радиально распространяется к плазмолемме. В том числе микротрубочки идут вдоль длинной оси отростков клеток.

Стенка микротрубочки состоит из одного слоя глобулярных субъединиц белка тубулина. На поперечном срезе - 13 таких субъединиц, образуют кольцо. В неделящейся (интерфазной) клетке создаваемая микротрубочками сеть играет роль цитоскелета, поддерживающего форму клетки, а также играют роль направительных структур при транспорте веществ. При этом транспорт веществ идёт не через микротрубочки, а по перитубулярному пространству. В делящихся же клетках сеть микротрубочек перестраивается и формирует т.н. веретено деления. Оно связывает хроматиды хромосом с центриолями и способствуют правильному расхождению хроматид к полюсам делящейся клетки.

Центриоли. Кроме цитоскелета, микротрубочки образуют центриоли.
Состав каждой из них отражается формулой: (9 х 3) + 0 . Центриоли располагаются парой - под прямым углом друг к другу. Такая структура называется диплосомой. Вокруг диплосом - т.н. центросфера, зона более светлой цитоплазмы в ней содержатся дополнительные микротрубочки. Вместе диплосома и центросфера называются клеточным центром. В неделящейся клетке - одна пара центриолей. Образование новых центриолей (при подготовке клетки к делению) происходит путём дупликации (удвоения): каждая центриоль выступает в качестве матрицы, перпендикулярно которой формируется (путём полимеризации тубулина) новая центриоль. Поэтому, как в ДНК, в каждой диплосоме одна центриоль является родительской, а вторая - дочерней.

Эндоплазматический ретикулум (ЭПР), также называемый эндоплазматической сетью, является важной эукариотических клеток. Он играет ведущую роль в производстве, переработке и транспортировке белков и липидов. ЭПР производит трансмембранные белки и липиды для своей мембраны, а также для многих других клеточных компонентов, включая , секреторные везикулы, и растительных клеток.

Эндоплазматический ретикулум представляет собой сеть канальцев и сплющенных мешочков, которые выполняют множество функций в и . Существуют две части ЭПР, которые различаются как по структуре, так и по функциям. Одна часть называется гранулярной (шерховатой) ЭПР, потому что она имеет рибосомы, прикрепленные к цитоплазматической стороне мембраны. Другая часть называется агранулярной (гладкой) ЭПР, так как ей не хватает прикрепленных рибосом.

Обычно гладкая ЭПР представляет собой трубопроводную сеть, а шерховатая ЭПР состоит из серии сплющенных мешочков. Пространство внутри ЭПР называется просветом. Эндоплазматическая сеть обширно простирается от клеточной мембраны через и образует непрерывную связь с ядерной оболочкой. Поскольку ЭПР связан с ядерной оболочкой, просвет и пространство внутри ядерной оболочки являются частью одного и того же отсека.

Гранулярная эндоплазматическая сеть

Гранулярный (шерховатый) эндоплазматический ретикулум производит мембраны и секреторные белки. Рибосомы, прикрепленные к гранулярной ЭПР, синтезируют белки в процессе трансляции. В некоторых лейкоцитах (белых кровяных клетках) шероховатый ЭПР продуцирует антитела. В клетках поджелудочной железы он продуцирует инсулин.

Гранулярный и агранулярный ЭПР, как правило, взаимосвязаны, а белки и мембраны, продуцируемые шероховатым ЭПР, перемещаются в гладкий ЭПР. Некоторые белки отправляются на аппарат Гольджи специальными транспортными везикулами. После того, как белки были модифицированы в Гольджи, они транспортируются в надлежащие пункты назначения внутри или экспортируются из клетки путем .

Агранулярная эндоплазматическая сеть

Агранулярный (гладкий) эндоплазматический ретикулум обладает широким спектром функций, включая синтез углеводов и липидов. Липиды, такие как фосфолипиды и холестерин, необходимы для создания клеточных мембран. Гладкий ЭПР также служит переходной областью для везикул, которые транспортируют продукты эндоплазматической сети в различные пункты назначения.

В клетках печени агранулярный ЭПР продуцирует ферменты, помогающие детоксифицировать определенные соединения. В мышцах он помогает в сокращении мышечных клеток, а в клетках мозга синтезирует мужские и женские гормоны.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Немного истории

Клетка считается наименьшей структурной единицей любого организма, однако и она также из чего-то состоит. Одним из её компонентов и является эндоплазматическая сеть. Более того, ЭПС является обязательной составляющей любой клетки в принципе (кроме некоторых вирусов и бактерий). Открыта она американским учёным К. Портером ещё в 1945 году. Именно он заметил системы канальцев и вакуолей, которые как бы скопились вокруг ядра. Также Портером было замечено, что размеры ЭПС в клетках разных существ и даже органов и тканей одного организма не аналогичны друг другу. Он пришёл к выводу о том, что это связано с функциями той или иной клетки, степенью её развития, а также стадией дифференцировки. Например, у человека очень хорошо развита ЭПС в клетках кишечника, слизистых и надпочечников.

Понятие

ЭПС - система канальцев, трубочек, пузырьков и мембран, которые расположены в цитоплазме клетки.

Эндоплазматическая сеть: строение и функции

Строение

Во-первых, это транспортная функция. Как и цитоплазма, эндоплазматическая сеть обеспечивает обмен веществ между органоидами. Во-вторых, ЭПС совершает структурирование и группировку содержимого клетки, разбивая его на определённые секции. В-третьих, важнейшей функцией является синтез белка, который осуществляется в рибосомах шероховатой эндоплазматической сети, а также синтез углеводов и липидов, который происходит на мембранах гладкой ЭПС.

Строение ЭПС

Всего существует 2 типа эндоплазматической сети: зернистая (шероховатая) и гладкая. Функции, выполняемые данной составляющей, зависят именно от типа самой клетки. На мембранах гладкой сети находятся отделы, вырабатывающие ферменты, которые затем участвуют в обмене веществ. Шероховатая эндоплазматическая сеть содержит на своих мембранах рибосомы.

Краткая информация о других наиболее важных составляющих клетки

Цитоплазма: строение и функции

Изображение Строение Функции

Является жидкостью в клетке. Именно в ней находятся все органоиды (в том числе и аппарат Гольджи, и эндоплазматическая сеть, и многие другие) и ядро с его содержимым. Относится к обязательным компонентам и не является органоидом как таковым. Основной функцией является транспортная. Именно благодаря цитоплазме происходит взаимодействие всех органоидов, их упорядочение (складываются в единую систему) и протекание всех химических процессов.

Клеточная мембрана: строение и функции

Изображение Строение Функции

Молекулы фосфолипидов и белков, образуя два слоя, составляют мембрану. Она представляет собой тончайшую плёнку, окутывающую всю клетку. Неотъемлемым ее компонентом также являются полисахариды. А у растений снаружи она ещё покрыта тонким слоем клетчатки.

Основной функцией клеточной мембраны является ограничение внутреннего содержимого клетки (цитоплазмы и всех органоидов). Поскольку в ней содержатся мельчайшие поры, она обеспечивает транспорт и обмен веществ. Может также являться катализатором при осуществлении каких-то химических процессов и рецептором при возникновении внешней опасности.

Ядро: строение и функции

Изображение Строение Функции

Имеет либо овальную, либо шаровидную форму. Содержит в себе особые молекулы ДНК, которые в свою очередь несут наследственную информацию всего организма. Само ядро снаружи покрыто особой оболочкой, в которой есть поры. Содержит также ядрышки (небольшие тельца) и жидкость (сок). Вокруг этого центра и располагается эндоплазматическая сеть.

Именно ядром регулируются абсолютно все процессы, происходящие в клетке (обмен веществ, синтез и т.д.). И именно этот компонент является основным носителем наследственной информации всего организма.

В ядрышках происходит синтез белка и молекул РНК.

Рибосомы

Являются органоидами, обеспечивающими основной синтез белка. Могут находиться как в свободном пространстве цитоплазмы клетки, так и в комплексе с другими органоидами (эндоплазматическая сеть, например). Если рибосомы расположены на мембранах шероховатой ЭПС (находясь на наружных стенках мембран, рибосомы создают шероховатости), эффективность синтеза белка возрастает в несколько раз. Это было доказано многочисленными научными экспериментами.

Комплекс Гольджи

Органоид, состоящий из некоторых полостей, постоянно выделяющих различных размеров пузырьки. Накопленные вещества также использует для нужд клетки и организма. Комплекс Гольджи и эндоплазматическая сеть нередко расположены рядом.

Лизосомы

Органоиды, окружённые специальной мембраной и выполняющие пищеварительную функцию клетки, называются лизосомами.

Митохондрии

Органоиды, окружённые несколькими мембранами и выполняющие энергетическую функцию, то есть обеспечивающие синтез молекул АТФ и распределяющие полученную энергию по клетке.

Пластиды. Виды пластидов

Хлоропласты (функция фотосинтеза);

Хромопласты (накапливание и сохранение каротиноидов);

Лейкопласты (накапливание и хранение крахмала).

Органоиды, предназначенные для передвижения

Они также совершают какие-то движения (жгутики, реснички, длинные отростки и т.п.).

Клеточный центр: строение и функции

Строение эндоплазматической сети

Определение 1

Эндоплазматическая сеть (ЭПС, эндоплазматический ретикулум) – сложная ультрамикроскопическая, очень разветвлённая, взаимосвязанная система мембран, которая более или менее равномерно пронизывает массу цитоплазмы всех эукариотических клеток.

ЭПС – мембранная органелла, состоящая из плоских мембранных мешочков – цистерн, каналов и трубочек. Благодаря такому строению эндоплазматическая сеть значительно увеличивает площадь внутренней поверхности клетки и делит клетку на секции. Внутри она заполнена матриксом (умеренно плотный рыхлый материал (продукт синтеза)). Содержание различных химических веществ в секциях неодинаково, потому в клетке как одновременно, так и в определённой последовательности могут происходить различные химические реакции в незначительном объёме клетки. Эндоплазматическая сеть открывается в перинуклеарное пространство (полость между двумя мембранами кариолемы).

Мембрана эндоплазматической сети состоит из белков и липидов (в основном фосфолипидов), а так же ферментов: аденозинтрифосфатазы и ферментов синтеза мембранных липидов.

Различают два вида эндоплазматической сети:

  • Гладкую (агранулярную, аЭС), представленную трубочками, которые анастамозируют между собой и не имеют на поверхности рибосом;
  • Шероховатую (гранулярную, грЭС), состоящую так же из соединённых между собой цистерн, но они покрыты рибосомами.

Замечание 1

Иногда выделяют ещё переходящую, или транзиторную (тЭС) эндоплазматическую сеть, которая находится в участке перехода одной разновидности ЭС в другую.

Гранулярная ЭС свойственна всем клеткам (кроме сперматозоидов), но степень её развития разная и зависит от специализации клетки.

Сильно развита грЭС эпителиальных железистых клеток (поджелудочной железы, вырабатывающих пищеварительные ферменты, печени – синтезирующих альбумины сыворотки крови), фибробластов (клеток соединительной ткани, продуцирующих белок коллаген), плазматических клеток (продуцирование иммуноглобулинов).

Агранулярная ЭС преобладает в клетках надпочечников (синтез стероидных гормонов), в клетках мышц (обмен кальция), в клетках фундальных желез желудка (выделение ионов хлора).

Другим видом мембран ЭПС являются разветвлённые мембранные трубочки, содержащие внутри большое количество специфических ферментов, и везикулы – маленькие, окружённые мембраной пузырьки, в основном находящиеся рядом с трубочками и цистернами. Они обеспечивают перенесение тех веществ, которые синтезируются.

Функции ЭПС

Эндоплазматическая сеть – это аппарат синтеза и, частично, транспорта веществ цитоплазмы, благодаря которому клетка выполняет сложные функции.

Замечание 2

Функции обоих типов ЭПС связаны с синтезом и транспортом веществ. Эндоплазматическая сеть является универсальной транспортной системой.

Гладкая и шероховатая эндоплазматические сети своими мембранами и содержимым (матриксом) выполняют общие функции:

  • разделительную (структурирующую), благодаря чему цитоплазма упорядоченно распределяется и не смешивается, а так же предотвращает попадание в органеллу случайных веществ;
  • трансмембранное транспорт, благодаря которому осуществляется перенесение сквозь стенку мембраны необходимых веществ;
  • синтез липидов мембраны с участием ферментов, содержащихся в самой мембране и обеспечивающих репродукцию эндоплазматической сети;
  • благодаря разнице потенциалов, возникающая между двумя поверхностями мембран ЭС возможно обеспечение проведения импульсов возбуждения.

Кроме того, каждой из разновидностей сети свойственны свои специфические функции.

Функции гладкой (агранулярной) эндоплазматической сети

Агранулярная эндоплазматическая сеть, кроме названных функций, общих для обоих видов ЭС, выполняет ещё и свойственные только для неё функции:

  • депо кальция . Во многих клетках (в скелетных мышцах, в сердце, яйцеклетках, нейронах) существуют механизмы, способные изменять концентрацию ионов кальция. Поперечнополосатая мышечная ткань содержит специализированную эндоплазматическую сеть, называемую саркоплазматическим ретикулумом. Это резервуар кальций-ионов, а мембраны этой сети содержат мощные кальциевые помпы, способные выбрасывать в цитоплазму большое количество кальция или транспортировать его в полости каналов сети за сотые доли секунды;
  • синтез липидов , веществ типа холестерина и стероидных гормонов. Стероидные гормоны синтезируются в основном в эндокринных клетках половых желез и надпочечников, в клетках почек и печени. Клетки кишечника синтезируют липиды, которые выводятся в лимфу, а потом в кровь;
  • детоксикационная функция – обезвреживание єкзогенных и эндогенных токсинов;

    Пример 1

    В почечных клетках (гепатоцитах) содержатся ферменты оксидазы, способные разрушать фенобарбитал.

    ферменты органеллы берут участие в синтезе гликогена (в клетках печени).

Функции шероховатой (гранулярной) эндоплазматической сети

Для гранулярной эндоплазматической сети, кроме перечисленных общих функций, свойственны ещё и специальные:

  • синтез белков на грЭС имеет некоторые особенности. Начинается он на свободных полисомах, которые в дальнейшем связываются с мебранами ЭС.
  • Гранулярная эндоплазматическая сеть синтезирует: все белки клеточной мембраны (кроме некоторых гидрофобных белков, белков внутренних мембран митохондрий и хлоропластов), специфические белки внутренней фазы мембранных органелл, а так же секреторные белки, которые транспортируются по клетке и поступают во внеклеточное пространство.
  • пострансляционная модификация белков : гидроксилирование, сульфатирование, фосфориллирование. Важным процессом является гликозилирование, которое происходит под действием связанного с мембраной фермента гликозилтранферазы. Гликозилирование происходит перед секрецией или транспортом веществ к некоторым участкам клетки (комплексу Гольджи, лизосомам или плазмолемме).
  • транспорт веществ по внутримембранной части сети. Синтезированные белки по промежуткам ЭС перемещаются к комплексу Гольджи, который выводит вещества из клетки.
  • благодаря участию гранулярной эндоплазматической сети образуется комплекс Гольджи.

Функции зернистой эндоплазматической сети связаны с транспортом белков, которые синтезируются в рибосомах и расположены на её поверхности. Синтезированные белки поступают внутрь ЭПС, скручиваются и приобретают третичную структуру.

Белок, который транспортируется к цистернам, значительно изменяется на своём пути. Он может, например, фосфорилироваться или превращаться в гликопротеид. Обычный путь для белка – это путь через зернистую ЭПС в аппарат Гольджи, откуда он или выходит наружу клетки, или поступает к другим органеллам той же клетки, например, к лизосомам), или откладывается в виде запасных гранул.

В клетках печени как зернистая, так и незернистая эндоплазматическая сетка берут участие в процессах детоксикации ядовитых веществ, которые потом выводятся из клетки.

Как и внешняя плазматическая мембрана, эндоплазматическая сетка имеет избирательную проницаемость, вследствие чего концентрация веществ внутри и снаружи каналов сетки неодинакова. Это имеет значение для функции клетки.

Пример 2

В эндоплазматической сетке мышечных клеток больше ионов кальция, чем в её цитоплазме. Выходя из каналов эндоплазматической сетки, ионы кальция запускают процесс сокращения мышечных волокон.

Образование эндоплазматической сети

Липидные компоненты мембран эндоплазматической сети синтезируются ферментами самой сети, белковый – поступает из рибосом, расположенных на её мембранах. В гладкой (агранулярной) эндоплазматической сети нет собственных факторов синтеза белка, потому считается, что эта органелла образуется в результате потери рибосом гранулярной эндоплазматической сетью.