Котельные установки ТЭС. Общие сведения. Котельная установка состоит из котла и вспомогательного оборудования
РОССИЙСКОЕ АКЦИОНЕРНОЕ
ОБЩЕСТВО ЭНЕРГЕТИКИ
И ЭЛЕКТРИФИКАЦИИ "ЕЭС РОССИИ"
ДЕПАРТАМЕНТ СТРАТЕГИИ РАЗВИТИЯ И НАУЧНО-ТЕХНИЧЕСКОЙ
ПОЛИТИКИМЕТОДИЧЕСКИЕ УКАЗАНИЯ
ПО ПРОВЕДЕНИЮ ЭКСПЛУАТАЦИОННЫХ
ИСПЫТАНИЙ КОТЕЛЬНЫХ УСТАНОВОК
ДЛЯ ОЦЕНКИ КАЧЕСТВА РЕМОНТА
РД 153-34.1-26.303-98
ОРГРЭС
Москва 2000
Разработано Открытым акционерным обществом "Фирма по наладке, совершенствованию технологии и эксплуатации электростанций и сетей ОРГРЭС" Исполнитель Г.Т. ЛЕВИТ Утверждено Департаментом стратегии развития и научно-технической политики РАО "ЕЭС России" 01.10.98 Первый заместитель начальника А.П. БЕРСЕНЕВ Руководящий документ разработан АО "Фирма ОРГРЭС" по поручению Департамента стратегии развития и научно-технической политики и является собственностью РАО "ЕЭС России".
МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРОВЕДЕНИЮ ЭКСПЛУАТАЦИОННЫХ ИСПЫТАНИЙ КОТЕЛЬНЫХ УСТАНОВОК ДЛЯ ОЦЕНКИ КАЧЕСТВА РЕМОНТА |
РД 153-34.1-26.303-98 |
с 03.04.2000
1. ОБЩАЯ ЧАСТЬ
1.1. Задачи эксплуатационных испытаний (приемосдаточных испытаний) определяет "Методика оценки технического состояния котельных установок до и после ремонта" [ 1], согласно которой при проведении испытаний после капитального ремонта должны быть выявлены и сопоставлены с требованиями нормативно-технической документации (НТД) и результатами испытаний после предыдущего ремонта значения показателей, перечисленных в табл. 1 настоящих Методических указаний. Указанной Методикой определены как желательные и испытания перед ремонтом для уточнения объема предстоящего ремонта. 1.2. Правилами [ 2] оценка технического состояния котельной установки производится на основе результатов приемосдаточных испытаний (при пуске и под нагрузкой) и подконтрольной эксплуатации. Продолжительность подконтрольной эксплуатации при работе по режимной карте при нагрузках, соответствующих диспетчерскому графику, устанавливается равной 30 сут, а приемо-сдаточных испытаний под номинальной нагрузкой также при работе по режимной карте - 48 ч.Таблица 1
Ведомость показателей технического состояния котельной установки
Показатель |
Значение показателя |
после последнего капитального ремонта |
после настоящего ремонта |
до настоящего ремонта |
1. Топливо, его характеристика | 2. Количество работающих систем пылеприготовления* | 3. Тонкость пыли R 90 (R 1000)*, % | 4. Количество работающих горелок* | 5. Избыток воздуха за пароперегревателем * | 6. Паропроизводительность, приведенная к номинальным параметрам, т/ч | 7. Температура перегретого пара, °С | 8. Температура пара промперегрева, °С | 9. Температура питательной воды, °С | 10. Температура в контрольных точках пароводяного тракта в.д. и промежуточного перегревателя, °С | 11. Максимальная разверка температуры стенок змеевиков поверхностей нагрева в характерных местах | 12. Присосы холодного воздуха в топку | 13. Присосы холодного воздуха в системы пылеприготовления | 14. Присосы в конвективные газоходы котла | 15. Присосы в газоходы от воздухоподогревателя до дымососов | 16. Разрежение перед направляющими аппаратами дымососов, кг/м 2 | 17. Степень открытия направляющих аппаратов дымососов, % | 18. Степень открытия направляющих аппаратов вентиляторов, % | 19. Температура уходящих газов,°С | 20. Потери тепла с уходящими газами, % | 21. Потери тепла с механической неполнотой сгорания, % | 22. К.п.д. котла "брутто", % | 23. Удельный расход электроэнергии на пылеприготовление, кВт · ч/т топлива | 24. Удельный расход электроэнергии на тягу и дутье, кВт · ч/т пара | 25. Содержание в дымовых газах N O x (при a = 1,4), мг/нм 3 | * Принимается по режимной карте |
2. ОПРЕДЕЛЕНИЕ ИЗБЫТКА ВОЗДУХА И ПРИСОСОВ ХОЛОДНОГО ВОЗДУХА
2.1. Определение избытка воздуха
Избыток воздуха a определяется с достаточной для практических целей точностью по уравнениюПогрешность расчетов по этому уравнению не превышает 1%, если a меньше 2,0 для твердых топлив, 1,25 для мазута и 1,1 для природного газа. Более точное определение избытка воздуха a точн может быть выполнено по уравнению
Где К a - поправочный коэффициент, определяемый по рис. 1. Введение поправки К a может потребоваться для практических целей лишь при больших избытках воздуха (например, в уходящих газах) и при сжигании природного газа. Влияние продуктов неполного сгорания в этих уравнениях очень невелико. Поскольку анализ газов производится обычно с помощью химических газоанализаторов Орса, целесообразно проверить соответствие между значениями О 2 и R О 2 , поскольку О 2 определяется по разности [(RO 2 + О 2) - О 2 ], а значение (RO 2 + O 2) во многом зависит от поглотительных способностей пирогаллола. Такую проверку при отсутствии химической неполноты сгорания можно выполнить, сопоставив избыток воздуха, определенный по кислородной формуле (1) с избытком, определенным по углекислотной формуле:
При проведении эксплуатационных испытаний значение для каменных и бурых углей можно принять равным 19%, для АШ 20,2%, для мазута 16,5%, для природного газа 11,8% [ 5]. Очевидно, что при сжигании смеси топлив с разными значениями пользоваться уравнением (3) нельзя.
Рис. 1. Зависимость поправочного коэффициента К a от коэффициента избытка воздуха a :
1 - твердые топлива; 2 - мазут; 3 - природные газы
Проверку правильности проведенного газового анализа можно выполнить и по уравнению
(4)
Или с помощью графика рис. 2.
Рис. 2. Зависимость содержания СО 2 и O 2 в продуктах горения различных видов топлива от коэффициента избытка воздуха a:
1, 2 и 3 - городской газ ( соответственно составляет 10,6; 12,6 и 11,2%); 4 - природный газ; 5 - коксовый газ; 6 - нефтяной газ; 7 - водяной газ; 8 и 9 - мазут ( от 16,1 до 16,7%); 10 и 11 - группа твердого топлива ( от 18,3 до 20,3%)
При использовании для выявления избытка воздуха приборов типа "Testo-Term " за основу принимается определение содержания О 2 , так как в этих приборах значение RO 2 определяется не прямым измерением, а расчетом на основании уравнения, аналогичного (4). Отсутствие заметной химической неполноты сгорания (СО ) определяется обычно с помощью индикаторных трубок или приборов типа "Testo-Term ". Строго говоря, для определения избытка воздуха в том или ином сечении котельной установки требуется найти такие точки сечения, анализ газов в которых в большинстве режимов отражал бы средние значения по соответствующей части сечения. Тем не менее для эксплуатационных испытаний достаточно в качестве контрольного, ближайшего к топке сечения принимать газоход за первой конвективной поверхностью в опускном газоходе (условно - за пароперегревателем), а место отбора проб для П-образного котла в центре каждой (правой и левой) половины сечения. Для Т-образного котла количество мест отбора проб газа следует удвоить.
2.2. Определение присосов воздуха в топку
Для определения присосов воздуха в топку, а также в газоходы до контрольного сечения помимо метода ЮжОРГРЭС с постановкой топки под давление [ 4] рекомендуется использовать метод, предложенный Е.Н. Толчинским [ 6]. Для определения присосов следует провести два опыта с разным расходом организованного воздуха при одной нагрузке, при одном разрежении в верху топки и при неизменном положении шиберов на воздушном тракте после воздухоподогревателя, Нагрузку желательно принять как можно ближе к поминальной с тем, чтобы была возможность (были достаточны запасы в производительности дымососов и подаче дутьевых вентиляторов) изменять в широких пределах избыток воздуха. Например, для пылеугольного котла иметь за пароперегревателем в первом опыте a" = 1,7, а во втором a" = 1,3. Разрежение в верху топки поддерживается на обычном для данного котла уровне. При этих условиях суммарные присосы воздуха (Da т), присосы в топку (Da топ) и газоход пароперегревателя (Da пп) определяются по уравнению(5)
(6)
Здесь и - избытки организованно поданного в топку воздуха в первом и втором опыте; - перепад давлений между воздушным коробом на выходе из воздухоподогревателя и разрежением в топке на уровне горелок.При выполнении опытов требуется производить измерение: паропроизводительности котла - Д к; температуры и давления свежего пара и пара промперегрева; содержания в дымовых газах О 2 и при необходимости продуктов неполного горения (СО , Н 2); разрежения в верхней части топки и на уровне горелок; давления за воздухоподогревателем. В том случае если нагрузка котла Д опыт отличается от номинальной Д ном, приведение производится по уравнению
(7)
Однако уравнение (7) справедливо, если во втором опыте избыток воздуха соответствовал оптимальному при номинальной нагрузке. В противном случае приведение следует выполнять по уравнению
(8)
Оценка изменения расхода организованного воздуха в топку по значению возможна при неизменном положении шиберов на тракте после воздухоподогревателя. Однако это не всегда осуществимо. Например, на пылеугольном котле, оснащенном схемой пылеприготовления прямого вдувания с установкой перед мельницами индивидуальных вентиляторов (ВГД), значение характеризует расход воздуха только через тракт вторичного воздуха. В свою очередь расход первичного воздуха при неизменном положении шиберов на его тракте изменится при переходе от одного опыта ко второму в существенно меньшей степени, поскольку большую долю сопротивления преодолевает ВГД. Аналогично происходит на котле, оснащенном схемой пылеприготовления с промбункером с транспортом пыли горячим воздухом. В описанных ситуациях судить об изменении расхода организованного воздуха можно по перепаду давлений на воздухоподогревателе, заменяя в уравнении (6) показатель величиной или перепадом на измерительном устройстве на всасывающем коробе вентилятора. Однако это возможно, если на время опытов закрыта рециркуляция воздуха через воздухоподогреватель и в нем нет значительных неплотностей. Проще решается задача определения присосов воздуха в топку на газомазутных котлах: для этого надо прекратить подачу в воздушный тракт газов рециркуляции (если используется такая схема); пылеугольные котлы на время опытов, если это возможно, следует перевести на газ или мазут. И во всех случаях проще и точнее можно определить присосы при наличии прямых измерений расхода воздуха после воздухоподогревателя (суммарного или путем сложения расходов по индивидуальным потокам), определяя параметр С в уравнении (5) по формуле
(9)
Наличие прямых измерений Q в позволяет определить присосы и путем сопоставления его значения со значениями, определяемыми по тепловому балансу котла:
; (10)
(11)
В уравнении (10): и - расход свежего пара и пара промперегрева, т/ч; и - приращение тепловосприятия в котле по основному тракту и тракту пара промперегрева, ккал/кг; - к.п.д, котла брутто, %; - приведенный расход воздуха (м 3) при нормальных условиях на 1000 ккал для конкретного топлива (табл. 2); - избыток воздуха за пароперегревателем.
Таблица 2
Приведенные теоретически необходимые объемы воздуха для сжигания различных топлив
Бассейн, вид топлива |
Характеристика топлива |
Приведенный на 1000 ккал объем воздуха (при a = 1) , 10 3 м 3 /ккал |
Донецкий | Кузнецкий | Карагандинский | Экибастузский |
сс |
Подмосковный | Райчихииский | Ирша-Бородинский | Березовский | Сланцы | Фрезерный торф | Мазут | Газ Ставрополь-Москва |
(12)
. (13)
2.3. Определение присосов воздуха в газоходы котельной установки
При умеренных присосах целесообразно организовать определение избытка воздуха в контрольном сечении (за пароперегревателем), за воздухоподогревателем и за дымососами. Если присосы значительно (в два раза и более) превышают нормативные, целесообразно организовать измерения в большом числе сечений, например, до и после воздухоподогревателя, особенно регенеративного, до и после электрофильтра. В названных сечениях целесообразно, так же как и в контрольном, организовать измерения с правой и левой сторон котла (обоих газоходов Т-образного котла), имея в виду высказанные в разд. 2.1 соображения о представительности места отбора проб на анализ. Поскольку трудно организовать одновременный анализ газов во многих сечениях, обычно проводятся измерения сначала с одной стороны котла (в контрольном сечении, за воздухоподогревателем, за дымососом), затем с другой. Очевидно, в течение всего опыта необходимо обеспечить стабильный режим работы котла. Значение присосов определяется как разность значений избытков воздуха в сравниваемых сечениях,2.4. Определение присосов воздуха в системы пылеприготовления
Определять присосы согласно [ 7] следует в установках с промбункером, а также с прямым вдуванием при сушке дымовыми газами. При газовой сушке в обоих случаях присосы определяются, как и в котле, на основе газового анализа в начале и в конце установки. Расчет присосов по отношению к объему газов в начале установки ведется по формуле(14)
При сушке воздухом в системах пылеприготовления с промбункером для определения присосов следует организовать измерение расхода воздуха на входе в систему пылеприготовления и влажного сушильного агента на стороне всасывания или нагнетания мельничного вентилятора . При определении на входе в мельничный вентилятор рециркуляцию сушильного агента во входной патрубок мельницы на время определения присосов следует закрыть. Расходы воздуха и влажного сушильного агента определяются с помощью стандартных измерительных устройств либо с помощью протарированных трубками Прандтля мультипликаторов [ 4]. Тарировку мультипликаторов следует производить в условиях, максимально приближенных к рабочим, так как показания этих устройств не строго подчинены закономерностям, присущим стандартным дроссельным устройствам. Для приведения объемов к нормальным условиям измеряются температура и давление воздуха на входе в установку и влажного сушильного агента у мельничного вентилятора. Плотность воздуха (кг/м 3) в сечении перед мельницей (при обычно принимаемом содержании водяных паров (0,01 кг/кг сухого воздуха):
(15)
Где - абсолютное давление воздуха перед мельницей в месте измерения расхода, мм рт. ст. Плотность сушильного агента перед мельничным вентилятором (кг/м 3) определяется по формуле
(16)
Где - приращение содержания водяных паров за счет испаренной влаги топлива, кг/кг сухого воздуха, определяемое по формуле
(17)
Здесь В м - производительность мельницы, т/ч; m - концентрация топлива в воздухе, кг/кг; - расход воздуха перед мельницей при нормальных условиях, м 3 /ч; - доля испаренной влаги в 1 кг исходного топлива, определяемая по формуле
(18)
В которой - влага топлива рабочая, %; - влага пыли, %, Подсчеты при определении присосов проводятся по формулам:
(20)
(21)
Значение присосов по отношению к теоретически необходимому для сжигания топлива расходу воздуха определяется по формуле
(22)
Где - среднее значение присосов по всем системам пылеприготовления, м 3 /ч; n - среднее число работающих систем пылеприготовления при номинальной нагрузке котла; В к - расход топлива на котел, т/ч; V 0 - теоретически необходимый расход воздуха для сжигания 1 кг топлива, м 3 /кг. Для выявления значения на основе значения коэффициента , определенного по формуле (14), следует определить количество сушильного агента на входе в установку и далее вести расчеты на основе формул (21) и (22). Если определение значения затруднено (например, в системах пылеприготовления с мельницами-вентиляторами из-за высоких температур газа), то можно это сделать, опираясь на расход газов в конце установки - [сохраняем обозначение формулы (21)]. Для этого определяется по отношению к сечению за установкой по формуле
(23)
В этом случае
Далее определяется по формуле (24). При определении расхода сушильно-вентилирующего агента при газовой сушке целесообразно плотность определять по формуле (16), подставляя в знаменателе вместо значение . Последнее можно, согласно [ 5], определить по формулам:
(25)
Где - плотность газов при a = 1; - приведенная влажность топлива, % на 1000 ккал (1000 кг·% / ккал); и - коэффициенты, имеющие следующие значения:
3. ОПРЕДЕЛЕНИЕ ПОТЕРЬ ТЕПЛА И К.П.Д. КОТЛА
3 .1. Расчеты по определению составляющих теплового баланса ведутся по приведенным характеристикам топлива [ 5] аналогично тому, как это выполняется в [ 8]. Коэффициент полезного действия (%) котла определяется по обратному балансу по формулеГде q 2 - потери тепла с уходящими газами, %; q 3 - потери тепла с химической неполнотой сгорания, %; q 4 - потери тепла с механической неполнотой сгорания, %; q 5 - потери тепла в окружающую среду, %; q 6 - потери тепла с физическим теплом шлака, %. 3.2. В связи с тем, что задачей настоящих Методических указаний является оценка качества ремонта, а сравнительные испытания проводятся примерно при тех же условиях, потери тепла с уходящими газами могут с достаточной точностью определяться по несколько упрощенной формуле (в сравнении с принятой в [ 8]):
Где - коэффициент избытка воздуха в уходящих газах; - температура уходящих газов, °С; - температура холодного воздуха, °С; q 4 - потери тепла с механической неполнотой сгорания, %; К Q - поправочный коэффициент, учитывающий тепло, внесенное в котел с подогретым воздухом и топливом; К , С , b - коэффициенты, зависящие от сорта и приведенной влажности топлива, усредненные значения которых приведены в табл. 3.
Таблица 3
Усредненные значения коэффициентов К, С и d для подсчета потерь тепла q 2
Топливо |
С | Антрациты, |
3,5 + 0,02 W п ? 3,53 |
0,32 + 0,04 W п ? 0,38 |
полуантрациты, | тощие угли | Каменные угли | Бурые угли |
3,46 + 0,021 W п |
0,51 +0,042 W п |
0,16 + 0,011 W п |
Сланцы |
3,45 + 0,021 W п |
0,65 +0,043 W п |
0,19 + 0,012 W п |
Торф |
3,42 + 0,021 W п |
0,76 + 0,044 W п |
0,25 + 0,01 W п |
Дрова |
3,33 + 0,02 W п |
0,8 + 0,044 W п |
0,25 + 0,01 W п |
Мазут, нефть | Природные газы | Попутные газы | *При W п >= 2 b = 0,12 + 0,014 W п. |
(29)
Физическое тепло топлива имеет смысл учитывать лишь при использовании нагретого мазута. Рассчитывается эта величина в кДж/кг (ккал/кг) по формуле
(30)
Где - удельная теплоемкость мазута при температуре его поступления в топку, кДж/(кг·°С) [ккал/(кг·°С)]; - температура поступающего в котел мазута, нагретого вне его, °С; - Доля мазута по теплу в смеси топлив. Удельный расход тепла на 1 кг топлива, внесенного в котел с воздухом (кДж/кг) [(ккал/кг)] при его предварительном подогреве в калориферах, рассчитывается по формуле
Где - избыток воздуха, поступающего в котел, в воздушном тракте перед воздухоподогревателем; - повышение температуры воздуха в калориферах, °С; - приведенная влажность топлива, (кг·%·10 3) / кДж [(кг·%·10 3) / ккал]; - физическая постоянная, равная 4,187 кДж (1 ккал); - низшая теплота сгорания, кДж (ккал/кг). Приведенная влажность твердого топлива и мазута рассчитывается на основе текущих средних данных на электростанции по формуле
(32)
Где - влажность топлива на рабочую массу, %, При совместном сжигании топлива различных видов и марок, если коэффициенты К, С и b для различных марок твердого топлива отличаются один от другого, приведенные значения этих коэффициентов в формуле (28) определяются по формуле
Где а 1 а 2 ... а n - тепловые доли каждого из топлив в смеси; К 1 К 2 ...К n - значения коэффициента К (С, b ) для каждого из топлив. 3.3. Потери тепла с химической неполнотой сгорания топлива определяются по формулам: для твердого топлива
Для мазута
Для природного газа
Коэффициент принимается равным 0,11 или 0,026 в зависимости от того, в каких единицах определяется - в ккал/м 3 или кДж/м 3 . Значение определяется по формуле
При расчетах в кДж/м 3 численные коэффициенты в этой формуле умножаются на коэффициент К = 4,187 кДж/ккал. В формуле (37) СО , Н 2 и СН 4 - объемные содержания продуктов неполного сгорания топлив в процентах по отношению к сухим газам. Определяются эти величины с помощью хроматографов по предварительно отобранным пробам газа [ 4]. Для практических целей, когда режим работы котла ведется при избытках воздуха, обеспечивающих минимальное значение q 3 , вполне достаточно в формулу (37) подставлять лишь значение СО . В этом случае можно обойтись более простыми газоанализаторами типа "Testo-Term ". 3.4. В отличие от других потерь для определения потерь тепла с механической неполнотой сгорания требуется знание характеристик твердого топлива, используемого в конкретных опытах - его теплотворной способности и рабочей зольности А р. При сжигании каменных углей неопределенных поставщиков или марок полезно знать и выход летучих , так как эта величина может отразиться на степени выгорания топлива - содержании горючих в уносе Г ун и шлаке Г шл.Расчеты проводятся по формулам:
(38)
Где и - доля золы топлива, выпадающей в холодную воронку и уносимой дымовыми газами; - теплота сгорания 1 кг горючих, равная 7800 ккал/кг или 32660 кДж/кг. Потери тепла с уносом и шлаком целесообразно рассчитывать отдельно, особенно при больших различиях в Г ун и Г шл. В последнем случае весьма актуально уточнение значения , поскольку рекомендации [ 9] по этому вопросу весьма приближенны. На практике и Г шл зависят от крупности пыли и степени загрязнения топки шлаковыми отложениями. Для уточнения значения рекомендуется провести специальные испытания [ 4]. При сжигании твердого топлива в смеси с газом или мазутом значение (%) определяется выражением
Где - доля твердого топлива по теплу в общем расходе топлива. При одновременном сжигании нескольких марок твердого топлива расчеты по формуле (39) ведутся по средневзвешенным значениям и А р. 3.5. Потери тепла в окружающую среду рассчитываются на основе рекомендаций [ 9]. При проведении опытов на нагрузке Д к меньшей, чем номинальная, пересчет производится по формуле
3.6. Потери тепла с физическим теплом шлака существенны лишь при жидком шлакоудалении. Определяются они по формуле
(42)
Где - энтальпия золы, кДж/кг (ккал/кг). Определяется по [ 9]. Температура золы при твердом шлакоудалении принимается равной 600°С, при жидком - равной температуре нормального жидкого шлакоудаления t нж или t зл + 100°С, которые определяются по [ 9] и [ 10]. 3.7. При проведении опытов до и после ремонта необходимо стремиться к поддержанию одинакового максимального числа параметров (см. п. 1.4 настоящих Методических указаний) с тем, чтобы свести к минимуму количество поправок, которые требуется вводить. Относительно просто может быть определена лишь поправка к q 2 на температуру холодного воздуха t x.в, если температура на входе в воздухоподогреватель поддерживается на постоянном уровне. Сделать это можно на основе формулы (28), определив q 2 при разных значениях t x.в. Учет влияния отклонения других параметров требует экспериментальной проверки или машинного поверочного расчета котла.
4. ОПРЕДЕЛЕНИЕ ВРЕДНЫХ ВЫБРОСОВ
4.1. Необходимость определения концентраций оксидов азота (NO х), а также SO 2 и СО диктуется актуальностью проблемы сокращения вредных выбросов электростанций, которой с годами уделяется все большее внимание [ 11, 12]. В [ 13] этот раздел отсутствует. 4.2. Для анализа дымовых газов на содержание вредных выбросов применяются переносные газоанализаторы многих фирм. Наиболее распространены на электростанциях России электрохимические приборы германской фирмы "Testo ". Фирма выпускает приборы разного класса. С помощью наиболее простого прибора "Testo 300M" можно определить содержание в сухих дымовых газах О 2 в % и объемных долях (ррт )* СО и NO x и автоматически перевести объемные доли в мг/нм 3 при a = 1,4. С помощью более сложного прибора "Testo- 350" можно помимо изложенного определить температуру и скорость газа в месте ввода зонда, определить расчетным путем к.п.д. котла (если зонд введен в газоход за котлом), раздельно определить с помощью дополнительного блока ("Testо- 339") содержание NO и NO 2 , а также при использовании обогреваемых (длиной до 4 м) шлангов SO 2 . ___________ *1 ррт = 1/10 6 объема. 4.3. В топках котлов при горении топлива в основном (на 95 - 99%) образуется монооксид азота NO , а содержание более токсичного диоксида NO 2 составляет 1 - 5%. В газоходах котла и далее в атмосфере происходит частичное неконтролируемое доокисление NO в NO 2 Поэтому условно при переводе объемной доли (ррт ) NO x в стандартное массовое значение (мг/нм 3) при a = 1,4 применяется переводной коэффициент 2,05 (а не 1,34, как для NO ). Этот же коэффициент принят и в приборах "Testo " при переводе значений из ррт в мг/нм 3 . 4.4. Содержание оксидов азота принято определять в сухих газах, поэтому водяные пары, содержащиеся в дымовых газах, должны быть максимально сконденсированы и отведены. Для этого помимо конденсатоотводчика, которым оснащаются приборы "Testo ", целесообразно при коротких линиях устанавливать перед прибором колбу Дрекслера для организации пробулькивания газа через воду. 4.5. Представительную пробу газа для определения NO x , a также S O 2 и СО можно отобрать лишь в сечении за дымососом, где газы перемешаны, в сечениях же, более близких к топке, можно получить искаженные результаты, связанные с отбором проб из шлейфа топочных газов, характеризующегося повышенным или пониженным содержанием NO х, SO 2 или СО . В то же время при детальном изучении причин повышенных значений NO x полезно отбирать пробы из нескольких точек по ширине газохода. Это позволяет связать значения NO x с организацией топочного режима, найти режимы, характеризующиеся меньшим разбросом значений NO x и соответственно меньшим средним значением. 4.6. Определение NO x до и после ремонта, так же как и определение других показателей котла, следует проводить при номинальной нагрузке и в режимах, рекомендуемых режимной картой. Последняя, в свою очередь, должна быть ориентирована на применение технологических методов подавления оксидов азота - организацию ступенчатого сжигания, ввод газов рециркуляции в горелки или в воздуховоды перед горелками, разную подачу топлива и воздуха в разные ярусы горелок и др. 4.7. Проводя опыты по максимальному сокращению NO x , что часто достигается снижением избытка воздуха в контрольном сечении (за пароперегревателем), следует избегать роста СО . Предельные значения для вновь проектируемых или реконструируемых котлов, согласно [ 12], составляют: для газа и мазута - 300 мг/нм 3 , для пылеугольных котлов с твердым и жидким шлакоудалением - соответственно 400 и 300 мг/нм 3 . Пересчет СО и SO 2 из ррт в мг/нм 3 производится умножением на удельные массы 1,25 и 2,86. 4.8. Для исключения ошибок при определении содержания в дымовых газах SO 2 необходимо отбирать газы за дымососом и, кроме того, предотвратить конденсацию содержащихся в дымовых газах водяных паров, так как SO 2 хорошо растворяется в воде с образованием H 2 SO 3 Для этого при высокой температуре уходящих газов, исключающей конденсацию водяного пара в газозаборной трубке и шланге, сделать их максимально короткими. В свою очередь при возможной конденсации влаги следует применять обогреваемые (до температуры 150°С) шланги и приставку для осушения дымовых газов. 4.9. Отбор проб за дымососом сопряжен в течение достаточно длительного периода с минусовыми температурами окружающего воздуха, а приборы "Testo " рассчитаны для работы в области температур +4 ? + 50°С, поэтому для измерений за дымососом в зимнее время требуется установить утепленные кабинки. Для котлов, оснащенных мокрыми золоуловителями, определение SO 2 за дымососом позволяет учесть частичное поглощение SO 2 в скрубберах. 4.10. Для исключения систематических ошибок в определении NO х и SO 2 и сравнения их с обобщенными материалами целесообразно сопоставить экспериментальные данные с расчетными значениями. Последние могут быть определены по [ 13] и [ 14].4.11. Качество ремонта котельной установки среди прочих показателей характеризуют выбросы в атмосферу твердых частиц. При необходимости определения этих выбросов следует пользоваться [ 15] и [ 16].5. ОПРЕДЕЛЕНИЕ УРОВНЯ ТЕМПЕРАТУРЫ ПАРА И ДИАПАЗОНА ЕЕ РЕГУЛИРОВАНИЯ
5.1. При проведении эксплуатационных испытаний следует выявить возможный диапазон регулирования температуры пара с помощью пароохладителей и при недостатке этого диапазона определить необходимость вмешательства в топочный режим для обеспечения требуемого уровня перегрева, поскольку указанные параметры определяют техническое состояние котла, характеризуют качество ремонта. 5.2. Оценка уровня температуры пара ведется по значению условной температуры (температуры пара в случае отключения пароохладителей). Эта температура определяется по таблицам водяного пара исходя из условной энтальпии:(43)
Где - энтальпия перегретого пара, ккал/кг; - уменьшение энтальпии пара в пароохладителе, ккал/кг; К - коэффициент, учитывающий увеличение тепловосприятия перегревателя вследствие роста температурного напора при включении пароохладителя. Значение этого коэффициента зависит размещения пароохладителя: чем ближе пароохладитель расположен к выходу из пароперегревателя, тем ближе к единице коэффициент. При установке поверхностного пароохладителя на насыщенном паре К принимается равным 0,75 - 0,8. При использовании для регулирования температуры пара поверхностного пароохладителя, в котором пар охлаждается за счет пропуска через него части питательной воды,
(44)
Где и - энтальпия питательной воды и воды на входе в экономайзер; - энтальпия пара до и после пароохладителя. В тех случаях, когда на котле имеется несколько впрысков, по формуле (46) определяется расход воды на последний впрыск по ходу пара. На предыдущий впрыск вместо в формуле (46) следует подставить ( - ) и соответствующие этому впрыску значения энтальпии пара и конденсата. Аналогично записывается формула (46) для случая, когда количество впрысков больше двух, т.е. подставляется ( - - ) и т.д. 5.3. Диапазон нагрузок котла, в пределах которых номинальная температура свежего пара обеспечивается устройствами, предназначенными для этой цели без вмешательства в режим работы топки, определяется экспериментально. Ограничение для барабанного котла при снижении нагрузки часто связано с неплотностью регулирующей арматуры, а при увеличении нагрузки может являться следствием пониженной температуры питательной воды из-за относительно меньшего расхода пара через пароперегреватель при неизменном расходе топлива. Для учета влияния температуры питательной воды следует воспользоваться графиком, аналогичным изображенному на рис. 3, а для пересчета нагрузки на номинальную температуру питательной воды - на рис. 4. 5.4. При проведении сравнительных испытаний котла до и после ремонта так же экспериментально должен быть определен диапазон нагрузок, при котором выдерживается номинальная температура пара промперегрева. При этом имеется в виду использование проектных средств регулирования этой температуры - паропарового теплообменника, газовой рециркуляции, байпаса газов помимо промпароперегревателя (котлы ТП-108, ТП-208 с расщепленным хвостом), впрыска. Оценку следует вести при включенных подогревателях высокого давления (проектной температуре питательной воды) и с учетом температуры пара на входе в промпароперегреватель, а для двухкорпусных котлов - при одинаковой загрузке обоих корпусов.
Рис. 3. Пример определения необходимого дополнительного понижения температуры перегретого пара в пароохладителях при понижении температуры питательной воды и сохранении неизменного расхода пара
Примечание. График построен исходя из того, что при понижении температуры питательной воды, например с 230 до 150°С, и неизменных паропроизводительности котла и расходе топлива энтальпия пара в пароперегревателе увеличивается (при р п.п = 100 кгс/см 2) а 1,15 раза (со 165 до 190 ккал/кг), а температура пара с 510 до 550°СРис. 4. Пример определения нагрузки котла, приведенной к номинальной температуре питательной воды 230 °С (при t п.в = 170 °С и Д t = 600 т/ч Д ном = 660 т/ч)
Примечание . График построен при следующих условиях: t п.е = 545/545°С; р п.п = 140 кгс/см 2 ; р " пром = 28 кгс/см 2 ; р " пром =26 кгс/см 2 ; t " пром = 320°С; Д пром /Д пп = 0,8Список использованной литературы
1. Методика оценки технического состояния котельных установок до и после ремонта: РД 34.26.617-97.- М.: СПО ОРГРЭС, 1998. 2. Правила организации технического обслуживания и ремонта оборудования, зданий и сооружений электростанций и сетей: РД 34.38.030-92. - М.: ЦКБ Энергоремонта, 1994. 3. Методические указания по составлению режимных карт котельных установок и оптимизации управления ими: РД 34.25.514-96. - М.: СПО ОРГРЭС, 1998. 4. Трембовля В.И., Фингер Е.Д., Авдеева А.А. Теплотехнические испытания котельных установок. - М.: Энергоатомиздат, 1991. 5. Пеккер Я.Л. Теплотехнические расчеты по приведенным характеристикам топлива. - М.: Энергия, 1977. 6. Толчинский Е.Н., Дунский В.Д., Гачкова Л.В. Определение присосов воздуха в топочные камеры котельных установок. - М.: Электрические станции, № 12, 1987. 7. Правила технической эксплуатации электрических станций и сетей Российской Федерации: РД 34.20.501-95. - М.: СПО ОРГРЭС, 1996. 8. Методические указания по составлению и содержанию энергетических характеристик оборудования тепловых электростанций: РД 34.09.155-93. - М.: СПО ОРГРЭС, 1993. 9. Тепловой расчет котельных агрегатов (Нормативный метод). - М.: Энергия, 1973. 10. Энергетическое топливо СССР: Справочник. - М.: Энергоатомиздат, 1991. 11. Котлер В.Р. Оксиды азота в дымовых газах котлов. - М.: Энергоатомиздат, 1987. 12. ГОСТ Р 50831-95. Установки котельные. Теплотехническое оборудование. Общие технические требования. 13. Методика определения валовых и удельных выбросов вредных веществ в атмосферу от котлов тепловых электростанций: РД 34.02.305-90. - М.: Ротапринт ВТИ, 1991. 14. Методические указания по расчету выбросов оксидов азота с дымовыми газами котлов тепловых электростанций: РД 34.02.304-95. - М.: Ротапринт ВТИ, 1996. 15. Методика определения степени очистки дымовых газов в золоулавливающих установках (экспресс-метод): РД 34.02.308-89. - М.: СПО Союзтехэнерго, 1989. РД 153-34.0-02.308-98 16. Методика испытаний золоулавливающих установок тепловых электростанций и котельных: РД 34.27.301-91. - М.: СПО ОРГРЭС, 1991.Общие сведения. Котельная установка состоит из котла и вспомогательного оборудования
ОСНОВНОЕ ОБОРУДОВАНИЕ ТЕПЛОВЫХ
ЭЛЕКТРИЧЕСКИХ СТАНЦИЙ
Глава 7
КОТЕЛЬНЫЕ УСТАНОВКИ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ
Общие сведения
Котельная установка состоит из котла и вспомогательного оборудования. Устройства, предназначенные для получения пара или горячей воды повышенного давления за счет теплоты, выделяемой при сжигании топлива, или теплоты, подводимой от посторонних источников (обычно с горячими газами), называют котельными агрегатами. Они подразделяются соответственно на котлы паровые и котлы водогрейные. Котельные агрегаты, использующие (т.е. утилизирующие) теплоту отходящих из печей газов или других основных и побочных продуктов различных технологических процессов, называются котлами-утилизаторами.
В состав котла входят: топка, пароперегреватель, экономайзер, воздухоподогреватель, каркас, обмуровка, тепловая изоляция, обшивка.
К вспомогательному оборудованию относятся: тягодутьевые машины, устройства очистки поверхностей нагрева, оборудование топливоприготовления и топливоподачи, оборудование шлако- и золоудаления, золоулавливающие и другие газоочистительные устройства, газовоздухопроводы, трубопроводы воды, пара и топлива, арматура, гарнитура, автоматика, приборы и устройства контроля и защиты, водоподготовительное оборудование и дымовая труба.
К арматуре относятся регулирующие и запорные устройства, предохранительные и водопробные клапаны, манометры, водоуказательные приборы.
В гарнитуру входят лазы, гляделки, люки, шиберы, заслонки.
Здание, в котором располагаются котлы, называют котельной.
Комплекс устройств, включающий в себя котельный агрегат и вспомогательное оборудование, называется котельной установкой. В зависимости от вида сжигаемого топлива и других условий некоторые из указанных элементов вспомогательного оборудования могут отсутствовать.
Котельные установки, снабжающие паром турбины тепловых электрических станций, называются энергетическими. Для снабжения паром производственных потребителей и отопления зданий в ряде случаев создают специальные производственные и отопительные котельные установки.
В качестве источников теплоты для котельных установок используются природное и искусственное топливо (каменный уголь, жидкие и газообразные продукты нефтехимической переработки, природный и доменный газы и др.), отходящие газы промышленных печей и других устройств.
Технологическая схема котельной установки с барабанным паровым котлом, работающим на пылевидном угле, приведена на рис. 7.1. Топливо с угольного склада после дробления подается конвейером в бункер топлива 3, из которого направляется в систему пылеприготовления, имеющую углеразмольную мельницу 1 . Пылевидное топливо с помощью специального вентилятора 2 транспортируется по трубам в воздушном потоке к горелкам 3 топки котла 5, находящегося в котельной 10. К горелкам подводится также вторичный воздух дутьевым вентилятором 15 (обычно через воздухоподогреватель 17 котла). Вода для питания котла подается в его барабан 7 питательным насосом 16 избака питательной воды 11, имеющего деаэрационное устройство. Перед подачей воды в барабан она подогревается в водяном экономайзере 9 котла. Испарение воды происходит в трубной системе 6. Сухой насыщенный пар из барабана поступает в пароперегреватель 8 , затем направляется к потребителю.
Рис. 7.1. Технологическая схема котельной установки:
1 - углеразмольная мельница; 2 - мельничный вентилятор; 3 - бункер топлива; 7 - горелка; 5 - контур топки и газоходов котельного агрегата; 6 - трубная истема - экраны топки; 7 - барабан; 8 - пароперегреватель; 9 - водяной жономайзер; 10 - контур здания котельной (помещения котельного отделения); 11 - бак запаса воды с деаэрационным устройством; 12 - дымовая труба; 13 - плмосос; 14- золоулавливающее устройство; 15- вентилятор; 16- питательный cicoc; 17 - воздухоподогреватель; 18 - насос для откачки золошлаковой пульпы; / - водяной тракт; б – перегретый пар; в - топливный тракт; г - путь движения воздуха; д - тракт продуктов сгорания; е - путь золы и шлака
Топливно-воздушная смесь, подаваемая горелками в топочную камеру (топку) парового котла, сгорает, образуя высокотемпературный (1500 °С) факел, излучающий тепло на трубы 6, расположенные на внутренней поверхности стен топки. Это - испарительные поверхности нагрева, называемые экранами. Отдав часть теплоты экранам, топочные газы с температурой около 1000 °С проходят через верхнюю часть заднего экрана, трубы которого здесь расположены с большими промежутками (эта часть носит название фестона), и омывают пароперегреватель. Затем продукты сгорания движутся через водяной экономайзер, воздухоподогреватель и покидают котел с температурой, несколько превышающей 100 °С. Уходящие из котла газы очищаются от золы в золоулавливающем устройстве 14 и дымососом 13 выбрасываются в атмосферу через дымовую трубу 12. Уловленная из дымовых газов пылевидная зола и выпавший в нижнюю часть топки шлак удаляются, как правило, в потоке воды по каналам, а затем образующаяся пульпа откачивается специальными багерными насосами 18 и удаляется по трубопроводам.
Барабанный котельный агрегат состоит из топочной камеры и; газоходов; барабана; поверхностей нагрева, находящихся под давлением рабочей среды (воды, пароводяной смеси, пара); воздухоподогревателя; соединительных трубопроводов и воздуховодов. Поверхности нагрева, находящиеся под давлением, включают в себя водяной экономайзер, испарительные элементы, образованные в основном экранами топки и фестоном, и пароперегреватель. Все поверхности нагрева котла, в том числе и воздухоподогреватель, как правило, трубчатые. Лишь некоторые мощные паровые котлы имеют воздухоподогреватели иной конструкции. Испарительные поверхности подключены к барабану и вместе с опускными трубами, соединяющими барабан с нижними коллекторами экранов, образуют циркуляционный контур. В барабане происходит разделение пара и воды, кроме того, большой запас воды в нем повышает надежность работы котла.
Нижнюю трапециевидную часть топки котельного агрегата (см. рис. 7.1) называют холодной воронкой - в ней охлаждается выпадающий из факела частично спекшийся зольный остаток, который в виде шлака проваливается в специальное приемное устройство. Газомазутные котлы не имеют холодной воронки. Газоход, в котором расположены водяной экономайзер и воздухоподогреватель, называют конвективным (конвективная шахта), в нем теплота передается воде и воздуху в основном конвекцией. Поверхности нагрева, встроенные в этот газоход и называемые хвостовыми, позволяют снизить температуру продуктов сгорания от 500...700 °С после пароперегревателя почти до 100 °С, т.е. полнее использовать теплоту сжигаемого топлива.
Вся трубная система и барабан котла поддерживаются каркасом, состоящим из колонн и поперечных балок. Топка и газоходы защищены от наружных теплопотерь обмуровкой - слоем огнеупорных и изоляционных материалов. С наружной стороны обмуровки стенки котла имеют газоплотную обшивку стальным листом в целях предотвращения присосов в топку избыточного воздуха и выбивания наружу запыленных горячих продуктов сгорания, содержащих токсичные компоненты.
7.2. Назначение и классификация котельных агрегатов
Котельным агрегатом называется энергетическое устройство производительностью D (т/ч) для получения пара с заданным давлением р (МПа) и температурой t (°C). Часто это устройство называют парогенератором, ибо в нем происходит генерация пара, или просто паровым котлом. Если конечным продуктом является горячая вода заданных параметров (давления и температуры), используемая в промышленных технологических процессах и для отопления промышленных, общественных и жилых зданий, то устройство называют водогрейным котлом. Таким образом, все котлоагрегаты можно подразделить на два основных класса: паровые и водогрейные.
По характеру движения воды, пароводяной смеси и пара паровые котлы подразделяются следующим образом:
·барабанные с естественной циркуляцией (рис. 7.2,a);
·барабанные с многократной принудительной циркуляцией (рис. 7.2,б );
·прямоточные (рис. 7.2,в ).
В барабанных котлах с естественной циркуляцией (рис. 7.3) вследствие разности плотностей пароводяной смеси в левых трубах 2 и жидкости в правых трубах 4 будет происходить движение пароводяной смеси в левом ряду - вверх, а воды в правом ряду - вниз. Трубы правого ряда называются опускными, а левого - подъемными (экранными).
Отношение количества воды, проходящей через контур, к паропроизводительности контура D за тот же промежуток времени называется кратностью циркуляции K ц . Для котлов с естественной циркуляцией K ц колеблется от 10 до 60.
Рис. 7.2. Схемы генерации пара в паровых котлах:
а - естественная циркуляция; б - многократная принудительная циркуляция; в - прямоточная схема; Б - барабан; ИСП - испарительные поверхности; ПЕ - пароперегреватель; ЭК - водяной экономайзер; ПН - питательный насос; ЦН - циркуляционный насос; НК - нижний коллектор; Q - подвод тепла; ОП - опускные трубы; ПОД – подъемные трубы; D п - расход пара; D пв - расход питательной воды
Разность весов двух столбов жидкостей (воды в опускных и пароводяной смеси в подъемных трубах) создает движущий напор Dр, Н/м 2 , циркуляции воды в трубах котла
где h - высота контура, м; r в и r см - плотности (объемные массы) воды и пароводяной смеси, кг/м 3 .
В котлах с принудительной циркуляцией движение воды и пароводяной смеси (см. рис. 7.2,б )осуществляется принудительно с помощью циркуляционного насоса ЦН, движущий напор которого рассчитан на преодоление сопротивления всей системы.
Рис. 7.3. Естественная циркуляция воды в котле:
1 - нижний коллектор; 2 - левая труба; 3 - барабан котла; 4 - правая труба
В прямоточных котлах (см. рис. 7.2, в )нет циркуляционного контура, нет многократной циркуляции воды, отсутствует барабан, вода прокачивается питательным насосом ПН через экономайзер ЭК, испарительные поверхности ИСП и пароперереватель ПЕ, включенные последовательно. Следует отметить, что прямоточные котлы используют воду более высокого качества, вся вода, поступающая в испарительный тракт на выходе из него полностью превращается в пар, т.е. в этом случае кратность циркуляции K ц = 1.
Паровой котельный агрегат (парогенератор) характеризуется паропроизводительностью (т/ч или кг/с), давлением (МПа или кПа), температурой производимого пара и температурой питательной воды. Эти параметры указаны в табл. 7.1.
Таблица 7.1. Сводная таблица котельных агрегатов, выпускаемых отечественной промышленностью, с указанием области применения
Давление, МПа(ат) | Паропроизво- дительность котла, т/ч | Температура пара, °С | Температура питательной воды, °С | Область применения |
0,88 (9) | 0,2; 0,4; 0,7; 1,0 | Насыщенный | Удовлетворение технологических и отопительных нужд небольших промышленных предприятий | |
1,37 (14) | 2,5 | Насыщенный | Удовлетворение технологических и отопительных нужд более крупных промышленных предприятий | |
4; 6,5; 10; 15; 20 | Насыщенный или перегретый, 250 | Квартальные отопительные котельные | ||
2,35 (24) | 4; 6,5; 10; 15; 20 | Насыщенный или перегретый, 370 и 425 | Удовлетворение технологических нужд некоторых промышленных предприятий | |
3,92 (40) | 6,5; 10; 15; 20; 25; 35; 50; 75 | Снабжение паром турбин мощностью от 0,75 до 12,0 МВт на электрических станциях малой мощности | ||
9,80 (100) | 60; 90; 120; 160; 220 | Снабжение паром турбин мощностью от 12 до 50 МВт на электрических станциях | ||
13,70 (140) | 160; 210; 320; 420; 480 | Снабжение паром турбин мощностью от 50 до 200 МВт на крупных электрических станциях | ||
320; 500; 640 | ||||
25,00 (255) | 950; 1600; 2500 | 570/570 (со вторичным перегревом) | Снабжение паром турбин мощностью 300, 500 и 800 МВт на крупнейших электрических станциях |
По паропроизводительности различают котлы малой паропроизводительности (до 25 т/ч), средней паропроизводительности (от 35 до 220 т/ч) и большой паропроизводительности (от 220 т/ч и более).
По давлению производимого пара различают котлы: низкого давления (до 1,37 МПа), среднего давления (2,35 и 3,92 МПа), высокого давления (9,81 и 13,7 МПа) и закритического давления (25,1 МПа). Граница, отделяющая котлы низкого давления от котлов среднего давления, условна.
В котельных агрегатах производят либо насыщенный пар, либо пар, перегретый до различной температуры, величина которой зависит от его давления. В настоящее время в котлах высокого давления температура пара не превышает 570 °С. Температура питательной воды в зависимости от давления пара в котле колеблется от 50 до 260 °С.
Водогрейные котлы характеризуют по их теплопроизводительности (кВт или МВт, в системе МКГСС - Гкал/ч), температуре и давлению подогретой воды, а также по роду металла, из которого изготовлен котел.
7.3. Основные виды котельных агрегатов
Энергетические котельные агрегаты . Котельные агрегаты паропроизводительностью от 50 до 220 т/ч на давление 3,92... 13,7 МПа выполняют только в виде барабанных, работающих с естественной циркуляцией воды. Агрегаты паропроизводительностью от 250 до 640 т/ч на давление 13,7 МПа выполняют и в виде барабанных, и прямоточных, а котельные агрегаты паропроизводительностью от 950 т/ч и более на давление 25 МПа - только в виде прямоточных, так как при сверхкритическом давлении естественную циркуляцию осуществить нельзя.
Типичный котельный агрегат паропроизводительностью 50...220 т/ч на давление пара 3,97... 13,7 МПа при температуре перегрева 440...570 °С (рис. 7.4) характеризуется компоновкой его элементов в виде буквы П, в результате чего образуются два хода дымовых газов. Первым ходом является экранированная топка, определившая название типа котельного агрегата. Экранирование топки настолько значительно, что в ней экранным поверхностям передается полностью вся теплота, требующаяся для превращения воды, поступившей в барабан котла, в пар. Выйдя из топочной камеры 2, дымовые газы поступают в короткий горизонтальный соединительный газоход, где размещен пароперегреватель 4, отделенный от топочной камеры только небольшим фестоном 3. После этого дымовые газы направляются во второй - нисходящий газоход, в котором расположены в рассечку водяные экономайзеры 5 и воздухоподогреватели 6. Горелки 1 могут быть как завихривающие, располагающиеся на передней стене или на боковых стенах встречно, так и угловые (как показано на рис. 7.4). При П-образной компоновке котельного агрегата, работающего с естественной циркуляцией воды (рис. 7.5), барабан 4 котла обычно размещают сравнительно высоко над топкой; сепарацию пара в этих котлах обычно осуществляют в выносных устройствах - циклонах 5.
Рис. 7.4. Котельный агрегат паропроизводительностью 220 т/ч с давлением пара 9,8 МПа и температурой перегретого пара 540 °С:
1 - горелки; 2 - топочная камера; 3 - фестон; 4 - пароперегреватель; 5 - водяные экономайзеры; 6 - воздухоподогреватели
При сжигании антрацита применяют полуоткрытую полностью экранированную топку 2 с встречным расположением горелок 1 на передней и задней стенках и подом, предназначенным для жидкого шлакоудаления. На стенках камеры горения размещают шипованные, утепленные огнеупорной массой экраны, а на стенках камеры охлаждения - открытые экраны. Часто применяют комбинированный пароперегреватель 3, состоящий из потолочной радиационной части, полурадиационных ширм и конвективной части. В нисходящей части агрегата в рассечку, т. е. чередуясь, размещены водяной экономайзер 6 второй ступени (по ходу воды) и трубчатый воздухоподогреватель 7 второй ступени (по ходу воздуха), а за ними водяной экономайзер 8 ж воздухоподогреватель 9 первой ступени.
Рис. 7.5. Котельный агрегат паропроизводительностью 420 т/ч с давлением пара 13,7 МПа и температурой перегретого пара 570 °С:
1 - горелки; 2 - экранированная топка; 3 ~- пароперегреватели; 4 - барабан;
5 - циклон; 6, 8 - экономайзеры; 7, 9 - воздухоподогреватели
Котельные агрегаты паропроизводительностью 950, 1600 и 2500 т/ч на давление пара 25 МПа предназначаются для работы в блоке с турбинами мощностью 300, 500 и 800 МВт. Компоновка котельных агрегатов названной паропроизводительности П-образная с воздухоподогревателем, вынесенным за пределы основной части агрегата. Перегрев пара двойной. Давление его после первичного пароперегревателя составляет 25 МПа, температура 565 °С, после вторичного - 4 МПа и 570 °С соответственно.
Все конвективные поверхности нагрева выполнены в виде пакетов из горизонтальных змеевиков. Наружный диаметр труб поверхностей нагрева равен 32 мм.
Паровые котлы производственных котельных. Промышленные котельные, снабжающие промышленные предприятия паром низкого давления (до 1,4 МПа), оборудуются изготавливаемыми отечественной промышленностью паровыми котлами, производительностью до 50 т/ч. Котлы выпускаются для сжигания твердого, жидкого и газообразного топлива.
На ряде промышленных предприятий при технологической необходимости применяют котлы среднего давления. Однобарабанный вертикальноводотрубный котел БК-35 (рис. 7.6) производительностью 35 т/ч при избыточном давлении в барабане 4,3 МПа (давление пара на выходе из пароперегревателя 3,8 МПа) и температуре перегрева 440 °С состоит из двух вертикальных газоходов - подъемного и опускного, соединенных в верхней части небольшим горизонтальным газоходом. Такая компоновка котла называется П-образной.
В котле сильно развитая экранная поверхность и сравнительно небольшой конвективный пучок. Экранные трубы 60 х 3 мм выполнены из стали марки 20. Трубы заднего экрана в верхней части разводятся, образуя фестон. Нижние концы экранных труб развальцованы в коллекторах, а верхние ввальцованы в барабан.
Основным типом паровых котлов малой производительности, широко распространенных в различных отраслях промышленности, на транспорте, в коммунальном и сельском хозяйстве (пар используется для технологических и отопительно-вентиляционных нужд), а также на электростанциях малой мощности, являются вертикально-водотрубные котлы ДКВР. Основные характеристики котлов ДКВР приведены в табл. 7.2.
Водогрейные котлы. Ранее указывалось, что на ТЭЦ с большой тепловой нагрузкой взамен пиковых подогревателей сетевой воды устанавливаются водогрейные котлы большой мощности для централизованного теплоснабжения крупных промышленных предприятий, городов и отдельных районов.
Рис. 7.6. Паровой однобарабанный котел БК-35 с газомазутной топкой:
1 - газомазутная горелка; 2 - боковой экран; 3 - фронтовой экран; 4 - подвод газа; 5 - воздухопровод; 6 - опускные трубы; 7 - каркас; 8 - циклон; 9 - барабан котла; 10 - подвод воды; 11 - коллектор пароперегревателя; 12 - выход пара; 13 - поверхностный охладитель пара; 14 - пароперегреватель; 15 - змееви-ковый экономайзер; 16 - выход дымовых газов; 17 - трубчатый воздухоподогреватель; 18 - задний экран; 19 - топочная камера
Таблица 7.2. Основные характеристики котлов ДКВР, производства
«Уралкотломаш» (на жидком и газообразном топливе)
Марка | Паропроизводительность, т/ч | Давление пара, МПа | Температура, °С | КПД, % (газ/мазут) | Размеры, мм | Масса, кг | ||
Длина | Ширина | Высота | ||||||
ДКВР-2,5-13 | 2,5 | 1,3 | 90,0/883 | |||||
ДКВР-4-13 | 4,0 | 1,3 | 90,0/888 | |||||
ДКВР-6 ; 5~13 | 6,5 | 1,3 | 91,0/895 | |||||
ДКВР-10-13 | 10,0 | 1,3 | 91,0/895 | |||||
ДКВР-10-13 | 10,0 | 1,3 | 90,0/880 | |||||
ДКВР-Ю-23 | 10,0 | 2,3 | 91,0/890 | |||||
ДКВР-10-23 | 10,0 | 2,3 | 90,0/890 | |||||
ДКВР-10-39 | 10,0 | 3,9 | 89,0 | |||||
ДКВР-10-39 | 10,0 | 3,9 | 89,0 | |||||
ДКВР-20-13 | 20,0 | 1,3 | 92,0/900 | 43 700 | ||||
ДКВР-20-13 | 20,0 | 1,3 | 91,0/890 | |||||
ДКВР-20-23 | 20,0 | 2,3 | 91,0/890 | 44 4001 |
Водогрейные котлы предназначены для получения горячей воды заданных параметров, главным образом для отопления. Они работают по прямоточной схеме с постоянным расходом воды. Конечная температура нагрева определяется условиями поддержания стабильной температуры в жилых и рабочих помещениях, обогреваемых отопительными приборами, через которые и циркулирует вода, нагретая в водогрейном котле. Поэтому при постоянной поверхности отопительных приборов температуру воды, подаваемой в них, повышают при снижении температуры окружающей среды. Обычно воду тепловой сети в котлах подогревают от 70... 104 до 150... 170 °С. В последнее время имеется тенденция к повышению температуры подогрева воды до 180... 200 °С.
Во избежание конденсации водяных паров из уходящих газов и связанной с этим наружной коррозии поверхностей нагрева температура воды на входе в агрегат должна быть выше точки росы для продуктов сгорания. В этом случае температура стенок труб в месте ввода воды также будет не ниже точки росы. Поэтому температура воды на входе не должна быть ниже 60 °С при работе на природном газе, 70 °С при работе на малосернистом мазуте и 110 °С при использовании высокосернистого мазута. Поскольку в теплосети вода может охлаждаться до температуры ниже 60 °С, перед входом в агрегат к ней подмешивается некоторое количество уже нагретой в котле (прямой) воды.
Рис. 7.7. Газомазутный водогрейный котел типа ПТВМ-50-1
Газомазутный водогрейный котел типа ПТВМ-50-1 (рис. 7,7) теплопроизводительностью 50 Гкал/ч хорошо зарекомендовал себя в эксплуатации.
7.4. Основные элементы котельного агрегата
Основными элементами котла являются: испарительные поверхности нагрева (экранные трубы и котельный пучок), пароперегреватель с регулятором перегрева пара, водяной экономайзер, воздухоподогреватель и тягодутьевые устройства.
Испарительные поверхности котла. Парогенерирующие (испарительные) поверхности нагрева отличаются друг от друга в котлах различных систем, но, как правило, располагаются в основном в топочной камере и воспринимают теплоту излучением - радиацией. Это - экранные трубы, а также устанавливаемый на выходе из топки небольших котлов конвективный (котельный) пучок (рис. 7.8, а ).
Рис. 7.8. Схемы расположения испарительных (а) и пароперегревательных {б) поверхностей барабанного котельного агрегата:
/ - контур обмуровки топки; 2, 3, 4 - панели бокового экрана; 5 - фронтовой экран; 6, 10, 12 - коллекторы экранов и конвективного пучка; 7 - барабан; 8 - фестон; 9 - котельный пучок; 11 - задний экран; 13 - настенный радиационный перегреватель; 14 - ширмовый полурадиационный перегреватель; 15 ~~ потолочный радиационный перегреватель; 16 ~ регулятор перегрева; 17 - отвод перегретого пара; 18 - конвективный перегреватель
Экраны котлов с естественной циркуляцией, работающих под разрежением в топке, выполняются из гладких труб (гладкотрубные экраны) с внутренним диаметром 40...60 мм. Экраны представляют собой ряд параллельно включенных вертикальных подъемных труб, соединенных между собой коллекторами (см. рис. 7.8,а ). Зазор между трубами обычно составляет 4...6 мм. Некоторые экранные трубы введены непосредственно в барабан и не имеют верхних коллекторов. Каждая панель экранов вместе с опускными трубами, вынесенными за пределы обмуровки топки, образует независимый контур циркуляции.
Трубы заднего экрана в месте выхода продуктов сгорания из топки разводятся в 2-3 ряда. Такая разрядка труб называется фестонированием. Она позволяет увеличить сечение для прохода газов, снизить их скорость и предотвращает забивание зазоров между трубами, затвердевшими при охлаждении расплавленными частицами золы, выносимыми газами из топки.
В парогенераторах большой мощности, кроме настенных, устанавливаются дополнительные экраны, делящие топку на отдельные отсеки. Эти экраны освещаются факелами с двух сторон и называются двусветными. Они воспринимают вдвое больше теплоты, чем настенные. Двусветные экраны, увеличивая общее тепловосприятие в топке, позволяют уменьшить ее размеры.
Пароперегреватели. Пароперегреватель предназначен для повышения температуры пара, поступающего из испарительной системы котла. Он является одним из наиболее ответственных элементов котельного агрегата. С увеличением параметров пара тепловосприятие пароперегревателей возрастает до 60 % всего тепловосприятия котлоагрегата. Стремление получить высокий перегрев пара вынуждает располагать часть пароперегревателя в зоне высоких температур продуктов сгорания, что, естественно, снижает прочность металла труб. В зависимости от определяющего способа передачи теплоты от газов пароперегреватели или отдельные их ступени (рис. 7.8,б )разделяются на конвективные, радиационные и полурадиационные.
Радиационные пароперегреватели выполняются обычно из труб диаметром 22...54 мм. При высоких параметрах пара их размещают в топочной камере, и большую часть теплоты они получают излучением от факела.
Конвективные пароперегреватели располагаются в горизонтальном газоходе или в начале конвективной шахты в виде плотных пакетов, образованных змеевиками с шагом по ширине газохода, равным 2,5...3 диаметрам трубы.
Конвективные пароперегреватели в зависимости от направления движения пара в змеевиках и потока дымовых газов могут быть противоточными, прямоточными и со смешанным направлением потоков.
Температура перегретого пара должна поддерживаться постоянной всегда, независимо от режима работы и нагрузки котлоагрегата, поскольку при ее понижении повышается влажность пара в последних ступенях турбины, а при повышении температуры сверх расчетной появляется опасность чрезмерных термических деформаций и снижения прочности отдельных элементов турбины. Поддерживают температуру пара на постоянном уровне с помощью регулирующих устройств - пароохладителей. Наиболее широко распространены пароохладители впрыскивающего типа, в которых регулирование производится путем впрыскивания обессоленной воды (конденсата) в поток пара. Вода при испарении отнимает часть теплоты у пара и снижает его температуру (рис. 7.9,а ).
Обычно впрыскивающий пароохладитель устанавливают между отдельными частями пароперегревателя. Вода впрыскивается через ряд отверстий по окружности сопла и разбрызгивается внутри рубашки, состоящей из диффузора и цилиндрической части, защищающей корпус, имеющий более высокую температуру, от попадания из него брызг воды во избежание образования трещин в металле корпуса из-за резкого изменения температуры.
Рис. 7.9. Пароохладители: а - впрыскивающий; б - поверхностный с охлаждением пара питательной водой; 1 – лючок для измерительных приборов; 2 – цилиндрическая часть рубашки; 3 - корпус пароохладителя; 4 - диффузор; 5 - отверстия для распыления воды в паре; 6 - головка пароохладителя; 7- трубная доска; 8 - коллектор; 9 - рубашка, препятствующая омыванию паром трубной доски; 10, 14 - трубы, подводящие и отводящие пар из пароохладителя; 11 - дистанционные перегородки; 12 - водяной змеевик; 13 - продольная перегородка, улучшающая омываниепаром змеевиков; 15, 16 - трубы, подводящие и отводящие питательную воду
В котлах средней паропроизводительности применяются поверхностные пароохладители (рис. 7.9,б ), которые обычно размещают при входе пара в пароперегреватель или между его отдельными частями.
К коллектору пар подводится и отводится через змеевики. Внутри коллектора расположены змеевики, по которым течет питательная вода. Температура пара регулируется количеством воды, поступающей в пароохладитель.
Водяные экономайзеры. Эти устройства предназначены для подогрева питательной воды перед ее поступлением в испарительную часть котлоагрегата за счет использования теплоты уходящих газов. Они расположены в конвективном газоходе и работают при относительно невысоких температурах продуктов сгорания (дымовых газов).
Рис. 7.10. Стальной змеевиковый экономайзер:
1 - нижний коллектор; 2 - верхний коллектор; 3 - опорная стойка; 4 - змеевики; 5 -- опорные балки (охлаждаемые); 6 - спуск воды
Наиболее часто экономайзеры (рис. 7.10) выполняют из стальных труб диаметром 28...38 мм, согнутых в горизонтальные змеевики и скомпонованных в пакеты. Трубы в пакетах располагаются в шахматном порядке довольно плотно: расстояние между осями соседних труб поперек потока дымовых газов составляет 2,0... 2,5 диаметра трубы, вдоль потока - 1,0... 1,5. Крепление труб змеевиков и их дистанционирование осуществляются опорными стойками, закрепленными в большинстве случаев на полых (для воздушного охлаждения), изолированных со стороны горячих газов балках каркаса.
В зависимости от степени подогрева воды экономайзеры делят из некипящие и кипящие. В кипящем экономайзере до 20 % воды может превращаться в пар.
Общее число параллельно работающих труб выбирают исходя из скорости воды не менее 0,5 м/с для некипящих и 1 м/с длякипящих экономайзеров. Эти скорости обусловлены необходимостью смывания со стенок труб пузырьков воздуха, способствующих коррозии и предотвращения расслоения пароводяной смеси, что может привести к перегреву слабо охлаждаемой паром верхней стенки трубы и ее разрыву. Движение воды в экономайзере - обязательно восходящее. Число труб в пакете.в горизонтальной плоскости выбирают исходя из скорости продуктов сгорания 6...9 м/с. Скорость эта определяется стремлением, с одной стороны, предохранить змеевики от заноса золой, а с другой - не допустить чрезмерного золового износа. Коэффициенты теплопередачи при этих условиях составляют обычно 50... 80 Вт/(м 2 - К). Для удобства ремонта и очистки труб от наружных загрязнений экономайзер разделяют на пакеты высотой 1,0... 1,5 м с зазорами между ними до 800 мм.
Наружные загрязнения с поверхности змеевиков удаляют путем периодического включения в работу системы дробеочистки, когда металлическая дробь пропускается (падает) сверху вниз через конвективные поверхности нагрева, сбивая налипшие на трубы отложения. Налипание золы может быть следствием выпадения росы из дымовых газов на относительно холодной поверхности труб. Это является одной из причин предварительного подогрева питательной воды, подаваемой в экономайзер, до температуры, превышающей точку росы паров воды или паров серной кислоты в топочных газах.
Верхние ряды труб экономайзера при работе котла на твердом топливе даже при относительно невысоких скоростях газов подвержены заметному золовому износу. Для предотвращения золового износа на эти трубы крепятся различного рода защитные накладки.
Воздухоподогреватели . Они устанавливаются для подогрева направляемого в топку воздуха в целях повышения эффективности горения топлива, а также в углеразмольные устройства.
Оптимальная величина подогрева воздуха в воздухоподогревателе зависит от пола сжигаемого топлива, его влажности, типа топочного устройства и составляет 200 °С для каменных углей, сжигаемых на цепной решетке (во избежание перегрева колосников), 250 °С для торфа, сжигаемого на тех же решетках, 350 ...450 °С для жидкого или пылевидного топлива, сжигаемого в камерных топках.
Для получения высокой температуры подогрева воздуха применяется двухступенчатый подогрев. Для этого воздухонагреватель делится на две части, между которыми («в рассечку») устанавливается часть водяного экономайзера.
Температура воздуха, поступающего в воздухоподогреватель, должна быть на 10... 15 °С выше точки росы дымовых газов во избежание коррозии холодного конца воздухоподогревателя в результате конденсации водяных паров, содержащихся в дымовых газах (при их соприкосновении с относительно холодными стенками воздухоподогревателя), а также забивания при этом проходных каналов для газов налипающей на влажные стенки золой. Эти условия можно соблюсти двумя путями: либо повышением температуры уходящих газов и потерей тепла, что экономически невыгодно, либо установкой специальных устройств для подогрева воздуха перед его поступлением в воздухоподогреватель. Для этого применяются специальные калориферы, в которых воздух подогревается отборным паром от турбин. В некоторых случаях подогрев воздуха осуществляется путем рециркуляции, т.е. часть нагретого в воздухоподогревателе воздуха возвращается через всасывающий патрубок к дутьевому вентилятору и смешивается с холодным воздухом.
По принципу действия воздухоподогреватели разделяются на рекуперативные и регенеративные. В рекуперативных воздухоподогревателях теплота от газов к воздуху передается через неподвижную разделяющую их металлическую стенку трубы. Как правило, это - стальные трубчатые воздухоподогреватели (рис. 7.11) с диаметром трубок 25...40 мм. Трубки в нем расположены обычно вертикально, внутри них движутся продукты сгорания; воздух омывает их поперечным потоком в несколько ходов, организуемых за счет перепускных воздуховодов (коробов) и промежуточных перегородок.
Газ в трубках движется со скоростью 8... 15 м/с, воздух между трубками - вдвое медленнее. Это позволяет иметь примерно равные коэффициенты теплоотдачи с обеих сторон стенки трубы.
Тепловое расширение воздухоподогревателя воспринимается линзовым компенсатором 6 (см. рис. 7.11), который устанавливается над воздухоподогревателем. С помощью фланцев он прикрепляется болтами снизу к воздухоподогревателю, а сверху - к переходной раме предыдущего газохода котлоагрегата.
Рис. 7.11. Трубчатый воздухоподогреватель:
1 – колонна; 2 – опорная рама; 3, 7 –воздухоперепускные короба; 4 –стальные
трубы 40?1,5 мм; 5, 9 –верхняя и нижняя трубные доски толщиной 20...25 мм;
6 – компенсатор тепловых расширений; 8 –промежуточная трубная доска
В регенеративном воздухоподогревателе теплота передается металлической насадкой, которая периодически нагревается газообразными продуктами сгорания, после чего переносится в поток воздуха и отдает ему аккумулированную теплоту. Регенеративный воздухоподогреватель котла представляет собой медленно вращающийся (3...5 об/мин) барабан (ротор) с набивкой (насадкой) из гофрированных тонких стальных листов, заключенный в неподвижный корпус. Секторными плитами корпус разделен на две части - воздушную и газовую. При вращении ротора набивка попеременно пересекает то газовый, то воздушный поток. Несмотря на то, что набивка работает в нестационарном режиме, подогрев идущего сплошным потоком воздуха осуществляется непрерывно без колебаний температуры. Движение газов и воздуха - противоточное.
Регенеративный воздухоподогреватель отличается компактностью (до 250 м 2 поверхности в 1 м 3 набивки). Он широко распространен на мощных энергетических котлоагрегатах. Недостатком его являют большие (до 10 %) перетоки воздуха в тракт газов, что ведет к перегрузкам дутьевых вентиляторов и дымососов и увеличению потерь с уходящими газами.
Тяго-дутьевые устройства котельного агрегата. Для того чтобы в топке котельного агрегата могло происходить горение топлива, в нее необходимо подавать воздух. Для удаления же из топки газообразных продуктов сгорания и обеспечения их прохождения через всю систему поверхностей нагрева котельного агрегата должна быть создана тяга.
В настоящее время различают четыре схемы подачи воздуха и отвода продуктов сгорания в котельных установках:
·с естественной тягой, создаваемой дымовой трубой, и естественным засасыванием воздуха в топку в результате разрежения в ней, создаваемого тягой трубы;
·искусственной тягой, создаваемой дымососом, и засасыванием воздуха в топку, в результате разрежения, создаваемого дымососом;
·искусственной тягой, создаваемой дымососом, и принудительной подачей воздуха в топку дутьевым вентилятором;
·наддувом, при котором вся котельная установка герметизируется и ставится под некоторое создаваемое дутьевым вентилятором избыточное давление, которого хватает на преодоление всех сопротивлений воздушного и газового трактов, что снимает необходимость установки дымососа.
Дымовая труба во всех случаях искусственной тяги или работы под наддувом сохраняется, но при этом основным назначением трубы становится вывод дымовых газов в более высокие слои атмосферы, чтобы улучшить условия рассеяния их в пространстве.
В котельных установках большой паропроизводительности повсеместно применяется искусственная тяга с искусственным дутьем.
Дымовые трубы бывают кирпичными, железобетонными и железными. Из кирпича обычно сооружают трубы высотой до 80 м. Более высокие трубы выполняют железобетонными. Железные трубы устанавливают только на вертикально-цилиндрических котлах, а также на мощных стальных водогрейных котлах башенного типа. Для уменьшения затрат обычно сооружают одну общую дымовую трубу для всей котельной или для группы котельных установок.
Принцип действия дымовой трубы остается одинаковым в установках, работающих с естественной и искусственной тягой, с той особенностью, что при естественной тяге дымовая труба должна преодолеть сопротивление всей котельной установки, а при искусственной ею создается дополнительная тяга к основной создаваемой дымососом.
На рис. 7.12 представлена схема котла с естественной тягой, создаваемой дымовой трубой 2 . Она заполнена дымовыми газами (продуктами сгорания) с плотностью r г, кг/м 3 , и сообщается через газоходы котла 1 с атмосферным воздухом, плотность которого r в, кг/м 3 . Очевидно, что r в > r г.
При высоте дымовой трубы Н разность давлений столбов воздуха gH r в и газов gН r г на уровне основания трубы, т. е. величина тяги DS, Н/м 2 , имеет вид
где р и Рг - плотности воздуха и газа при нормальных условиях, кг/м; В - барометрическое давление, мм рт. ст. Подставляя значения r в 0 и r г 0 , получаем
Из уравнения (7.2) следует, что естественная тяга тем больше чем больше высота трубы и температура дымовых газов и чем ниже температура окружающего воздуха.
Минимальная допустимая высота трубы регламентируется по санитарным соображениям. Диаметр трубы определяют по скорости истечения дымовых газов из нее при максимальной паропроизводительности всех подключенных к трубе котельных агрегатов. При естественной тяге эта скорость должна находиться в пределах 6... 10 м/с, не становясь менее 4 м/с во избежание нарушения тяга ветром (задувания трубы). При искусственной тяге скорость истечения дымовых газов из трубы обычно принимают равной 20...25м/с.
Рис. 7.12. Схема котла с естественной тягой, создаваемой дымовой трубой:
1 - котел; 2 - дымовая труба
К котельным агрегатам устанавливают центробежные дымососы и дутьевые вентиляторы, а для парогенераторов производительностью 950 т/ч и более - осевые многоступенчатые дымососы.
Дымососы размещают за котельным агрегатом, причем в котельных установках, предназначенных для сжигания твердого топлива, дымососы устанавливают после золоудаления, чтобы уменьшить количество летучей золы, проходящей через дымосос, и тем самым снизить истирание золой крыльчатки дымососа. н
Разрежение, которое должно быть создано дымососом, определяется суммарным аэродинамическим сопротивлением газового тракта котельной установки, которое должно быть преодолено при условии, что разрежение дымовых газов вверху топки будет равно 20...30 Па и будет создано необходимое скоростное давление на выходе дымовых газов из дымовой трубы. В небольших котельных установках разрежение, создаваемое дымососом, обычно составляет 1000...2000 Па, а в крупных установках 2500... 3000 Па.
Дутьевые вентиляторы, устанавливаемые перед воздухоподогревателем, предназначены для подачи в него неподогретого воздуха. Давление, создаваемое вентилятором, определяется аэродинамическим сопротивлением воздушного тракта, которое должно быть преодолено. Обычно оно складывается из сопротивлений всасывающего воздуховода, воздухоподогревателя, воздуховодов между воздухоподогревателем и топкой, а также сопротивления решетки и слоя топлива или горелок. В сумме эти сопротивления составляют 1000... 1500 Па для котельных установок малой производительности и возрастают до 2000...2500 Па для крупных котельных установок.
7.5. Тепловой баланс котельного агрегата
Тепловой баланс парового котла. Этот баланс заключается в установлении равенства между поступившим в агрегат при сжигании топлива количеством теплоты, называемым располагаемой теплотой Q р р , и суммой использованной теплоты Q 1 и тепловых потерь. На основе теплового баланса находят КПД и расход топлива.
При установившемся режиме работы агрегата тепловой баланс для 1 кг или 1 м 3 сжигаемого топлива следующий:
где Q р р - располагаемая теплота, приходящаяся на 1 кг твердого или жидкого топлива или 1 м 3 газообразного топлива, кДж/кг или кДж/м 3 ; Q 1 - использованная теплота; Q 2 - потери теплоты с уходящими из агрегата газами; Q 3 - потери теплоты от химической неполноты сгорания топлива (недожога); Q 4 - потери теплоты от механической неполноты сгорания; Q 5 - потери теплоты в окружающую среду через внешнее ограждение котла; Q 6 - потери теплоты со шлаком (рис. 7.13).
Обычно в расчетах используется уравнение теплового баланса, выраженное в процентах по отношению к располагаемой теплоте, принимаемой за 100 % (Q р р = 100):
где q 1 = Q 1 x 100/ Q р р; q 2 = Q 2 x 100/ Q р р и т.д.
Располагаемая теплота включает все виды теплоты, внесенной в топку вместе с топливом:
где Q н р – низшая рабочая теплота сгорания топлива; Q фт - физическая теплота топлива, включая полученную при подсушке и подогреве; Q в.вн - теплота воздуха, полученная им при подогреве вне котла; Q ф - теплота, вносимая в топку с распыливающим форсуночным паром.
Тепловой баланс котельного агрегата составляют относительно некоторого температурного уровня или, другими словами, относительно некоторой отправной температуры. Если в качестве этой температуры принять температуру воздуха, поступающего в котельный агрегат без подогрева вне котла, не учитывать теплоту парового дутья в форсунках и исключить величину Q фт, так как она пренебрежимо мала по сравнению с теплотой сгорания топлива, то можно принять
В выражении (7.5) не учитывается теплота, вносимая в топку горячим воздухом собственного котла. Дело в том, что это же количество теплоты отдается продуктами сгорания воздуху в воздухоподогревателе в пределах котельного агрегата, т. е. осуществляется своего рода рециркуляция (возврат) теплоты.
Рис. 7.13. Основные потери теплоты котельного агрегата
Использованная теплота Q 1 воспринимается поверхностями нагрева в топочной камере котла и его конвективных газоходах, передается рабочему телу и расходуется на подогрев воды до температуры фазового перехода, испарение и перегрев пара. Количество использованной теплоты, приходящейся на 1 кг или 1 м 3 сожженного топлива,
где D 1 , D н, D пр,- соответственно производительность парового котла (расход перегретого пара), расход насыщенного пара, расход котловой воды на продувку, кг/с; В - расход топлива, кг/с или м 3 /с; i пп, i ", i ", i пв - соответственно энтальпии перегретого пара, насыщенного пара, воды на линии насыщения, питательной воды, кДж/кг. При доле продувки и отсутствии расхода насыщенного пара формула (7.6) принимает вид
Для котельных агрегатов, которые служат для получения горячей воды (водогрейные котлы),
где G в - расход горячей воды, кг/с; i 1 и i 2 - соответственно удельные энтальпии воды, поступающей в котел и выходящей из него, кДж/кг.
Тепловые потери парового котла. Эффективность использования топлива определяется в основном полнотой сгорания топлива и глубиной охлаждения продуктов сгорания в паровом котле.
Потери теплоты с уходящими газами Q 2 являются наибольшими и определяются по формуле
где I ух - энтальпия уходящих газов при температуре уходящих газов q ух и избытке воздуха в уходящих газах a ух, кДж/кг или кДж/м 3 ; I хв - энтальпия холодного воздуха при температуре холодного воздуха t хв и избытке воздуха a хв; (100–q 4)- доля сгоревшего топлива.
Для современных котлов величина q 2 находится в пределах 5...8 % располагаемой теплоты, q 2 возрастает при увеличении q ух, a ух и объема уходящих газов. Снижение q ух примерно на 14... 15 °С приводит к уменьшению q 2 на 1 %.
В современных энергетических котельных агрегатах q ух составляет 100... 120 °С, в производственно-отопительных – 140 ... 180 °С.
Потери теплоты от химической неполноты сгорания топлива Q 3 - это теплота, которая осталась химически связанной в продуктах неполного сгорания. Ее определяют по формуле
где СО, Н 2 , СН 4 - объемное содержание продуктов неполного сгорания по отношению к сухим газам, %; цифры перед СО, Н 2 , СН 4 - уменьшенная в 100 раз теплота сгорания 1 м 3 соответствующего газа, кДж/м 3 .
Потери теплоты от химической неполноты сгорания обычно зависят от качества смесеобразования и локальных недостаточных количеств кислорода для полного сгорания. Следовательно, q 3 зависит от a т. Наименьшие значения a т , при которых q 3 практически отсутствуют, зависят от вида топлива и организации режима горения.
Химическая неполнота сгорания сопровождается всегда сажеобразованием, недопустимым в работе котла.
Потери теплоты от механической неполноты сгорания топлива Q 4 - это теплота топлива, которая при камерном сжигании уносится вместе с продуктами сгорания (унос) в газоходы котла или остается в шлаке, а при слоевом сжигании - и в продуктах, проваливающихся через колосниковую решетку (провал):
где a шл+пр, a ун – соответственно доля золы в шлаке, провале и уносе, определяется взвешиванием из золового баланса а шл+пр + a ун = 1 в долях единицы; Г шл+пр, Г ун – содержание горючих соответственно в шлаке, провале и уносе, определяется взвешиванием и дожиганием в лабораторных условиях проб шлака, провала, уноса, %; 32,7 кДж/кг - теплота сгорания горючих в шлаке, провале и уносе, по данным ВТИ; А р - зольность рабочей массы топлива, %. Величина q 4 зависит от метода сжигания и способа удаления шлака, а также свойств топлива. При хорошо отлаженном процессе горения твердого топлива в камерных топках q 4 » 0,3...0,6 для топлив с большим выходом летучих веществ, для антрацитового штыба (АШ) q 4 > 2%. При слоевом сжигании для каменных углей q 4 = 3,5 (из них 1 % приходится на потери со шлаком, а 2,5 % - с уносом), для бурых - q 4 = 4%.
Потери теплоты в окружающую среду Q 5 зависят от площади наружной поверхности агрегата и разности температур поверхности и окружающего воздуха (q 5 » 0,5... 1,5 %).
Потери теплоты со шлаком Q 6 происходят в результате удаления из топки шлака, температура которого может быть достаточно высокой. В пылеугольных топках с твердым шлакоудалением температура шлака 600...700°С, а с жидким - 1500... 1600°С.
Эти потери рассчитывают по формуле
где с шл - теплоемкость шлака, зависящая от температуры шлака t шл. Так, при 600°С с шл = 0,930 кДж/(кгxК), а при 1600°С с шл = 1,172 кДж/(кгxК).
Коэффициент полезного действия котла и расход топлива. Совершенство тепловой работы парового котла оценивается коэффициентом полезного действия брутто h к бр, %. Так, по прямому балансу
где Q к - теплота, полезно отданная котлу и выраженная через тепловосприятие поверхностей нагрева, кДж/с:
где Q ст - теплосодержание воды или воздуха, подогреваемых в котле и отдаваемых на сторону, кДж/с (теплота продувки учитывается только для D пр > 2 % от D ).
Коэффициент полезного действия котла можно рассчитывать и по обратному балансу:
Метод прямого баланса менее точен в основном из-за трудностей при определении в эксплуатации больших масс расходуемого топлива. Тепловые потери определяются с большей точностью, поэтому метод обратного баланса нашел преимущественное распространение при определении КПД.
Кроме КПД брутто, используется КПД нетто, показывающий эксплуатационное совершенство агрегата:
где q с.н - суммарный расход теплоты на собственные нужды котла, т. е. расход электрической энергии на привод вспомогательных механизмов (вентиляторов, насосов и т.д.), расход пара на обдувку и распыл мазута, подсчитанные в процентах от располагаемой теплоты.
Из выражения (7.13) определяется расход подаваемого в топку топлива B кг/с,
Так как часть топлива теряется из-за механического недожога, то при всех расчетах объемов воздуха и продуктов сгорания, а также энтальпий используется расчетный расход топлива B р , кг/с, учитывающий механическую неполноту сгорания:
При сжигании в котлах жидкого и газообразного топлив Q 4 = 0
Контрольные вопросы
1. Как классифицируются котельные агрегаты и каково их назначение?
2. Назовите основные виды котельных агрегатов и перечислите их основные элементы.
3. Опишите испарительные поверхности котла, перечислите виды пароперегревателей и способы регулирования температуры перегретого пара.
4. Какие виды водяных экономайзеров и воздухоподогревателей используются в котлах? Расскажите о принципах их устройства.
5. Как осуществляются подача воздуха и удаление дымовых газов в котельных агрегатах?
6. Расскажите о назначении дымовой трубы и об определении ее самотяги; укажите виды дымососов, применяемых в котельных установках.
7. Что такое тепловой баланс котельного агрегата? Перечислите потери теплоты в котле и укажите их причины.
8. Как определяется КПД котельного агрегата?
Котельная установка состоит из котла и вспомогательного оборудо вания. Устройства, предназначенные для получения пара или горячей воды повышенного давления за счет теплоты, выделяемой при сжигании топлива, или теплоты, подводимой от посторонних источников (обычно с горячими газами), называют котельными агрегатами .
Они подразделяются соответственно на котлы паровые и котлы водогрейные . Котельные агрегаты, использующие (т.е. утилизирующие) теплоту отходящих из печей газов или других основных и побочных продуктов различных технологических процессов, называют котламиутилизаторами .
В состав котла входят: топка, пароперегреватель, экономайзер, воздухоподогреватель, каркас, обмуровка, тепловая изоляция, обшивка. Вспомогательным оборудованием считают: тягодутьевые машины, устройства очистки поверхностей нагрева, топливоприготовления и топливоподачи, оборудование шлако- и золоудаления, золоулавливающие и другие газоочистительные устройства, газовоздухопроводы, трубопроводы воды, пара и топлива, арматуру, гарнитуру, автоматику, приборы и устройства контроля и защиты, водоподготовительное оборудование и дымовую трубу.
К арматуре относят регулирующие и запорные устройства, предохранительные и водопробные клапаны, манометры, водоуказательные приборы.
В гарнитуру входят лазы, гляделки, люки, шиберы, заслонки. Здание, в котором располагаются котлы, называют котельной .
Комплекс устройств, включающий в себя котельный агрегат и вспомогательное оборудование, называют котельной установкой . В зависимости от вида сжигаемого топлива и других условий некоторые из указанных элементов вспомогательного оборудования могут отсутствовать. Котельные установки, снабжающие паром турбины тепловых электрических
станций, называют энергетическими . Для снабжения паром производственных потребителей и отопления зданий в ряде случаев создают специальные производственные и отопительные котельные установки.
В качестве источников теплоты для котельных установок используются природные и искусственные топлива (каменный уголь, жидкие и газообразные продукты нефтехимической переработки, природный и доменный газы и др.), отходящие газы промышленных печей и других устройств, солнечная энергия, энергия деления ядер тяжелых элементов (урана, плутония) и т.д.
Технологическая схема котельной установки с барабанным паровым котлом, работающим на пылевидном угле, приведена на рис. 5. Топливо с угольного склада после дробления подается конвейером в бункер сырого угля 1 , из которого направляется в систему пылеприготовления, имеющую углеразмольную мельницу 2. Пылевидное топливо с помощью специального вентилятора 3 транспортируется по трубам в воздушном потоке к горелкам 4 топки котла 5, находящегося в котельной 14. К горелкам подводится также вторичный воздух дутьевым вентилятором 13 (обычно через воздухоподогреватель 10 котла). Вода для питания котла подается в его барабан 7 питательным насосом 12 из бака питательной воды 11 , имеющего деаэрационное устройство. Перед подачей воды в барабан она подогревается в водяном экономайзере 9 котла. Испарение воды происходит в трубной системе 6 . Сухой насыщенный пар из барабана поступает в пароперегреватель 8, затем направляется к потребителю.
Рисунок 5 - Технологическая схема котельной установки:
а - водяной тракт; б - перегретый пар; в - топливный тракт; г - путь движения
воздуха; д - тракт продуктов сгорания; е - путь золы и шлака; 1 - бункер
топлива; 2 - углеразмольная мельница; 3 - мельничный вентилятор;
4 - горелка;
5 - контур топки и газоходов котельного агрегата; 6 - экраны топки; 7 - барабан;
8 - пароперегреватель; 9 - водяной экономайзер; 10 - воздухоподогреватель;
11 - бак запаса воды с деаэрационным устройством;
12 - питательный
насос; 13 - вентилятор; 14 - контур здания котельной (помещения
котельного отделения); 15 - золоулавливающее устройство;
16 - дымосос;
17 - дымовая труба; 18 - насосная для откачки золошлаковой пульпы
Топливно-воздушная смесь, подаваемая горелками в топочную камеру (топку) парового котла, сгорает, образуя высокотемпературный (1500 °С) факел, излучающий тепло на трубы 6, расположенные на внутренней поверхности стен топки. Это - испарительные поверхности нагрева, называемые экранами . Отдав часть теплоты экранам, топочные газы с температурой около 1000 °С проходят через верхнюю часть заднего экрана, трубы которого здесь расположены с большими промежутками (эта часть носит название фестона ), и омывают пароперегреватель. Затем продукты сгорания движутся через водяной экономайзер, воздухоподогреватель и покидают котел с температурой, несколько превышающей 100 °С. Уходящие из котла газы очищаются от золы в золоулавливающем устройстве 15 и дымососом 16 выбрасываются в атмосферу через дымовую трубу 17. Уловленная из дымовых газов пылевидная зола и выпавший в нижнюю часть топки шлак удаляются, как правило, в потоке воды по каналам, а затем образующаяся пульпа откачивается специальными багерными насосами 18 и удаляется по трубопроводам.
На рисунке 5 показано, что барабанный котельный агрегат состоит из топочной камеры и газоходов, барабана, поверхностей нагрева, находящихся под давлением рабочей среды (воды, пароводяной смеси, пара), воздухоподогревателя, соединительных трубопроводов и воздуховодов. Поверхности нагрева, находящиеся под давлением, включают в себя водяной экономайзер, испарительные элементы, образованные в основном экранами топки и фестоном, и пароперегреватель. Все поверхности нагрева котла, в том числе и воздухоподогреватель, как правило, трубчатые. Лишь некоторые мощные паровые котлы имеют воздухоподогреватели иной конструкции. Испарительные поверхности подключены к барабану и вместе с опускными трубами, соединяющими барабан с нижними коллекторами экранов, образуют циркуляционный контур . В барабане происходит разделение пара и воды; кроме того, большой запас воды в нем повышает надежность работы котла. Нижнюю трапециевидную часть топки котельного агрегата (см. рис. 5) называют холодной воронкой - в ней охлаждается выпадающий из факела частично спекшийся зольный остаток, который в виде шлака проваливается в специальное приемное устройство. Газомазутные котлы не имеют холодной воронки. Газоход, в котором расположены водяной экономайзер и воздухоподогреватель, называют конвективным (конвективная шахта ), в нем теплота передается воде и воздуху в основном конвекцией. Поверхности нагрева, встроенные в этот газоход и называемые хвостовыми , позволяют снизить температуру продуктов сгорания от 500-700 °С после пароперегревателя почти до 100 °С, т.е. полнее использовать теплоту сжигаемого топлива.
Вся трубная система и барабан котла поддерживаются каркасом, состоящим из колонн и поперечных балок. Топка и газоходы защищены от наружных теплопотерь обмуровкой - слоем огнеупорных и изоляционных материалов. С наружной стороны обмуровки стенки котла имеют газоплотную обшивку стальным листом с целью предотвращения присосов в топку избыточного воздуха и выбивания наружу запыленных горячих продуктов сгорания, содержащих токсичные компоненты.
Российское акционерное общество энергетики и электрификации
«ЕЭС РОССИИ»
МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОРГАНИЗАЦИИ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ ПОВЕРХНОСТЕЙ НАГРЕВА КОТЛОВ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ
РД 34.26.609-97
Срок действия установлен
с 01.06.98
РАЗРАБОТАНО Департаментом Генеральной инспекции по эксплуатации электростанций и сетей РАО «ЕЭС России»
ИСПОЛНИТЕЛЬ В.К. Паули
СОГЛАСОВАНО с Департаментом науки и техники, Департаментом эксплуатации энергосистем и электростанций, Департаментом технического перевооружения, ремонта и машиностроения «Энергореновация»
УТВЕРЖДЕНО РАО "ЕЭС России" 26.02.97
Вице-президент О.В. Бритвин
Настоящими Методическими указаниями устанавливается порядок организации технического обслуживания поверхностей нагрева котлов тепловых электростанций с целью введения в эксплуатационную практику эффективного малозатратного механизма обеспечения надежности поверхностей нагрева котлов.
I. Общие положения
Эффективный малозатратный механизм обеспечения надежности поверхностей нагрева котлов в первую очередь предполагает исключение отклонений от требований ПТЭ и другой НТД и РД при их эксплуатации, то есть существенное повышение уровня эксплуатации. Другое эффективное направление - это введение в практику эксплуатации котлов системы профилактического технического обслуживания поверхностей нагрева. Необходимость введения такой системы обусловлена рядом причин:
1. После проведения плановых ремонтов в эксплуатации остаются трубы или их участки, которые из-за неудовлетворительных физико-химических свойств или возможного развития дефектов металла попадают в группу "риска", что приводит к их последующему повреждению и остановам котлов. Кроме того, это могут быть проявления недостатков изготовления, монтажа и ремонта.
2. В процессе эксплуатации группа "риска" пополняется за счет недостатков эксплуатации, выраженных нарушениями температурного и водно-химического режимов, а также недостатками в организации защиты металла поверхностей нагрева котлов при длительных простоях из-за несоблюдения требований консервации оборудования.
3. По сложившейся практике на большинстве электростанций при аварийных остановах котлов или энергоблоков из-за повреждений поверхностей нагрева проводится только восстановление (или отглушение) поврежденного участка и устранение сопутствующих дефектов, а также дефектов на других участках оборудования, которые препятствуют пуску или нормальной дальнейшей эксплуатации. Такой подход, как правило, приводит к тому, что повреждения повторяются и происходят аварийные или неплановые остановы котлов (энергоблоков). В то же время с целью поддержания надежности поверхностей нагрева на допустимом уровне в плановые ремонты котлов выполняются специальные меры, включающие в себя: замену в целом отдельных поверхностей нагрева, замену их блоков (участков), замену отдельных элементов (труб или участков труб).
При этом используются различные методы расчета ресурса металла труб, по которым планируется их замена, однако в большинстве случаев основными критериями замены является не состояние металла, а частота повреждений, приходящихся на одну поверхность. Такой подход приводит к тому, что в ряде случаев происходит необоснованная замена металла, который по своим физико-химическим свойствам соответствует требованиям длительной прочности и мог бы еще оставаться в эксплуатации. А так как причина ранних повреждений в большинстве случаев остается неустановленной, то она снова примерно через такой же период эксплуатации проявляется и вновь ставит задачи замены тех же поверхностей нагрева.
Этого можно избежать, если комплексно применить методологию технического обслуживания поверхностей нагрева котлов, которая должна включать в себя следующие постоянно используемые составляющие:
1. Учет и накопление статистики повреждаемости.
2. Анализ причин и их классификация.
3. Прогнозирование предполагаемых повреждений на основе статистико-аналитического подхода.
4. Дефектация инструментальными методами диагностики.
5. Составление ведомостей объемов работ на ожидаемый аварийный, неплановый или плановый кратковременный останов котла (энергоблока) для текущего ремонта второй категории.
6. Организация подготовительных работ и входной контроль основных и вспомогательных материалов.
7. Организация и проведение намеченных работ по восстановительному ремонту, профилактической диагностике и дефектации визуальными и инструментальными методами и превентивной замене участков поверхностей нагрева.
8. Контроль за проведением и приемка поверхностей нагрева после выполнения ремонтных работ.
9. Контроль (мониторинг) за эксплуатационными нарушениями, разработка и принятие мер по их предотвращению, совершенствование организации эксплуатации.
В той или иной степени поэлементно все составляющие методологии технического обслуживания на электростанциях используются, однако комплексного применения в достаточной степени еще нет. В лучшем случае производится серьезная выбраковка при проведении плановых ремонтов. Однако практика показывает необходимость и целесообразность введения системы профилактического технического обслуживания поверхностей нагрева котлов в межремонтный период. Это позволит в самый короткий срок существенно повысить их надежность при минимальных затратах средств, труда и металла.
Согласно основным положениям "Правил организации технического обслуживания и ремонта оборудования, зданий и сооружений электростанций и сетей" (РДПр 34-38-030-92) техническое обслуживание и ремонт предусматривают выполнение комплекса работ, направленного на обеспечение исправного состояния оборудования, надежной и экономичной его эксплуатации, проводимых с определенной периодичностью и последовательностью, при оптимальных трудовых и материальных затратах. При этом техническое обслуживание действующего оборудования электростанций рассматривается как выполнение комплекса мероприятий (осмотр, контроль, смазка, регулировка и т.п.), не требующих вывода его в текущий ремонт. В то же время в ремонтном цикле предусматривается Т2 - текущий ремонт второй категории с кратковременным плановым остановом котла или энергоблока. Количество, сроки и продолжительность остановов для Т2 планируются электростанциями в пределах норматива на Т2, который составляет 8-12 дополнительных суток (по частям) в год в зависимости от типа оборудования.
В принципе Т2 - это время, предоставляемое электростанции в межремонтный период для устранения накапливающихся в процессе эксплуатации мелких неисправностей. Но при этом, понятно, должно проводиться и техническое обслуживание ряда ответственных или "проблемных", имеющих сниженную надежность, узлов. Однако на практике из-за стремления обеспечить выполнение заданий по рабочей мощности в подавляющем большинстве случаев лимит Т2 оказывается исчерпан неплановыми остановами, при которых прежде всего ремонтируется поврежденный элемент и устраняются дефекты, препятствующие пуску и дальнейшей нормальной эксплуатации. Для целевого технического обслуживания времени не остается и не всегда готовятся и имеются ресурсы.
Сложившееся положение можно исправить, если принять как аксиому и использовать в практике следующие выводы:
Поверхности нагрева, как важный элемент, определяющий надежность котла (энергоблока), нуждаются в профилактическом техническом обслуживании;
Планирование работ должно производиться не только под зафиксированную в годовом графике дату, но и под факт непланового (аварийного) останова котла или энергоблока;
Регламент технического обслуживания поверхностей нагрева и объем предстоящих работ должен быть предопределен и доведен до всех исполнителей заранее не только до даты ожидаемого по плану останова, но и аналогично заблаговременно к любому возможному ближайшему аварийному (неплановому) останову;
Независимо от формы останова должен быть предопределен сценарий совмещения ремонтно-восстановительных, профилактических и диагностических работ.
II. Система статистического контроля надежности поверхностей нагрева котлов ТЭС
В управлении надежностью энергетического оборудования (в данном случае котлов) статистика повреждаемости играет существенную роль, так как позволяет получить всестороннюю характеристику надежности объекта.
Использование статистического подхода проявляется уже на первом этапе планирования мероприятий, направленных на повышение надежности поверхностей нагрева. Здесь статистика повреждаемости выполняет задачу прогнозирования критического момента как одного из признаков, определяющих необходимость принятия решения на замену поверхности нагрева. Однако анализ показывает, что упрощенный подход к определению критического момента статистики повреждаемости зачастую приводит к необоснованным заменам труб поверхностей нагрева, которые еще не исчерпали свой ресурс.
Поэтому важной частью всего комплекса задач, входящих в систему профилактического технического обслуживания, является составление оптимального объема конкретных работ, направленных на исключение повреждений поверхностей нагрева в условиях нормальной регламентной эксплуатации. Ценность технических средств диагностики несомненна, однако на первом этапе более целесообразен статистико-аналитический подход, который позволяет определить (очертить) границы и зоны повреждаемости и тем самым свести до минимума затраты средств и ресурсов на следующих этапах дефектации и профилактических превентивных замен труб поверхностей нагрева.
Для повышения экономической эффективности планирования объемов замены поверхностей нагрева необходимо учитывать основную цель статистического метода - повышение обоснованности выводов за счет использования вероятностной логики и факторного анализа, которые на основе совмещения пространственных и временных данных позволяют построить методологию повышения объективности определения критического момента на основании статистически связанных признаков и факторов, скрытых от непосредственного наблюдения. С помощью факторного анализа должна не просто устанавливаться связь событий (повреждений) и факторов (причин), но и определяться мера этой связи и выявляться основные факторы, лежащие в основе изменений надежности.
Для поверхностей нагрева важность этого вывода обусловлена тем, что причины повреждаемости действительно носят многофакторную природу и большое количество классификационных признаков. Поэтому уровень применяемой статистической методологии должны определять многофакторность, охват количественных и качественных показателей и постановка задач под желаемые (ожидаемые) результаты.
Прежде всего надежность следует представить в виде двух составляющих:
конструкционная надежность, определяемая качеством проектирования и изготовления, и эксплуатационная надежность, определяемая условиями эксплуатации котла в целом. Соответственно и статистика повреждаемости должна исходить также из двух составляющих:
Статистика первого рода - изучение опыта эксплуатации (повреждаемости) однотипных котлов других электростанций для представления очаговых зон на подобных котлах, что позволит отчетливо вычленить конструктивные недостатки. И в то же время это даст возможность увидеть и очертить для собственных котлов вероятностные очаговые зоны повреждаемости, по которым затем целесообразно "пройтись", наряду с визуальной дефектацией, средствами технической диагностики;
Статистика второго рода - обеспечение учета повреждений на собственных котлах. При этом целесообразно вести фиксированный учет повреждаемости на вновь устанавливаемых участках труб или участках поверхностей нагрева, который поможет выявить скрытые причины, приводящие к повторению повреждения через сравнительно короткое время.
Ведение статистики первого и второго рода обеспечит нахождение зон целесообразности применения средств технической диагностики и превентивной замены участков поверхностей нагрева. При этом необходимо вести также и целевую статистику - учет мест, отдефектованных визуально и средствами инструментальной и технической диагностики.
Методология использования статистических методов выделяет в себе следующие направления:
Описательная статистика, включающая в себя группировку, графическое представление, качественное и количественное описание данных;
Теория статистического вывода, используемая в исследованиях для предсказания результатов по данным обследования;
Теория планирования эксперимента, служащая для обнаружения причинных связей между переменными состояния исследуемого объекта на основе факторного анализа.
На каждой электростанции статистические наблюдения должны вестись по специальной программе, представляющей собой систему статистического контроля надежности - ССКН. В программе должны содержаться конкретные вопросы, на которые необходимо дать ответ в статистическом формуляре, а также обосновываются вид и метод проведения наблюдения.
Программа, характеризующая главную цель статистического исследования, должна носить комплексный характер.
Статистическая система контроля надежности должна включать в себя процесс накопления сведений о повреждениях, их систематизацию и нанесение на формуляры поверхностей нагрева, которые заведены независимо от ремонтных формуляров для имеющих повреждаемость поверхностей. В приложениях 1 и 2 для примера приведены формуляры конвективного и ширмового пароперегревателей. Формуляр представляет собой вид по развернутой части поверхности нагрева, на которой отмечается место повреждения (х) и ставится индекс, например 4-1, где первая цифра означает порядковый номер события, вторая цифра для конвективного пароперегревателя номер трубы в рядах при счете сверху, для ширмового пароперегревателя - номер ширмы по установленной для данного котла системе нумерации. В формуляре предусмотрена графа идентификации причин, куда вносятся результаты расследования (анализа) и графа мероприятий, направленных на предотвращение повреждений.
Использование средств вычислительной техники (персональных компьютеров, объединенных в локальную сеть) значительно повышает эффективность системы статистического контроля надежности поверхностей нагрева. При разработке алгоритмов и компьютерных программ ССКН целесообразно ориентироваться на последующее создание на каждой электростанции комплексной информационно-экспертной системы "Надежность поверхностей нагрева котлов".
Позитивные результаты статистико-аналитического подхода к дефектации и определению мест предполагаемых повреждений поверхностей нагрева заключаются в том, что статистический контроль позволяет определить очаги повреждений, а факторный анализ позволяет увязать их с причинами.
При этом надо учитывать, что метод факторного анализа имеет определенные слабые стороны, в частности, отсутствует однозначное математическое решение проблемы факторных нагрузок, т.е. влияния отдельных факторов на изменения различных переменных состояния объекта.
Это можно представить в виде примера: допустим, определили остаточный ресурс металла, т.е. имеем данные по математическому ожиданию повреждаемости, которое может быть выражено значением времени Т . Однако из-за случившихся или постоянно имеющих место нарушений условий эксплуатации, т.е. создания условий "риска" (например, нарушение водно-химического или температурного режима и т.п.), повреждения начинаются через время t , значительно меньшее по сравнению с ожидаемым (расчетно полученным).
Поэтому основная цель статистико-аналитического подхода заключается прежде всего в том, чтобы при сложившемся уровне повреждаемости в условиях существующего эксплуатационного и ремонтного обслуживания обеспечить реализацию программы профилактического технического обслуживания поверхностей нагрева котлов на основании обоснованной информации и экономически целесообразной базы для принятия решений.
III. Организация расследования причин повреждений (повреждаемости) поверхностей нагрева котлов ТЭС
Важной частью организации системы профилактического технического обслуживания поверхностей нагрева котлов является расследование причин повреждений, которое должно проводиться специальной профессиональной комиссией, утвержденной приказом по электростанции под председательством главного инженера. В принципе, комиссия к каждому случаю повреждения поверхности нагрева должна подходить как к чрезвычайному событию, сигнализирующему о недостатках в технической политике, проводимой на электростанции, о недостатках в управлении надежностью энергетического объекта и его оборудования.
В состав комиссии включаются: заместители главного инженера по ремонту и по эксплуатации, начальник котлотурбинного (котельного) цеха, начальник химического цеха, начальник лаборатории металлов, начальник ремонтного подразделения, начальник отдела планирования и подготовки ремонта, начальник цеха (группы) наладки и испытаний, начальник цеха тепловой автоматики и измерений и инспектор по эксплуатации (в отсутствие первых лиц в работе комиссии участвуют их заместители).
В своей работе комиссия руководствуется накопленным статистическим материалом, выводами факторного анализа, результатами идентификации повреждений, заключениями специалистов-металловедов, данными, полученными при визуальном осмотре и результатами дефектации средствами технической диагностики.
Основной задачей назначенной комиссии является расследование каждого случая повреждения поверхностей нагрева котла, составление и организация выполнения объема превентивных мер по каждому конкретному случаю и разработка мероприятий по предотвращению повреждений (согласно разделу 7 формы акта расследования), а также организация и контроль за их исполнением. С целью повышения качества расследования причин повреждаемости поверхностей нагрева котлов и их учета в соответствии с изменением N 4 к Инструкции по расследованию и учету технологических нарушений в работе электростанций, сетей и энергосистем (РД 34.20.101-93) расследованию подлежат разрывы и свищи поверхностей нагрева, происшедшие или выявленные во время работы, простоя, ремонта, опробования, профилактических осмотров и испытаний независимо от времени и способа их выявления.
Одновременно эта комиссия является экспертным советом электростанции по проблеме "Надежность поверхностей нагрева котлов". Члены комиссии обязаны изучать и пропагандировать среди подчиненных им инженерно-технических работников публикации, нормативно-техническую и распорядительную документацию, научно-технические разработки и передовой опыт, направленные на повышение надежности котлов. В задачу комиссии также входит обеспечение выполнения требований "Экспертной системы контроля и оценки условий эксплуатации котлов ТЭС" и устранение выявленных замечаний, а также составление долговременных программ повышения надежности, организация их исполнения и контроль.
IV. Планирование превентивных мер
Существенную роль в системе профилактического технического обслуживания играет:
1. Планирование оптимального (для кратковременного останова) объема превентивных мер в очаговых зонах (зонах риска), определенных статистической системой контроля надежности, который может включать в себя: замену прямых участков труб, переварку или усиление контактных и композитных стыков, переварку или усиление угловых стыков, замену гибов, замену участков в местах жестких креплений (сухарей), замены целых участков, восстановление ранее отглушенных труб и змеевиков и т.п.
2. Устранение повреждений, которые вызвали аварийный (неплановый) останов, или повреждений, выявленных во время и после останова котла.
3. Дефектация (визуальная и средствами технической диагностики), которая выявляет ряд дефектов и формирует определенный дополнительный объем, который должен разбиваться на три составляющие части:
а) дефекты, подлежащие устранению в предстоящий (ожидаемый), плановый или аварийный останов;
б) дефекты, требующие дополнительной подготовки, если они не вызывают близкой опасности возникновения повреждения (довольно условная оценка, необходимо оценивать с учетом профессиональной интуиции и известных методов оценки скорости развития дефекта), включаются в объем работ на следующий ближайший останов;
в) дефекты, которые не приведут к повреждениям в межремонтный период, но обязательно должны быть устранены в ближайшую ремонтную кампанию, включаются в объемы работ на предстоящий текущий или капитальный ремонт.
Наиболее распространенным инструментальным средством дефектации труб поверхностей нагрева становится метод диагностики, основанный на использовании магнитной памяти металла, который уже показал себя в качестве эффективного и простого средства выявления (отбраковки) труб и змеевиков, входящих в "группу риска". Так как при этом виде диагностики не требуется специальной подготовки поверхностей нагрева, он стал привлекать эксплуатационников и широко входить в практику.
Наличие в металле труб трещин, зарождающихся в местах повреждения окалины, выявляется также средствами ультразвукового контроля. Ультразвуковые толщиномеры позволяют своевременно обнаружить опасное утонение стенки металла труб. В определении степени воздействия на наружную стенку металла труб (коррозия, эрозия, абразивный износ, наклеп, окалинообразование и т.п.) существенную роль играет визуальная дефектация.
Наиболее важной частью этого этапа является определение количественных показателей, на которые необходимо ориентироваться при составлении объема на каждый конкретный останов: времени простоя и стоимости затрат на выполнение работ. Здесь необходимо прежде всего преодолеть ряд сдерживающих причин, которые в той или иной степени имеют место в реальной практической деятельности:
Психологический барьер у руководителей электростанций и начальников цехов, воспитанных в духе необходимости срочного возврата котла или энергоблока в работу, вместо того чтобы использовать этот аварийный или неплановый останов в достаточной для обеспечения надежности поверхностей нагрева степени;
Психологический барьер технических руководителей, не позволяющий развернуть объемную программу в короткий промежуток времени;
Неумение обеспечить мотивацию как собственного персонала, так и персонала подрядных организаций;
Недостатки в организации подготовительных работ;
Низкая коммуникабельность руководителей смежно взаимосвязанных подразделений;
Недостаток уверенности в возможности преодоления проблемы повреждаемости поверхностей нагрева превентивными мерами;
Недостаток организационных навыков и волевых качеств или квалификации у технических руководителей (главных инженеров, их заместителей и начальников подразделений).
Это дает возможность вести планирование физических объемов работ для котлов с повышенной повреждаемостью поверхностей нагрева под максимальную возможность их выполнения, учитывающую длительность останова, сменность и обеспечение условий безопасного совмещения работ.
Включение в систему профилактического технического обслуживания поверхностей нагрева котлов входного, текущего контроля и контроля качества выполненных ремонтных работ существенно повысит качество выполняемых профилактических и аварийно-восстановительных работ. Анализ причин повреждений показывает ряд существенных распространенных при выполнении ремонтных работ нарушений, наиболее значимые из которых по своим последствиям:
Входной контроль основных и сварочных материалов проводится с отступлениями от требований п. 3.3 и 3.4 Руководящего документа по сварке, термообработке и контролю трубных систем котлов и трубопроводов при монтаже и ремонте оборудования электростанций (РТМ-1с-93);
В нарушение требований п. 16.7 РТМ-1с-93 не выполняется контроль прогонкой шаром с целью проверки обеспечения заданного проходного сечения в сварных соединениях труб поверхностей нагрева;
В нарушение требований п. 3.1 РТМ-1с-93 к работе на поверхностях нагрева допускаются сварщики, не аттестованные на этот вид работ;
В нарушение требований п. 6.1 РТМ-1с-93 при аварийно-восстановительных работах корневой слой сварного шва выполняется ручной дуговой сваркой покрытыми электродами вместо аргоно-дуговой сварки. Подобные нарушения выявляются на ряде электростанций и при плановых ремонтах;
В нарушение требований п. 5.1 Руководства по ремонту котельного оборудования электростанций (технология и технические условия ремонта поверхностей нагрева котельных агрегатов) вырезка дефектных труб или их участков производится средствами огневой резки, а не механическим способом.
Все эти требования должны быть четко обозначены в местных инструкциях по ремонту и техническому обслуживанию поверхностей нагрева.
В программе превентивных мер следует предусматривать при замене участков труб или участков поверхностей нагрева в "зонах риска" использование марок сталей высшего класса по сравнению с установленными, так как это позволит в значительной степени повысить ресурс работы металла в зоне повышенной повреждаемости и выровнять ресурс поверхности нагрева в целом. Например, использование жаропрочных аустенитных хромомарганцевых сталей (ДИ-59), отличающихся большей стойкостью к окалинообразованию, наряду с повышением надежности пароперегревателей позволит ослабить процесс абразивного износа элементов проточной части турбин.
V. Профилактические и предупредительные меры
Объем профилактических работ, выполняемых в кратковременный плановый для Т2 или аварийный останов не должен замыкаться только собственно на поверхности нагрева котла. Одновременно должно производиться выявление и устранение дефектов, напрямую или косвенно влияющих на надежность поверхностей нагрева.
В это время необходимо, максимально используя представленную возможность, провести комплекс проверочных мероприятий и конкретных мер, направленных на ликвидацию негативных технологических проявлений, снижающих надежность поверхностей нагрева. Исходя из состояния оборудования, уровня эксплуатации, технологических и конструктивных особенностей, для каждой электростанции перечень этих действий может быть свой, однако обязательными должны являться следующие работы:
1. Определение плотности трубной системы конденсатора и сетевых подогревателей с целью обнаружения и устранения мест попадания в конденсатный тракт сырой воды. Проверка плотности вакуумных гидрозатворов.
2. Проверка плотности арматуры на байпасе блочной обессоливающей установки. Контроль исправности устройств, препятствующих выносу фильтрующих материалов в тракт. Контроль фильтрующих материалов на замасливание. Проверка наличия масляной пленки на поверхности воды в баке нижних точек.
3. Обеспечение готовности подогревателей высокого давления к своевременному включению при пуске энергоблока (котла).
4. Устранение дефектов на пробоотборных устройствах и устройствах подготовки пробы конденсата, питательной воды и пара.
5. Устранение дефектов температурного контроля металла поверхностей нагрева, среды по тракту и газов в поворотной камере котла.
6. Устранение дефектов систем автоматического регулирования процесса горения и температурного режима. При необходимости улучшение характеристик регуляторов впрысков, питания котла и топлива.
7. Осмотр и устранение дефектов на системах пылеприготовления и пылеподачи. Осмотр и устранение прогаров на насадках газовых горелок. Подготовка к предстоящей растопке оттарированных на стенде мазутных форсунок.
8. Выполнение работ, направленных на снижение пароводяных потерь, снижение присосов воздуха в вакуумную систему, снижение присосов воздуха в топку и газовый тракт котлов, работающих под разряжением.
9. Осмотр и устранение дефектов обмуровки и обшивы котла, креплений поверхностей нагрева. Рихтовка поверхностей нагрева и устранение защемлений. Осмотр и устранение дефектов на элементах систем обдувки и дробеочистки поверхностей нагрева.
10. Для барабанных котлов, кроме того должно производиться:
Устранение нарушений в работе внутрибарабанных сепарационных устройств, которые могут приводить к уносу капель котловой воды с паром;
Устранение неплотностей конденсаторов собственного конденсата;
Подготовка условий, обеспечивающих подпитку котлов только обессоленной водой (ужесточение требования п. 1.5 Методических указаний по коррекционной обработке барабанных котлов давлением 3,9-13,8 МПа: РД 34.37.522-88);
Организация подачи фосфатов по индивидуальной схеме с целью обеспечения качества коррекционной обработки котловой воды (ужесточение требований п. 3.3.2 в РД 34.37.522-88 в связи с тем, что базовый режим однотипных котлов, как правило не обеспечивается);
Обеспечение исправности продувочных устройств.
11. Подготовка условий, обеспечивающих заполнение котлов для опрессовки и последующей растопки только обессоленной водой или конденсатом турбин. Перед растопкой барабанные котлы и прямоточные котлы, эксплуатируемые на гидразинном и гидразинно-аммиачном режимах, должны заполняться только деаэрированной водой. С целью удаления неконденсирующихся газов, способствующих образованию коррозионно-агрессивных примесей, заполнение перед растопкой прямоточных котлов, эксплуатируемых на нейтрально-кислородном и кислородно-аммиачном режимах, должно производиться в режиме деаэрации (ужесточение требований п. 4.3.5 ПТЭ).
12. При наружной водной отмывке поверхностей нагрева, используемой для подготовки их к ремонту, необходимо производить последующую сушку котла с целью предотвращения коррозии металла наружной поверхности труб. При наличии на электростанции газа, сушка производится растопкой котла на газе (на 1-2 часа), при отсутствии газа - тяго-дутьевыми механизмами при включении калориферов котла.
13. Важную роль в обеспечении надежности поверхностей нагрева котлов играет метрологическое обеспечение - калибровка средств измерений температуры среды по тракту, металла поверхностей нагрева и газов в поворотной камере. Калибровка перечисленных средств измерений (термопар, измерительных каналов и вторичных приборов, в том числе входящих в систему АСУ ТП) должна производиться по графику калибровки в соответствии с пп. 1.9.11. и 1.9.14 ПТЭ. Если эти требования ранее не выполнялись, то необходимо в остановы котлов (энергоблоков) проводить поэтапную калибровку измерительных средств перечисленных параметров, так как даже незначительные погрешности в сторону занижения показаний существенно влияют на снижение ресурса металла и, соответственно, снижают надежность поверхностей нагрева.
VI. Выводы
1. Серьезные финансовые затруднения всех электростанций отрасли не позволяют в достаточной степени решать вопросы своевременного воспроизводства основных фондов, важной задачей эксплуатационников становится целенаправленный поиск возможностей и методов сохранения ресурса и обеспечения надежной работы энергетического оборудования. Реальная оценка ситуации на электростанциях отрасли показывает, что далеко не все резервы и возможности в этом направлении исчерпаны. А внедрение в эксплуатационную практику комплексной системы профилактического технического обслуживания, вне всякого сомнения, позволит существенно снизить ремонтно-эксплуатационные затраты на производство электрической и тепловой энергии и обеспечить надежность поверхностей нагрева котлов ТЭС.
2. Наряду с выявлением и устранением повреждений труб поверхностей нагрева и предупреждающей превентивной заменой зон "риска", выявленных на основании статистико-аналитического подхода и дефектации (визуальной и инструментальной), в системе профилактического технического обслуживания значительная роль должна отводиться исключению (смягчению) негативных проявлений от недостатков организации эксплуатации. Поэтому программа профилактического технического обслуживания поверхностей нагрева котлов должна строиться по двум параллельным направлениям (приложение 3):
Обеспечение текущей (немедленной) надежности поверхностей нагрева котлов;
Создание условий, обеспечивающих длительную (перспективную) надежность (увеличение ресурса) поверхностей нагрева котлов.
3. В организации комплексной системы профилактического технического обслуживания поверхностей нагрева ведущее значение имеют знания в этой области руководителей, главных специалистов и инженерно-технических работников. Для расширения кругозора и учета в практической деятельности отраслевого опыта по обеспечению надежности поверхностей нагрева котлов целесообразно на каждой электростанции составить подборку материалов по проблеме и организовать их изучение соответствующим персоналом.
ПРИЛОЖЕНИЕ 1
Рис. 1. Формуляр повреждений КПП ВД котел № 1, нитка - А | Результаты расследования
(идентификации) повреждений
1. Дата. Позиция № 1-2. Бездеформационный разрыв прямого участка трубы из стали 12Х18Н12Т, раскрытие по верхней образующей вдоль трубы. Исследование вырезанного вблизи от места повреждения образца показало, что структура стали соответствует требованиям ТУ, но на внутренней поверхности отчетливо видны повреждения окалины с образованием продольных трещин, переходящих в металл. 2. Дата. Позиция № 2-1. Бездеформационный разрыв прямого участка трубы из стали 12Х18Н12Т, раскрытие по верхней образующей трубы. В зоне повреждения и на соседних трубах отчетливо видны следы наклепа и износа дробью. Металлографический анализ показал, что причиной разрыва трубы из аустенитной стали явился интенсивный наклеп дробью из-за отрыва рассекателя устройства верхнего заброса дроби. 3. Дата. Позиция № 3-6. Бездеформационный разрыв на нижней образующей трубы из стали 12Х1МФ. Исследование поврежденного участка показало значительную язвенную коррозию по нижней образующей внутренней поверхности трубы из-за неудовлетворительной сухой консервации при остановах котлоагрегата, усугубленной провисом змеевика из-за износа "петушков" подвесной системы. |
1. При каждом останове проводить поэтапный магнитный контроль труб выходных участков змеевиков. Отдефектованные трубы включать в ведомости технического обслуживания на каждый останов котлоагрегата. Разработать программу повышения качества оксидной защитной пленки: повышение качества водного и температурного режимов, освоение пароводокислородной обработки и пр.
2. С целью предотвращения повреждения аустенитных труб из-за интенсивного наклепа дробью при отрыве рассекателя остановки верхнего заброса обязать персонал перед проведением дробеочистки производить проверку исправности дробеметов (указания в инструкции вносятся в зависимости от конструкции, если она не позволяет, то проверяет ремонтный персонал при остановах). 3. В остановы котлоагрегатов осуществлять осмотр и восстановление креплений змеевиков пароперегревателя на подвесной системе заменой участков труб подвесной системы с "петушками" (стыки делаются выше и ниже пароперегревателя). Повысить качество "вакуумной сушки". Продумать целесообразность внедрения ПВКО. |
4. Дата. Позиция № 4-4. Разрыв трубы из стали 12Х1МФ в месте прохода через обмуровку между конвективной частью и "теплым ящиком". В месте разрыва значительная наружная коррозия металла. Причина повреждения: воздействие стояночной коррозии серной кислотой, образовывающейся при водных отмывках конвективной шахты перед выводом котла в плановые ремонты. | 4. С целью исключения наружной коррозии труб в местах прохода через обмуровку серной кислотой, образующейся при наружных отмывках поверхностей нагрева, ввести практику просушивания котла после каждой такой отмывки растопкой его на газе или горячим воздухом дутьевых вентиляторов при включенных калориферах. | |
5. Дата. Позиция № 5-2. Продольный разрыв по наружной образующей гиба ("калача"). Металлографический анализ показал, что при ремонте (дата) был установлен гиб, не прошедший аустенизацию после изготовления ремонтным персоналом (аналогичные нарушения могут быть и по вине заводов-изготовителей).6. Дата. Позиция № 6-1. Деформационный (пластичный) разрыв в районе контактного стыка. Металлографический анализ металла дефектного участка показал исчерпание ресурса длительной прочности в зоне термовлияния. Металлографический анализ металла дефектного участка показал исчерпание ресурса длительной прочности в зоне термовлияния. Металлографический анализ металла трубы на расстоянии один метр от места повреждения показал, что структура металла также не соответствует требованиям длительной прочности по ТУ. Данный змеевик расположен в разреженной части перегревательной поверхности, обусловленной недостатками конструкции в зоне стыка на коллекторе. | 5. Повысить качество входного контроля поставляемых с завода изделий. Не допускать установку гибов, не прошедших аустенизацию. Произвести проверку ремонтной документации, выявить всю партию неаустенизированных гибов и заменить в ближайшие остановы (или при ремонте).
6. Провести магнитный контроль труб, расположенных в разреженной части, по результатам дефектации произвести в первую очередь замену труб, подверженных максимальному влиянию температур, превышающих допустимый уровень. Остальные трубы зоны "газового коридора" заменить в ближайший плановый ремонт. Изучить опыт родственных электростанций и запросить завод-изготовитель о предоставлении информации по возможности реконструкции разреженной части в зонах стыков на коллекторах. |
|
7. Дата. Позиция № 7-3. Повреждение композитного сварного стыка. Расследование показало наличие защемления трубы в месте ее прохода через перегородку между конвективной шахтой и "теплым ящиком", вызванного "наплывами" бетона. | 7. Произвести осмотр всех мест прохода труб пароперегревателя через обмуровку, обнаруженные места защемлений очистить. Повысить качество обмуровочных работ, обеспечить необходимый контроль при приемке. |
ПРИЛОЖЕНИЕ 2
Результаты расследования (идентификации) повреждений 1. Дата. Позиция № 1-2. Деформационный (пластичный) разрыв прямого участка трубы. Металлографический анализ показал, что металл не соответствует требованиям ТУ из-за кратковременного перегрева. Отрезанный от коллекторов змеевик проверен прогонкой шара, который застрял в стыке поз.-а). Исследование стыка показало, что сварка стыка производилась при аварийном ремонте (дата) с нарушениями требований РТМ-1с-93с - корневой слой стыка вместо аргоно-дуговой сварки неплавящимся электродом был выполнен электродуговой сваркой покрытыми электродами, что привело к наличию провисов и наплывов, перекрывших сечение и приведших к перегреву металла. | Мероприятия по предотвращению повреждений 1. Установить порядок строгого соблюдения при ремонте поверхностей нагрева параграфа 6.1 РТМ-1с-93, который требует корневой слой сварного шва труб поверхностей нагрева выполнять только аргоно-дуговой сваркой неплавящимся электродом. К ремонту поверхностей нагрева допускать только обученных этому виду сварки и прошедших аттестацию сварщиков. Обязать сварщиков производить осмотр корневого слоя перед полной проваркой стыка. Лаборатории металлов и котлотурбинному (котельному) цеху при всех ремонтах осуществлять выборочный контроль. | |
Рис. 2. Формуляр повреждений ШПП. котлоагрегатов тепловых электростанций котел № 2, нитка – А | 2. Дата. Позиция № 2-6. Свищ в угловом стыке в месте приварки змеевика к коллектору. Визуальный осмотр показал низкое качество сварки (наплывы, непровары, подрезы), выполненной при ремонте (дата). Проверка сварочной документации показала, что работа выполнялась сварщиком, не имеющим допуска к этому виду работ. При контроле не были обнаружены явно видимые дефекты сварки. | 2. Произвести по ремонтной сварочной документации выявление всех стыков, выполненных этим сварщиком. Провести выборочный контроль качества других стыков, при неудовлетворительных результатах переварить все стыки. К сварочным работам на поверхностях нагрева допускать только аттестованных на этот вид работ сварщиков. |
3. Дата. Позиция № 3-4. Разрыв на прямом участке трубы на расстоянии одного метра от потолка (в зоне максимального перегрева) выходной части змеевика. Отрезанный от коллектора змеевик проверен прогонкой шара, который застрял в гибе поз.- б). Внутренний осмотр показал наличие на выпуклой образующей внутренней стенки гиба наплывов металла и сварочного грата. Анализ ремонтной документации показал, что в предыдущий плановый ремонт на этом змеевике производилась вырезка образца для металлографического исследования. Вырезка образца производилась с нарушением технологии - вместо механического способа использовалась огневая резка, что и привело к частичному перекрытию сечения трубы и последующему ее перегреву. | 3. Провести инструктаж и обучение сварщиков, выполняющих работы на поверхностях нагрева котлоагрегатов, порядку вырезки дефектных труб или их участков только средствами механической резки. Огневая резка может допускаться в виде исключения только в тесных и неудобных местах, а также в тех случаях, когда расположенные ниже участки трубы или змеевика удаляются. По ремонтной документации и опросом участников работ выявить все места, где работа производилась с подобными нарушениями. Произвести магнитный контроль этих труб с целью выявления наличия перегрева. При обнаружении труб "риска" их заменить. | |
4. Дата. Позиция № 4-2. Деформационный (пластичный) разрыв на прямом участке трубы выходной части змеевика на расстоянии одного метра от потолка. При выяснении причины разрыва выявлена продольная трещина (свищ) в месте приварки "сухаря" поз. - в), что из-за сокращения расхода пара в змеевике после зоны свища привело к перегреву и повреждению металла выходного участка в зоне максимальных температур. | 4. Учитывая, что появление трещин в местах приварки "сухарей" на ширмах этого котла участились, а металл змеевиков соответствует требованиям длительной прочности, целесообразно в ближайший плановый ремонт произвести замену участков труб в местах жесткого крепления "сухарями". С целью повышения надежности узла рассмотреть целесообразность его реконструкции. | |
5. Дата. Позиция № 5-3. Продольная трещина на гибе в зоне максимального тепловосприятия стенки трубы. Визуальный осмотр и металлографический анализ металла показали признаки высокотемпературной газовой коррозии. Осмотр соседних ширм показал наличие газовой коррозии и на них, что является характерным признаком неудовлетворительного топочного режима в условиях недостаточной оснащенности автоматизированным температурным контролем. | 5. С целью снижения влияния высокотемпературной газовой коррозии на лобовые участки ширм провести анализ состояния топочного режима при переходных и стационарных режимах, усилить контроль за соблюдением персоналом требований режимных карт. Систематически (ежесуточно) контролировать по диаграммам фактические температуры металла. Дооснастить термоконтроль ширм. |
ПРИЛОЖЕНИЕ 3
ПРОГРАММА ПРОФИЛАКТИЧЕСКОГО ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ ПОВЕРХНОСТЕЙ НАГРЕВА КОТЛОВ ТЭС
АЛГОРИТМ ОРГАНИЗАЦИИ ПРОФИЛАКТИЧЕСКОГО ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ ПОВЕРХНОСТЕЙ НАГРЕВА КОТЛОВ | |||||||
СТАТИСТИКО-АНАЛИТИЧЕСКИЙ ПРОЦЕССУчет и нанесение на формуляры мест повреждений и зон «риска» | |||||||
ФАКТОРНЫЙ АНАЛИЗ, ИДЕНТИФИКАЦИЯ ПОВРЕЖДЕНИЙ МЕТАЛЛА ТРУБАнализ повреждений металла и определение вызвавших их причин | |||||||
ТАКТИЧЕСКОЕ НАПРАВЛЕНИЕ ОБЕСПЕЧЕНИЯ ТЕКУЩЕЙ НАДЕЖНОСТИ (НЕМЕДЛЕННОЙ) | СТРАТЕГИЧЕСКОЕ НАПРАВЛЕНИЕ ОБЕСПЕЧЕНИЯ ДЛИТЕЛЬНОЙ НАДЕЖНОСТИ (ПЕРСПЕКТИВНОЙ) | ||||||
Составление ведомостей объема работ на ожидаемый аварийный, неплановый останов или на плановый останов-Т2 котла или энергоблока с учетом прогнозирования предполагаемых повреждений на основе статистико-аналитического подхода | Контроль за эксплуатационными нарушениями, разработка и принятие мер по их предотвращению. Совершенствование организации эксплуатации | ||||||
Организация подготовительных работ и входной контроль основных и сварочных материалов | Регулярное (через полгода) выполнение требований программы «Экспертной системы контроля и оценки условий эксплуатации котлов» | ||||||
Ожидание аварийного (непланового) останова или планового останова котла (энергоблока) на Т2 | Разработка и утверждение мероприятий по направлениям «Экспертной системы…», которые оценены ниже 0,8. Организация их выполнения | ||||||
Останов котла (энергоблока) При останове из-за обнаружения повреждения на поверхности нагрева или, если повреждение было выявлено после останова, организуется работа комиссии по расследованию причины | Формирование и привитие единой идеологии необходимости снижения общего числа остановов котлов (энергоблоков) с целью исключения факторов «риска» для металла в переходных режимах | ||||||
Организация и проведение намеченных работ по восстановительному ремонту, превентивной замене участков поверхностей нагрева, профилактической диагностике и дефектации визуальными и инструментальными методами | Формирование концепции «щадящей» эксплуатации котлов (энергоблоков):- исключение из регламента пусков практики «подхватов»,
Сведение к минимуму числа гидравлических опрессовок пароводяного тракта, |
||||||
- исключение из практики форсированных | |||||||
Контроль за проведением работ, приемка поверхностей нагрева после выполнения работ. Оформление ремонтной документации и результатов диагностики металла в зонах "риска". Подготовка ведомости объема превентивной замены и дефектации на следующий останов котла | (с целью ускорения допуска) расхолаживаний тракта котла водой,- полная автоматизация ведения температурного режима,
Внедрение химико-технологического мониторинга |
||||||
Выявление и устранение факторов, напрямую и косвенно влияющих на снижение текущей надежности | Уточнение программы предстоящих в перспективе замен поверхностей нагрева с учетом определения возможного ресурса | ||||||
поверхностей нагрева | металла инструментальными методами технической диагностики и физико- химического анализа образцов | ||||||
ПРИЛОЖЕНИЕ 4
1. Приказ РАО "ЕЭС России" от 14.01.97 № 11 «О некоторых итогах работы по повышению надежности котлов Рязанской ГРЭС».
2. ТУ 34-38-20230-94. Котлы паровые стационарные. Общие технические условия на капитальный ремонт.
3. ТУ 34-38-20220-94. Экраны гладкотрубные паровых стационарных котлов с естественной циркуляцией. Технические условия на капитальный ремонт.
4. ТУ 34-38-20221-94. Экраны гладкотрубные прямоточных паровых стационарных котлов. Технические условия на капитальный ремонт.
5. ТУ 34-38-20222-94. Пароперегреватели паровых стационарных котлов. Технические условия на капитальный ремонт.
6. ТУ 34-38-20223-94. Пароперегреватели промежуточные паровых стационарных котлов. Технические условия на капитальный ремонт.
7. ТУ 34-38-20219-94. Экономайзеры гладкотрубные стационарных паровых котлов. Технические условия на капитальный ремонт.
8. ТУ 34-38-20218-94. Экономайзеры мембранные стационарных паровых котлов. Технические условия на капитальный ремонт.
9. РД 34.30.507-92. Методические указания по предотвращению коррозионных повреждений дисков и лопаточного аппарата паровых турбин в зоне фазового перехода. М.: ВТИ им. Ф.Э. Дзержинского, 1993
10. РД 34.37.306-87. Методические указания по контролю состояния основного оборудования тепловых электрических станций; определению качества и химического состава отложений. М.: ВТИ им. Ф.Э. Дзержинского, 1993
11. Шицман М.Е., Мидлер Л.С., Тищенко Н.Д. Окалинообразование на нержавеющей стали в перегретом паре. Теплоэнергетика N 8. 1982.
12. Груздев Н.И., Деева З.В., Школьникова Б.Э., Сайчук Л.Е., Иванов Е.В., Мисюк А.В. О возможности развития хрупких разрушений поверхностей нагрева котла при нейтрально-окислительном режиме. Теплоэнергетика N 7. 1983.
13. Земзин В.Н., Шрон Р.З. Пути повышения эксплуатационной надежности и увеличения ресурса сварных соединений теплоэнергетического оборудования. Теплоэнергетика N 7. 1988.
14. Базар Р.Е., Малыгина А.А., Гецфрид Э.И Предупреждение повреждений сварных соединений труб ширмовых пароперегревателей. Теплоэнергетика N 7. 1988.
15. Чекмарев Б.А. Переносной автомат для сварки корня шва труб поверхностей нагрева. Энергетик N 10. 1988.
16. Сысоев И.Е. Подготовка котлов к ремонту. Энергетик N 8. 1989.
17. Кострикин Ю.М., Вайман А.Б., Данкина М.И., Крылова Е.П. Расчетные и экспериментальные характеристики фосфатного режима. Электрические станции N 10. 1991.
18. Сутоцкий Г.П., Верич В.Ф., Межевич Н.Е. О причинах повреждения экранных труб солевых отсеков котлов БКЗ-420-140 ПТ-2. Электрические станции N 11. 1991.
19. Гофман Ю.М. Диагностика работоспособности поверхностей нагрева. Электрические станции N 5. 1992.
20. Наумов В.П., Ременский М.А., Смирнов А.Н. Влияние дефектов сварки на эксплуатационную надежность котлов. Энергетик N 6. 1992.
21. Белов С.Ю., Чернов В.В. Температура металла ширм котла БКЗ-500-140-1 в начальный период эксплуатации. Энергетик N 8. 1992.
22. Ходырев Б.Н., Панченко В.В., Калашников А.И., Ямгуров Ф.Ф., Новоселова И.В., Фатхиева Р.Т Поведение органических веществ на разных стадиях водоподготовки.. Энергетик N 3. 1993.
23. Белоусов Н.П., Булавко А.Ю., Старцев В.И. Пути совершенствования водно-химических режимов барабанных котлов. Энергетик N 4. 1993.
24. Воронов В.Н., Назаренко П.Н., Шмелев А.Г. Моделирование динамики развития нарушений водно-химического режима. Теплоэнергетика N 11. 1993.
25. Холщев В.В. Теплохимические проблемы эксплуатации топочных экранов барабанного котла высокого давления. Электрические станции N 4. 1994.
26. Богачев А.Ф. Особенности коррозии аустенитных труб пароперегревателей. Теплоэнергетика N 1. 1995.
27. Богачев В.А., Злепко В.Ф. Применение магнитного метода контроля металла труб поверхностей нагрева паровых котлов. Теплоэнергетика N 4. 1995.
28. Манькина Н.Н., Паули В.К., Журавлев Л.С. Обобщение промышленного опыта внедрения пароводокислородной очистки и пассивации. Теплоэнергетика, № 10. 1996
29. Паули В.К. К оценке надежности энергетического оборудования. Теплоэнергетика N 12. 1996.
30. Паули В.К. Некоторые проблемы организации нейтрально-кислородного водного режима. Электрические станции N 12. 1996.
31. Штромберг Ю.Ю. Контроль металла на тепловых электростанциях. Теплоэнергетика N 12. 1996.
32. Дубов А.А. Диагностика котельных труб с использованием магнитной памяти металла. М.: Энергоатомиздат, 1995.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Статистическая характеристика котла при изменении температуры питательной воды
барабанный котел турбина аккумуляторный
В Процессе эксплуатации котла его производительность может изменяться в пределах, определяемых режимом работы потребителей. Могут меняться также температура питательной воды и воздушный режим топки. Каждому режиму работы котла соответствуют определенные значения параметров теплоносителей по водопаровому и газовому трактам, тепловых потерь и КПД. Одной из задач персонала является поддержание оптимального режима котла при данных условиях его работы, который соответствует максимально возможному значению КПД котла нетто. В связи с этим возникает необходимость определения влияния статических характеристик котла - нагрузки, температуры питательной воды, воздушного режима топки и характеристики топлива - на показатели его работы при изменении значений перечисленных параметров. В кратковременные периоды перехода работы котла от одного режима к другому изменение количества теплоты, а также запаздывание в системе его регулирования вызывают нарушение материального и энергетического балансов котла и изменение параметров, характеризующих его работу. Нарушение стационарного режима работы котла в переходные периоды может вызываться внутренними (для котла) возмущениями, а именно уменьшением относительного тепловыделения в топке и изменением ее. воздушного режима и режима подачи воды, и внешними возмущениями - изменением потребления пара и температуры питательной воды. Зависимости параметров от времени, характеризующие работу котла в переходный период, называют его динамическими характеристиками.
Зависимость параметров от температуры питательной воды. Существенно влияет на работу котла температура питательной воды, которая может изменяться в процессе эксплуатации в зависимости от режима работы турбин. Уменьшение температуры питательной воды при заданной нагрузке и неизменных прочих условиях определяет необходимость увеличения тепловыделения в топке, т.е. расхода топлива, и вследствие этого перераспределения передачи теплоты поверхностям нагрева котла. Температура перегрева пара в конвективном пароперегревателе возрастает за счет повышения температуры продуктов сгорания и их скорости, увеличивается температура подогрева воды и воздуха. Повышаются температура уходящих газов и их объем. Соответственно возрастает потеря с уходящими газами.
2 . Пуск барабанного котла
При пуске в результате неравномерного прогрева металла в поверхностях дополнительно возникают термические напряжения: у t = е t ·Е t ·?t
е t - коэффициент линейного расширения.
Е t - модуль упругости стали.
у t растёт с ростом и. Поэтому растопку ведут медленно и осторожно, чтобы скорость и термическое напряжение не превышало допустимых. , .Пусковая схема.
РКНП - регулировочный клапан непрерывной продувки.
В-воздушник.
рец. - линия рециркуляции.
Дренажи.
ПП - продувка пароперегревателя.
ГПЗ - главная паровая задвижка.
СП - соединительный паропровод.
РР - растопочный расширитель.
РРОУ - растопочная редукционно-охладительная установка.
К.С.Н. - коллектор собственных нужд.
К.О.П. - коллектор острого пара.
РПК - регулировочный питательный клапан.
РУ - растопочный узел.
ПМ - питательная магистраль.
Последовательность пуска
1. Внешний осмотр (поверхности нагрева, обмуровка, горелки, предохранительные клапаны, водоуказательные устройства, регулирующие органы, вентилятор и дымосос).
2. Закрывают дренажи. Открывают воздушник и продувку пароперегревателя.
3. Через нижние точки котел заполняют деаэрированной водой с температурой, соответствующей условию: (vу t).
4. Время заполнения 1-1,5 ч. Заполнение заканчивается, когда вода закрывает опускные трубы. При заполнении следят, чтобы < 40єC.
5. Включают дымосос и вентилятор и вентилируют топку и газоходы 10-15 мин.
6. Устанавливают разряжение на выходе из топки кг/м 2 , устанавливают расход.
7. Выделившаяся при сжигании топлива теплота расходуется на нагрев поверхностей нагрева, обмуровки, воды, на парообразование. С увеличением продолжительности растопки ^Q парообр. и vQ нагр.
8. При появлении пара из воздушников, их закрывают. Расхолаживание пароперегревателя производят растопочным паром, выпуская его через ПП. Сопротивление продувочной линии ~ > ^P б.
9. При Р = 0,3 МПа продувают нижние точки экранов и воздухоуказательные. При Р = 0,5 МПа, закрывают ПП, открывают ГПЗ-1 и прогревают СП, выпуская пар через растопочный расширитель.
10. Периодически подпитывают барабан водой и контролируют уровень воды.
11. Увеличивают расход топлива. єС/мин.
12. При Р = 1,1 МПа включают непрерывную продувку и используют линию рециркуляции (для защиты ЭКО от пережога).
13. При Р = 1,4 МПа закрывают растопочный расширитель и открывают растопочные редукционно-охладительные установки. Увеличивают расход топлива.
14. При Р = Р ном - 0,1 МПа и t п = t ном - 5єС проверяют качество пара, увеличивают нагрузку до 40%, открывают ГПЗ-2 и включают котел в коллектор острого пара.
15. Включают подачу основного топлива и увеличивают нагрузку до номинальной.
16. Переходят на питание котла через регулирующий питательный клапан и полностью загружают пароохладитель.
17. Включают автоматику.
3. Особенности пуска теплофикационных турбин
Пуск турбины с отбором пара производится в основном таким же образом, как и пуск чисто конденсационной турбины. Регулирующие клапаны части низкого давления (регулирование отбора) должны быть полностью открыты, регулятор давления выключен и задвижка на линии отбора закрыта. Очевидно, что при этих условиях любая турбина с отбором пара работает как чисто конденсационная и может быть пущена в ход описанным выше порядком. Однако следует обратить особое внимание на те дренажные линии, которых нет у конденсационной турбины, в частности, на дренаж линии отбора и предохранительного клапана. В течение всего времени, пока в камере отбора давление ниже атмосферного, эти дренажные линии должны быть открыты на конденсатор. После того как турбина с отбором пара развернута до полного числа оборотов, генератор синхронизирован, включен на сеть и принята некоторая нагрузка, можно включить в работу регулятор давления и медленно открывать запорную задвижку на линии отбора. С этого момента регулятор давления вступает в действие и должен поддерживать желаемое давление отбора. У турбин со связанным регулированием скорости и отбора переход от чисто конденсационного режима к работе с отбором пара обычно сопровождается только небольшим колебанием нагрузки. Однако при включении регулятора давления нужно тщательно следить за тем, чтобы перепускные клапаны не закрылись сразу полностью, так как это создаст в камере отбора резкое повышение (толчок) давления, которое может вызвать аварию турбины. У турбин с несвязанным регулированием каждый из регуляторов получает импульс под влиянием действия другого регулятора. Поэтому колебания нагрузки в момент перехода на работу с отбором пара могут быть более значительными. Пуск турбины с противодавлением обычно производится на выхлоп в атмосферу, для чего выхлопной клапан предварительно открывают от руки при закрытом клапане. В остальном руководствуются изложенными выше правилами пуска конденсационных турбин. Переключение с работы на выхлоп на работу с противодавлением (на производственную магистраль) обычно производится по достижении турбиной нормального числа оборотов. Для переключения сначала постепенно прикрывают выхлопной клапан, чтобы создать за турбиной противодавление, несколько превышающее противодавление в производственной магистрали, на которую будет работать турбина, а затем медленно открывают клапан этой магистрали. Клапан должен быть полностью закрыт к тому моменту, когда клапан производственной магистрали будет открыт полностью. Регулятор давления включают после того, как турбина примет небольшую тепловую нагрузку, а генератор будет присоединен к сети; включение обычно удобнее производить в момент, когда противодавление несколько ниже нормального. С момента, когда в выхлопном патрубке установится желаемое противодавление, скоростной регулятор выключается, и турбина начинает работать по тепловому графику под управлением регулятора давления.
4. А ккумулирующая способность котла
В работающем котлоагрегате тепло аккумулируется в поверхностях нагрева, в воде и паре, находящемся в объеме поверхности нагрева котла. При одинаковых производительности и параметрах пара больше тепла аккумулируется в барабанных котлоагрегатах, что объясняется прежде всего большим водяным объемом. Для барабанных котлоагрегатов 60-65% тепла аккумулируется в воде, 25-30% - в металле, 10-15% - в паре. Для прямоточных котлоагрегатов до 65% тепла аккумулируется в металле, остальные 35% - в паре и воде.
При снижении давления пара часть аккумулированного тепла высвобождается в связи с уменьшением температуры насыщения среды. При этом практически мгновенно получается дополнительное количество пара. Количество дополнительно получаемого пара при снижении давления на 1 МПа называется аккумулирующей способностью котлоагрегата :
где Q ак - высвобождаемое в котлоагрегате тепло; q - расход тепла на получение 1 кг пара.
Для барабанных котлоагрегатов с давлением пара свыше 3 МПа аккумулирующая способность может быть найдена из выражения
где r - скрытая теплота парообразования; G м - масса металла испарительных поверхностей нагрева; С м, С в - теплоемкость металла и воды; Dt н - изменение температуры насыщения при изменении давления на 1 МПа; V в, V п - водяной и паровой объемы котлоагрегата; - изменение плотности пара при снижении давления на 1 МПа; - плотность воды. Водяной объем котлоагрегата включает водяной объем барабана и циркуляционных контуров, в паровой объем входят объем барабана, объем пароперегревателя, а также объем пара в испарительных трубках.
Практическое значение имеет и допустимая величина скорости снижения давления, определяющая степень повышения паропроизводительности котлоагрегата.
Прямоточный котел допускает очень высокие скорости снижения давления. При скорости 4,5 МПа/мин может быть достигнуто увеличение паропроизводительности на 30-35%, но в течение 15-25 с. Барабанный котел допускает меньшую скорость снижения давления, что связано с набуханием уровня в барабане и опасностью парообразования в опускных трубах. При скорости снижения давления 0,5 МПа/мин барабанные котлы могут работать с увеличением паропроизводительности на 10-12% в течение 2-3 мин.
Размещено на Allbest.ru
...Подобные документы
Классификации паровых котлов. Основные компоновки котлов и типы топок. Размещение котла с системами в главном корпусе. Размещение поверхностей нагрева в котле барабанного типа. Тепловой, аэродинамический расчет котла. Избытки воздуха по тракту котла.
презентация , добавлен 08.02.2014
Паропроизводительность котла барабанного типа с естественной циркуляцией. Температура и давление перегретого пара. Башенная и полубашенная компоновки котла. Сжигание топлива во взвешенном состоянии. Выбор температуры воздуха и тепловой схемы котла.
курсовая работа , добавлен 16.04.2012
Назначение и основные типы котлов. Устройство и принцип действия простейшего парового вспомогательного водотрубного котла. Подготовка и пуск котла, его обслуживание во время работы. Вывод парового котла из работы. Основные неисправности паровых котлов.
реферат , добавлен 03.07.2015
Подготовка парового котла к растопке, осмотр основного и вспомогательного оборудования. Пусковые операции и включение форсунок. Обслуживание работающего котла, контроль за давлением и температурой острого и промежуточного пара, питательной воды.
реферат , добавлен 16.10.2011
Получение энергии в виде ее электрической и тепловой форм. Обзор существующих электродных котлов. Исследование тепломеханической энергии в проточной части котла. Расчет коэффициента эффективности электродного котла. Компьютерное моделирование процесса.
дипломная работа , добавлен 20.03.2017
Характеристики судовых паровых котлов. Определение объема и энтальпия дымовых газов. Расчет топки котла, теплового баланса, конвективной поверхности нагрева и теплообмена в экономайзере. Эксплуатация судового вспомогательного парового котла КВВА 6.5/7.
курсовая работа , добавлен 31.03.2012
Способы регулирования температуры воды в электрических водонагревателях. Методы интенсификации тепломассообмена. Расчет проточной части котла, максимальной мощности теплоотдачи конвектора. Разработка экономичного режима работы электродного котла в Matlab.
магистерская работа , добавлен 20.03.2017
Типы топок паровых котлов, расчетные характеристики механических топок с цепной решеткой. Расчет необходимого объема воздуха и объема продуктов сгорания топлива, составление теплового баланса котла. Определение температуры газов в зоне горения топлива.
методичка , добавлен 16.11.2011
Генерация насыщенного или перегретого пара. Принцип работы парового котла ТЭЦ. Определение КПД отопительного котла. Применение газотрубных котлов. Секционированный чугунный отопительный котел. Подвод топлива и воздуха. Цилиндрический паровой барабан.
реферат , добавлен 01.12.2010
Водоснабжение котельной, принцип работы. Режимная карта парового котла ДКВр-10, процесс сжигания топлива. Характеристика двухбарабанных водотрубных реконструированных котлов. Приборы, входящие в состав системы автоматизации. Описание существующих защит.