Школьная энциклопедия. Термодинамические системы. Термодинамические параметры и процессы
Одна и та же система может находиться в различных состояниях. Каждое состояние системы характеризуется определенным набором значений термодинамических параметров. К термодинамическим параметрам относятся температура, давление, плотность, концентрация и т.п. Изменение хотя бы только одного термодинамического параметра приводит к изменению состояния системы в целом. При постоянстве термодинамических параметров во всех точках системы (объема) термодинамическое состояние системы называют равновесным .
Различают гомогенные и гетерогенные системы. Гомогенные системы состоят из одной фазы, гетерогенные – из двух или нескольких фаз. Фаза – это часть системы, однородная во всех точках по составу и свойствам и отделенная от других частей системы поверхностью раздела. Примером гомогенной системы может служить водный раствор. Но если раствор насыщен и на дне сосуда есть кристаллы солей, то рассматриваемая система – гетерогенна (есть граница раздела фаз). Другим примером гомогенной системы может служить простая вода, но вода с плавающим в ней льдом – система гетерогенная.
Для количественного описания поведения термодинамической системы вводят параметры состояния - величины, которые однозначно определяют состояние системы в заданный момент времени. Параметры состояния могут быть найдены только на основании опыта. Термодинамический подход требует, чтобы они могли быть измеримы опытным путём с помощью макроскопических приборов. Число параметров велико, однако не все из них имеют существенное значение для термодинамики. В простейшем случае любая термодинамическая система должна обладать четырьмя макроскопическими параметрами: массой M , объёмом V , давлением p и температурой T . Первые три из них определяются достаточно просто и хорошо известны из курса физики.
В XVII – XIX веках были сформулированы опытные законы идеальных газов. Кратко напомним их. Изопроцессы идеального газа – процессы, при которых один из параметров остаётся неизменным. 1. Изохорический процесс . Закон Шарля. V = const. Изохорическим процессом называется процесс, протекающий при постоянном объёме V . Поведение газа при этом изохорическом процессе подчиняется закону Шарля : При постоянном объёме и неизменных значениях массы газа и его молярной массы, отношение давления газа к его абсолютной температуре остаётся постоянным: P/Т = const. График изохорического процесса на РV -диаграмме называется изохорой . Полезно знать график изохорического процесса на РТ - и VT -диаграммах (рис. 1.6). Уравнение изохоры: где Р 0 – давление при 0 °С, a - температурный коэффициент давления газа равный 1/273 град -1 . График такой зависимости на Рt -диаграмме имеет вид, показанный на рисунке 1.7. Рис. 1.7 2. Изобарический процесс. Закон Гей-Люссака. Р = const. Изобарическим процессом называется процесс, протекающий при постоянном давлении Р . Поведение газа при изобарическом процессе подчиняется закону Гей-Люссака : При постоянном давлении и неизменных значениях массы и газа и его молярной массы, отношение объёма газа к его абсолютной температуре остаётся постоянным: V/T = const. График изобарического процесса на VT -диаграмме называется изобарой . Полезно знать графики изобарического процесса на РV - и РT -диаграммах (рис. 1.8). Рис. 1.8 Уравнение изобары: где a =1/273 град -1 - температурный коэффициент объёмного расширения . График такой зависимости на Vt диаграмме имеет вид, показанный на рисунке 1.9. Рис. 1.9 3. Изотермический процесс. Закон Бойля – Мариотта. T = const. Изотермическим процессом называется процесс, протекающий при постоянной температуре Т. Поведение идеального газа при изотермическом процессе подчиняется закону Бойля – Мариотта: При постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остаётся постоянным: PV = const. График изотермического процесса на РV -диаграмме называется изотермой . Полезно знать графики изотермического процесса на VT - и РT -диаграммах (рис. 1.10). Рис. 1.10 Уравнение изотермы:
4. Адиабатический процесс (изоэнтропийный): Адиабатический процесс – термодинамический процесс, происходящий без теплообмена с окружающей средой. 5. Политропический процесс. Процесс, при котором теплоёмкость газа остаётся постоянной. Политропический процесс – общий случай всех перечисленных выше процессов. 6. Закон Авогадро. При одинаковых давлениях и одинаковых температурах, в равных объёмах различных идеальных газов содержится одинаковое число молекул. В одном моле различных веществ содержится N A =6,02·10 23 молекул (число Авогадро). 7. Закон Дальтона. Давление смеси идеальных газов равно сумме парциальных давлений Р, входящих в неё газов: 8. Объединённый газовый закон (Закон Клапейрона). В соответствии с законами Бойля – Мариотта (1.4.5) и Гей-Люссака (1.4.3) можно сделать заключение, что для данной массы газа |
газовые смеси . В качестве примера можно назвать продукты сгорания топлива в двигателях внутреннего сгорания, топках печей и паровых котлов, влажный воздух в сушильных установках и т. п.
Основным законом, определяющим поведение газовой смеси, является закон Дальтона: полное давление смеси идеальных газов равно сумме парциальных давлений всех входящих в нее компонентов:
Парциальное давление pi - давление, которое имел бы газ, если бы он один при той же температуре занимал весь объем смеси.
Способы задания смеси. Состав газовой смеси может быть задан массовыми, объемными или мольными долями.
Массовой долей называется отношение массы отдельного компонента Мi , к массе смеси М:
Очевидно, что и .
Массовые доли часто задаются в процентах. Например, для сухого воздуха ; .
Объемная доля представляет собой отношение приведенного объема газа V, к полному объему смеси V: .
Приведенным называется объем, который занимал бы компонент газа, если бы его давление и температура равнялись давлению и температуре смеси.
Для вычисления приведенного объема запишем два уравнения состояния i -го компонента:
Первое уравнение относится к состоянию компонента газа в Смеси, когда он имеет парциальное давление pi и занимает полный объем смеси, а второе уравнение - к приведенному состоянию, когда давление и температура компонента равны, как и для смеси, р и Т. Из уравнений следует, что
Просуммировав соотношение (2.2) для всех компонентов смеси, получим с учетом закона Дальтона ,откуда . Объемные доли также часто задаются в процентах. Для воздуха , .
Иногда бывает удобнее задать состав смеси мольными долями. Мольной долей называется отношение количества молей Ni рассматриваемого компонента к общему количеству молей смеси N .
Пусть газовая смесь состоит из N1 молей первого компонента, N2 молей второго компонента и т. д. Число молей смеси , а мольная доля компонента будет равна .
В соответствии с законом Авогадро объемы моля любого газа при одинаковых р и Т, в частности при температуре и давлении смеси, в идеально газовом состоянии одинаковы. Поэтому приведенный объем любого компонента может быть вычислен как произведение объема моля на число молей этого компонента, т. е. а объем смеси - по формуле . Тогда , и, следовательно, задание смесильных газов мольными долями равно заданию ее объемными долями.
Газовая постоянная смеси газов . Просуммировавуравнения (2.1) для всех компонентов смеси, получим . Учитывая , можно записать
Полная энергия термодинамической системы представляет собой сумму кинетической энергии движения всех тел, входящих в систему, потенциальной энергии взаимодействия их между собой и с внешними телами и энергии, содержащейся внутри тел системы. Если из полной энергии вычесть кинетическую энергию, характеризующую макроскопическое движение системы как целого, и потенциальную энергию взаимодействия её тел с внешними макроскопическими телами, то оставшаяся часть будет представлять собой внутреннюю энергию термодинамической системы.
Внутренняя энергия термодинамической системы включает в себя энергию микроскопического движения и взаимодействия частиц системы, а так же их внутримолекулярную и внутриядерную энергии.
Полная энергия системы (а, следовательно, и внутренняя энергия) также как потенциальная энергия тела в механике может быть определена с точностью до произвольной константы. Поэтому, если любые макроскопические движения в системе и взаимодействия её с внешними телами отсутствуют, можно принять "макроскопические" составляющие кинетической и потенциальной энергий равными нулю и считать внутреннюю энергию системы равной её полной энергии. Такая ситуация имеет место в случае, когда система находится в состоянии термодинамического равновесия.
Введём характеристику состояния термодинамического равновесия - температуру. Так называется величина, зависящая от параметров состояния, например, от давления и объёма газа, и являющаяся функцией внутренней энергии системы. Эта функция обычно имеет монотонную зависимость от внутренней энергии системы, то есть растёт с ростом внутренней энергии.
Температура термодинамических систем, находящихся в состоянии равновесия, обладает следующими свойствами:
Если две равновесные термодинамические системы, находятся в тепловом контакте и имеют одинаковую температуру, то совокупная термодинамическая система находится в состоянии термодинамического равновесия при той же температуре.
Если какая-либо равновесная термодинамическая система имеет одну и ту же температуру с двумя другими системами, то эти три системы находятся в термодинамическом равновесии при одной и той же температуре.
Таким образом, температура есть мера состояния термодинамического равновесия. Для установления этой меры уместно ввести понятие теплопередачи.
Теплопередачей называется передача энергии от одного тела к другому без переноса вещества и совершения механической работы.
Если между телами, находящимися в тепловом контакте друг с другом, теплопередача отсутствует, то тела имеют одинаковые температуры и находятся в состоянии термодинамического равновесия друг с другом.
Если в изолированной системе, состоящей из двух тел, эти тела находятся при разных температурах, то теплопередача будет осуществляться таким образом, чтобы энергия передавалась от более нагретого тела менее нагретому. Этот процесс будет продолжаться до тех пор, пока температуры тел не сравняются, и изолированная система из двух тел не достигнет состояния термодинамического равновесия.
Для возникновения процесса теплопередачи необходимо создание потоков теплоты, то есть требуется выход из состояния теплового равновесия. Поэтому равновесная термодинамика не описывает процесс теплопередачи, а только его результат - переход в новое равновесное состояние. Описание самого процесса теплопередачи выполнено в шестой главе, посвящённой физической кинетике.
В заключении необходимо отметить, что если одна термодинамическая система обладает более высокой температурой, чем другая, то она не обязательно будет обладать и большей внутренней энергией, несмотря на возрастание внутренней энергии каждой системы с повышением её температуры. Например, больший объём воды может обладать большей внутренней энергией даже при более низкой температуре, чем у меньшего объёма воды. Однако, в этом случае теплопередача (перенос энергии) будет происходить не от тела с большей внутренней энергией к телу с меньшей внутренней энергие
Рассмотрим особенности термодинамических систем. Под ними принято понимать физические макроскопические формы, состоящие из значительного количества частиц, которые не предполагают использования для описания макроскопических показателей каждой отдельной частицы.
Нет ограничений в природе материальных частиц, которые являются составными компонентами таких систем. Они могут быть представлены в виде молекул, атомов, ионов, электронов, фотонов.
Особенности
Проанализируем отличительные характеристики термодинамических систем. В качестве примера можно привести любой предмет, который можно наблюдать без использования телескопов, микроскопов. Чтобы дать полноценное описание такой системе, подбирают макроскопические детали, благодаря которым можно определить объем, давление, температуру, электрическую поляризацию, величину магнитной индукции, химический состав, массу компонентов.
Для любых термодинамических систем существуют условные либо реальные границы, которые отделяют их от окружающей среды. Вместо нее часто используют понятие термостата, характеризующегося такой высокой величиной теплоемкости, что в случае теплообмена с анализируемой системой температурный показатель сохраняет неизменное значение.
Классификация систем
Рассмотрим, что представляет собой классификация термодинамических систем. В зависимости от характера взаимодействия ее с окружающей средой, принято выделять:
- изолированные виды, которые не обмениваются ни веществом, ни энергией с внешней средой;
- адиабатически изолированные, не совершающие обмена с внешней средой веществом, но вступающие в обмен работой или энергией;
- у закрытых термодинамических систем нет обмена веществом, допускается только изменение величины энергии;
- открытые системы характеризуются полной передачей энергии, вещества;
- частично открытые могут иметь полупроницаемые перегородки, поэтому не в полной мере принимать участие в материальном обмене.
В зависимости от описания, параметры термодинамической системы, могут подразделяться на сложные и простые варианты.
Особенности простых систем
Простыми системами называют равновесные состояния, определить физическое состояние которых можно удельным объемом, температурой, давлением. Примеры термодинамических систем подобного типа - изотропные тела, имеющие равные характеристики в разных направлениях и точках. Так, жидкости, газообразные вещества, твердые тела, которые находятся в состоянии термодинамического равновесия, не подвергаются воздействию электромагнитных и гравитационных сил, поверхностному натяжению, химическим превращениям. Анализ простых тел признан в термодинамике важным и актуальным с практической и теоретической точки зрения.
Внутренняя энергия термодинамической системы такого вида связана с окружающим миром. При описании используют число частиц, массу вещества каждого отдельного компонента.
Сложные системы
К сложным относят термодинамические системы, которые не попадают под простые виды. Например, ими являются магнетики, диэлектрики, твердые упругие тела, сверхпроводники, поверхности раздела фаз, тепловое излучение, электрохимические системы. В качестве параметров, используемых для их описания, отметим упругость пружины или стержня, поверхность фазового раздела, тепловое излучение.
Физической системой называют такую совокупность, в которой нет химического взаимодействия между веществами в пределах показателей температуры, давления, выбранных для исследования. А химическими системами называют те варианты, которые подразумевают взаимодействие между ее отдельными компонентами.
Внутренняя энергия термодинамической системы зависит от наличия изоляции ее с окружающим миром. Например, в качестве варианта адиабатической оболочки, можно представить сосуд Дьюара. Гомогенный характер проявляется у системы, в которой все компоненты имеют сходные свойства. Примерами их служат газовые, твердые, жидкие растворы. Типичным примером газовой гомогенной фазы является атмосфера Земли.
Особенности термодинамики
Данный раздел науки занимается изучением основных закономерностей протекания процессов, которые связаны с выделением, поглощением энергии. В химической термодинамике предполагается изучение взаимных превращений составных частей системы, установление закономерностей перехода одного вида энергии в другой при заданных условиях (давлении, температуре, объеме).
Система, являющаяся объектом термодинамического исследования, может быть представлена в виде любого объекта природы, включающего в себя большое число молекул, которые отделены границей раздела с другими реальными объектами. Под состоянием системы подразумевают совокупность ее свойств, которые позволяют определять ее с позиций термодинамики.
Заключение
В любой системе наблюдается переход одного вида энергии в другой, устанавливается термодинамическое равновесие. Раздел физики, которые занимается детальным изучением превращений, изменений, сохранений энергии, имеет особое значение. Например, в химической кинетике можно не просто описать состояние системы, но и рассчитать условия, способствующие ее смещению в нужном направлении.
Закон Гесса, связывающий энтальпию, энтропию рассматриваемого превращения, дает возможность выявлять возможность самопроизвольного протекания реакции, рассчитывать количество теплоты, выделяемого (поглощаемого) термодинамической системой.
Термохимия, базирующаяся на основах термодинамики, имеет практическое значение. Благодаря данному разделу химии, на производстве проводят предварительные расчеты эффективности топлива и целесообразности внедрения определенных технологий в реальное производство. Сведения, получаемые из термодинамики, дают возможность применять явления упругости, термоэлектричества, вязкости, намагничивания для промышленного производства различных материалов.
Cтраница 1
Термодинамическая система, как и любая другая физическая система, обладает некоторым запасом энергии, который обычно называют внутренней энергией системы.
Термодинамическая система называется изолированной, если она не может обмениваться с внешней средой ни энергией, ни веществом. Примером такой системы может служить газ, заключенный в сосуд постоянного объема. Термодинамическая система называется адиабатной, если она не может обмениваться с другими системами энергией путем теплообмена.
Термодинамическая система - это совокупность тел, которые в той или иной степени могут обмениваться между собой и окружающей средой энергией и веществом.
Термодинамические системы подразделяются на закрытые, не обменивающиеся веществом с другими системами, и открытые, обменивающиеся веществом и энергией с другими системами. В тех случаях, когда система не обменивается энергией и веществом с другими системами, она называется изолированной, а когда не происходит теплообмена, система называется адиабатной.
Термодинамические системы могут состоять из смесей чистых веществ. Смесь (раствор) называется гомогенной, когда химический состав и физические свойства в любых малых частицах одинаковы или изменяются непрерывно от одной точки системы к другой. Плотность, давление и температура гомогенной смеси в любой точке идентичны. Примером гомогенной системы может служить некоторый объем воды, химический состав которой одинаков, а физические свойства меняются от одной точки к другой.
Термодинамическая система с определенным количественным соотношением компонентов называется единичной физико-химической системой.
Термодинамические системы (макроскопические тела) наряду с механической энергией Е обладают еще и внутренней энергией U, зависящей от температуры, объема, давления и других термодинамических параметров.
Термодинамическая система называется неизолированной, или незамкнутой, если она может получать или отдавать тепло в окружающую среду и производить работу, а внешняя среда - совершать работу над системой. Система является изолированной, или замкнутой, если она не имеет обмена теплом с окружающей средой, а изменение давления внутри системы не влияет на окружающую среду и последняя не может произвести работу над системой.
Термодинамические системы состоят из статистически большого числа частиц.
Термодинамическая система при определенных внешних условиях (или изолированная система) приходит в состояние, которое характеризуется постоянством ее параметров во времени и отсутствием в системе потоков вещества и теплоты. Такое состояние системы называется равновесным или состоянием равновесия. Самопроизвольно из этого состояния система выйти не может. Состояние системы, в которой отсутствует равновесие, называется неравновесным. Процесс постепенного перехода системы из неравновесного состояния, вызванного внешними воздействиями, в состояние равновесия называется релаксацией, а промежуток времени возвращения системы в равновесное состояние - временем релаксации.
Термодинамическая система в этом случае совершает работу расширения за счет уменьшения внутренней энергии системы.
Термодинамическая система является объектом изучения в термодинамике и представляет собой совокупность тел, энергетически взаимодействующих между собой и окружающей средой и обменивающихся с ней веществом.
Термодинамическая система, предоставленная самой себе при неизменных внешних условиях, приходит в состояние равновесия, характеризуемое постоянством всех параметров и отсутствием макроскопических движений. Такое состояние системы называется состоянием термодинамического равновесия.
Термодинамическая система характеризуется конечным числом независимых переменных - макроскопических величин, называемых термодинамическими параметрами. Одним из независимых макроскопических параметров термодинамической системы, отличающим ее от механической, является температура как мера интенсивности теплового движения. Температура тела может изменяться вследствие теплообмена с окружающей средой и действия источников тепла и в результате самого процесса деформирования. Связь деформации с температурой устанавливается с помощью термодинамики.
Термодинамическая система – это часть материального мира, отделенная от окружающей среды реальными или воображаемыми границами и являющаяся объектом исследования термодинамики. Окружающая среда значительно больше по объему, и поэтому изменения в ней незначительны по сравнению с изменением состояния системы. В отличие от механических систем, которые состоят из одного или нескольких тел, термодинамическая система содержит очень большое число частиц, что порождает совершенно новые свойства и требует иных подходов к описанию состояния и поведения таких систем. Термодинамическая система представляет собой макроскопический объект .
Классификация термодинамических систем
1. По составу
Термодинамическая система состоит из компонентов. Компонент - это вещество, которое может быть выделено из системы и существовать вне ее, т.е. компоненты – это независимые вещества.
Однокомпонентные.
Двухкомпонентные, или бинарные.
Трехкомпонентные – тройные.
Многокомпонентные.
2. По фазовому составу – гомогенные и гетерогенные
Гомогенные системы имеют одинаковые макроскопические свойства в любой точке системы, прежде всего температуру, давление, концентрацию, а также многие другие, например, показатель преломления, диэлектрическую проницаемость, кристаллическую структуру и др. Гомогенные системы состоят из одной фазы.
Фаза – это однородная часть системы, отделенная от других фаз поверхностью раздела и характеризующаяся своим уравнением состояния. Фаза и агрегатное состояние – перекрывающиеся, но не идентичные понятия. Агрегатных состояний только 4, фаз может быть гораздо больше.
Гетерогенные системы состоят минимум из двух фаз.
3. По типам связей с окружающей средой (по возможностям обмена с окружающей средой).
Изолированная система не обменивается с окружающей ни энергией, ни веществом. Это идеализированная система, которую, в принципе нельзя экспериментально изучать.
Закрытая система может обмениваться с окружающей средой энергией, но не обменивается веществом.
Открытая система обменивается и энергией, и веществом
Состояние ТДС
Состояние ТДС – это совокупность всех ее измеримых макроскопических свойств, имеющих, следовательно, количественное выражение. Макроскопический характер свойств означает, что их можно приписать только к системе в целом, а не отдельным частицам, которые составляют ТДС (Т, р, V, c, U, n k). Количественные характеристики состояния связаны между собой. Поэтому существует минимальный набор характеристик системы, называемых параметрами , задание которых позволяет полностью описать свойства системы. Количество этих параметров зависит от типа системы. В простейшем случае для закрытой гомогенной газовой системы в состоянии равновесия достаточно задать только 2 параметра. Для открытой системы кроме этих 2 характеристик системы требуется задать число молей каждого компонента.
Термодинамические переменные подразделяются:
- внешние , которые определяются свойствами и координатами системы в окружающей среде и зависят от контактов системы с окружением, например, масса и количество компонентов, напряженность электрического поля, число таких переменных ограничено;
- внутренние, которые характеризуют свойства системы, например, плотность, внутренняя энергия, число таких параметров неограниченно;
- экстенсивные, которые прямо пропорциональны массе системы или числу частиц, например, объем, энергия, энтропия, теплоемкость;
-интенсивные, которые не зависят от массы системы, например, температура, давление.
Параметры ТДС связаны между собой соотношением, которое носит название уравнение состояние системы. Общий вид его f (p,V, T) = 0. Одна из важнейших задач ФХ – найти уравнение состояния любой системы. Пока точное уравнение состояния известно лишь для идеальных газов (уравнение Клапейрона - Менделеева).
pV = nRT, (1.1)
где R – универсальная газовая постоянная = 8.314 Дж/(моль.К) .
[p] = Па, 1атм = 1,013*10 5 Па = 760 мм рт.ст.,
[V] = м 3 , [T] = К, [n] = моль, N = 6.02*1023 моль-1. Реальные газы лишь приближенно описываются данным уравнением, и чем выше давление и ниже температура, тем больше отклонение от данного уравнения состояния.
Различают равновесное и неравновесное состояния ТДС.
Классическая термодинамика обычно ограничивается рассмотрением равновесных состояний ТДС. Равновесие - это такое состояние, к которому самопроизвольно приходит ТДС, и в котором она может существовать бесконечно долго в отсутствие внешних воздействий. Для определения равновесного состояния всегда требуется меньшее количество параметров, чем для неравновесных систем.
Равновесное состояние подразделяют на:
- устойчивое (стабильное) состояние, при котором всякое бесконечно малое воздействие вызывает только бесконечно малое изменение состояния, а при устранении этого воздействия система возвращается в исходное состояние;
- метастабильное состояние, при котором некоторые конечные воздействия вызывают конечные изменения состояния, которые не исчезают при устранения этих воздействий.
Изменение состояния ТДС связанное с изменением хотя бы одной из ее термодинамических переменных, называют термодинамическим процессом . Особенностью описания термодинамических процессов является то, что они характеризуются не скоростями изменения свойств, а величинами изменений. Процесс в термодинамике – это последовательность состояний системы, ведущая от начального набора термодинамических параметров к - конечному. Различают следующие термодинамические процессы:
- самопроизвольные , для осуществления которых не надо затрачивать энергию;
- несамопроизвольные , происходящие только при затрате энергии;
- необратимые (или неравновесные) – когда в результате процесса невозможно возвратить систему к первоначальному состоянию.
-обратимые – это идеализированные процессы, которые проходят в прямом и обратном направлении через одни и те же промежуточные состояния, и после завершения цикла ни в системе, ни в окружающей среде не наблюдается никаких изменений.
Функции состояния – это характеристики системы, которые зависят только от параметров состояния, но не зависят от способа его достижения.
Функции состояния характеризуются следующими свойствами:
Бесконечно малое изменение функции f является полным дифференциалом df;
Изменение функции при переходе из состояния 1 в состояние 2 определяется только этими состояниями ? df = f 2 – f 1
В результате любого циклического процесса функция состояния не изменяется, т.е. равна нулю.
Теплота и работа – способы обмена энергией между ТДС и окружающей средой. Теплота и работа характеристики процесса, они не являются функциями состояния.
Работа - форма обмена энергией на макроскопическом уровне, когда происходят направленное перемещение объекта. Работа считается положительной, если ее совершает система против внешних сил.
Теплота – форма обмена энергией на микроскопическом уровне, т.е. в форме изменения хаотического движения молекул. Принято считать положительной теплоту, полученную системой, и работу, совершенную над ней, т.е. действует “эгоистический принцип”.
Наиболее часто используемыми единицами измерения энергии и работы, в частности, в термодинамике являются джоуль (Дж) в системе СИ и внесистемная единица – калория (1 кал = 4,18 Дж).
В зависимости от характера объекта различают разные виды работы:
1. Механическая - перемещение тела
dА мех = - F ех dl. (2.1)
Работа – скалярное произведение 2-х векторов силы и перемещения, т.е.
|dА мех | = F dl cos a. Если направление внешней силы противоположно перемещению, совершаемому внутренними силами, то cos a < 0.
2. Работа расширения (чаще всего рассматривается расширение газа)
dА = - р dV (1.7)
Однако нужно иметь в виду, что это выражение справедливо только для обратимого протекания процесса.
3. Электрическая – перемещение электрических зарядов
dА эл = -jdq, (2.2)
где j - электрический потенциал.
4. Поверхностная – изменение площади поверхности,
dА поверхн. = -sdS, (2.3)
где s - поверхностное натяжение.
5. Общее выражение для работы
dА = - Ydx, (2.4)
Y – обобщенная сила, dx - обобщенная координата, таким образом работа может рассматриваться как произведение интенсивного фактора на изменение экстенсивного.
6. Все виды работы, кроме работы расширения, называются полезной работой (dА’ ). dА = рdV + dА’ (2.5)
7. По аналогии можно ввести понятие химической работы, когда направленно перемещается k -ое химическое вещество, n k – экстенсивное свойство, при этом интенсивный параметр m k называется химическим потенциалом k -ого вещества
dА хим = -Sm k dn k . (2.6)
Термодинамическая система - это процесс или среда, которая используется при анализе передачи энергии. Термодинамическая система - это любая зона или пространство, ограниченное действительными или воображаемыми границами, выбранными для анализа энергии и ее преобразования. Границы ее могут быть неподвижными или подвижными .Газ в металлическом сосуде является примером системы с неподвижными границами. Если необходимо проанализировать газ в баллоне для , стенки сосуда - это неподвижные границы. Если необходимо проанализировать воздух в воздушном шаре, поверхность воздушного шара - подвижная граница. Если нагреть воздух в воздушном шаре, эластичные стенки шарика растягиваются, и граница системы меняется с расширением газа.
Пространство, смежное с границей, называется средой. У всех термодинамических систем есть среда, которая может являться источником или забирать ее. Среда может также проделать работу над системой или испытывать на себе работу системы.
Системы могут быть большими или маленькими, в зависимости от границ. Например, система может охватывать всю холодильную систему или газ в одном из цилиндров компрессора. Она может существовать в вакууме или может содержать несколько фаз одного или более веществ. Следовательно, действительные системы могут содержать сухой воздух и (два вещества) или воду и водяной пар (две стадии одного и того же вещества). Однородная система состоит из одного вещества, одной его фазы или однородной смеси нескольких компонентов.
Системы бывают замкнутыми или открытыми . В замкнутой только энергия пересекает ее границы. Следовательно, теплота может переходить через границы замкнутой системы в среду или из среды в систему.
В открытой системе и энергия, и масса могут переходить из системы в среду и обратно. При анализе насосов и теплообменников необходима открытая система, так как жидкости должны пересекать границы при анализе. Если массовый расход открытой системы устойчивый и однородный, то ее называют открытой системой с постоянным расходом. Массовый расход показывает, открыта или закрыта она.
Состояние термодинамической системы определяется физическими свойствами вещества. Температура, давление, объем, внутренняя энергия, и энтропия - это свойства, определяющие состояние, при котором существует вещество. Так как состояние системы - это состояние равновесия, его можно определить, только когда свойства системы стабилизированы и больше не изменяются.
Другими словами, состояние системы можно описать, когда она находится в состоянии равновесия с окружающей средой.