История создания систем счисления. Историческое развитие систем счисления

Наиболее совершенным принципом представления чисел является позиционный (поместный) принцип , согласно которому один и тот же числовой знак (цифра) имеет различные значения в зависимости от места, где он расположен.

Такая система счисления основывается на том, что некоторое число N единиц (основание СС) объединяются в одну единицу второго разряда, N единиц второго разряда объединяются в одну единицу третьего разряда и т. д.

Основанием систем счисления может быть любое число, больше единицы . К числу таких систем относится современная десятичная система счисления (с основанием N =10). В ней для обозначения первых десяти чисел служат цифры 0,…,9.

Несмотря на кажущуюся естественность такой системы, она явилась результатом длительного исторического развития.

Возникновение десятичной системы счисления связывают со счетом на пальцах. Имелись системы счисления и с другим основанием: 5, 6, 12 (счет дюжинами), 20 (следы такой системы сохранились во французском языке, например quatre – vingts, т. е. буквально четыре – двадцать, означает 80), 40, 60 и др.

При вычислениях на ПК применяется система счисления с основанием 2. Представление информации в двоичной системе использовалось человеком с давних времен. Так, жители островов Полинезии передавали необходимую информацию при помощи барабанов: чередование звонких и глухих ударов. Звук над поверхностью воды распространялся на достаточно большое расстояние, таким образом «работал» полинезийский телеграф. В телеграфе в Х1Х-ХХ вв. информация передавалась с помощью азбуки Морзе - в виде последовательности из точек и тире. Часто мы договариваемся открывать входную дверь только по «условному сигналу» - комбинации коротких и длинных звонков. Двоичная система используется для решения головоломок и построения выигрышных стратегий в некоторых играх.

Современная десятичная позиционная система счисления возникла на основе нумерации, зародившейся не позднее 5 в. в Индии . До этого в Индии имелись системы счисления, в которых применялся не только принцип сложения, но и принцип умножения (единица какого – нибудь разряда умножается на стоящее слева число).

В то время существовало множество различных систем нумерации в различных областях Индии, одна из которых распространилась по всему миру и в настоящее время является общепринятой. В ней цифры имели вид начальных букв соответствующих числительных на древнеиндийском языке - санскрите (алфавит "девангари").

Первоначально этими знаками представлялись числа 1, 2, 3 ... 9, 10, 20, 30 ... 90, 100, 1000; с их помощью описывались другие числа. Впоследствии был введен особый знак (жирная точка, кружок) для указания пустующею разряда; знаки для чисел, больших 9, вышли из употребления, и нумерация" "девангари" превратилась в десятичную поместную систему. Как и когда совершился этот переход, до сих пор неизвестно. К середине VIII в. позиционная система нумерации получает в Индии широкое применение.

Примерно в это же время она проникает и в другие страны (Индокитай, Китай, Тибет , на территорию наших среднеазиатских республик , в Иран и др.). Решающую роль в распространении индийской нумерации в арабских странах сыграло руководство, составленное в начале IX в. Мухаммедом из Хорезма (ныне Хорезмская область Узбекистана). Оно было переведено в Западной Европе на латинский язык в XII в. В XIII в. индийская нумерация получает преобладание вИталии . В других странах Западной Европы она утверждается в XVI в. Европейцы, заимствовавшие индийскую нумерацию от арабов, называли ее арабской (исторически неправильное название удерживается и поныне).

Из арабского языка заимствовано и слою «цифра » (по-арабски "сыфр"), означающее буквально "пустое место" (с санскритского слова "сунья", имеющего тот же смысл). Это слово первоначально употреблялось для наименования знака пустующего разряда, и этот смысл сохраняло еще в XVIII в., хотя уже в XV в. появился латинский термин «нуль ». Форма индийских цифр претерпевала многообразные изменения. Та форма, в которой мы их пишем, установилась в XVI в.

В 9 в. появляются рукописи на арабском языке, в которых излагается эта система счисления, в 10 в. десятичная позиционная нумерация доходит до Испании , в начале 12 в. она появляется и в других странах Европы. Новая система счисления получила название арабской , т.к. в Европе с ней познакомились впервые по латинским переводам с арабского. Только в 16 в. новая нумерация получила широкое распространение в науке и житейском обиходе. В России она начинает распространяться в 17 в. и в самом начале 18 в. вытесняет алфавитную нумерацию. С введением десятичных дробей десятичная система стала универсальным средством для записи всех действительных чисел. Она дает принципиальную возможность записывать сколь угодно большие числа. Запись чисел в ней компактна и удобна для производства арифметических операций. Поэтому эта система начинает быстро распространяться из Индии на Запад и Восток.

Язык чисел имеет свой алфавит. В том языке чисел алфавитом служат десять цифр от 0 до 9. Это и есть десятичная система счисления.

Системой счисления называется способ представления числа символами некоторого алфавита, которые называют цифрами. Древнее изображение десятичных цифр не случайно: каждая цифра обозначает число по количеству углов в ней. Например, 0 - углов нет, 1 - один угол, 2 - два угла и т.д. Написание десятичных цифр претерпело существенные изменения. Форма, которой мы пользуемся, установилась в XVI веке.

Аналогично строились старокитайская система счисления и некоторые другие.

По свидетельству известного исследователя Африки Стэнли, у ряда африканских племен была распространена пятеричная СС. Долгое время пользовались пятеричной системой счисления и в Китае . Очевидна связь этой системы счисления со строением человеческой руки. Так, у человека пять пальцев на руке, которые удобно использовать для наглядного счета.

У ацтеков и майя - народов, населявших в течение многих столетий обширные области Американского континента и создавших там высочайшую культуру, в том числе и математическую, была принята двадцатеричная СС. Также эта система счисления была принята и у кельтов, населявших Западную Европу начиная со II тысячелетия до нашей эры. Основа для счета - пальцы рук и ног. Некоторые следы этой системы во французской денежной системе: основная денежная единица, франк, делится на 20

(1 франк = 20 су).

Широкое распространение имела двенадцатеричная система счисления. Происхождение ее тоже связано со счетом на пальцах. Считали большой палец руки и фаланги остальных четырех пальцев: всего их 12. Элементы двенадцатеричной системы счисления сохранились в системе мер (1 фут = 12 дюймам) и в денежной системе

(1 шиллинг = 12 пенсам). Нередко и мы сталкиваемся в быту с двенадцатеричной СС: чайные и столовые сервизы на 12 персон, комплект носовых платков - 12 штук.

Южные и восточные славянские народы для записи чисел пользовались алфавитной нумерацией. У одних славянских народов числовые значения букв установились в порядке славянского алфавита, у других же (в том числе у русских) роль цифр играли не все буквы, а только те, которые имеются в греческом алфавите. При этом числовые значения букв возрастали в том же порядке, в каком следовали буквы в греческом алфавите (порядок букв славянского алфавита был несколько иной)

Славянские цифры до 18 в. были основным цифровым обозначением в России. Славянская нумерация сохранилась в России до конца XVII в. При Петре I возобладала так называемая арабская нумерация. Славянская нумерация сохранилась только в богослужебных книгах. Армяне и пользовались алфавитным принципом нумерации. Но в древнеармянском и древнегрузинском алфавитах было гораздо больше букв, чем в древнегреческом. Это позволило ввести особые обозначения для чисел 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000. Числовые значения следовали порядку букв в армянском и грузинском алфавитах.

Изучив эту тему, вы узнаете и повторите:

Какие системы счисления существуют;
- как осуществляется перевод чисел из одной системы счисления в другую;
- с какими системами счисления работает компьютер;
- как представляются различные числа в памяти компьютера.

С древнейших времён перед людьми стояла проблема обозначения (кодирования) числовой информации.

Маленькие дети показывают свой возраст на пальцах. Лётчик сбил самолёт, ему за это рисуют звёздочку, Робинзон Крузо считал дни зарубками.

Числом обозначали некоторые реальные объекты, свойства которых были одинаковы. Когда мы что-то считаем или пересчитываем, мы как бы обезличиваем предметы, т.е. подразумеваем, что их свойства одинаковы. Но самым главным свойством числа является наличие объекта, т.е. единица и его отсутствие, т.е. ноль.

Что такое цифра?

Это алфавит чисел, набор символов, с помощью которых мы кодируем числа. Цифры – числовой алфавит.

Цифры и числа – это разные вещи! Рассмотрим два числа 5 2 и 2 5. Цифры одни и те же – 5 и 2.

А чем эти числа отличаются?

Порядком цифр? – Да! Но лучше сказать - позицией цифры в числе.

Давайте подумаем, что же это такое системы счисления?

Это запись чисел? Да! Но мы не можем писать так, как нам вздумается - нас должны понимать другие люди. Поэтому необходимо ещё использовать и определенные правила их записи.

Понятие системы счисления

Для записи информации о количестве объектов используются числа. Числа записываются с использованием особых знаковых систем, которые называются системами счисления. Алфавит систем счисления состоит из символов, которые называются цифрами. Например, в десятичной системе счисления числа записываются с помощью десяти всем хорошо известных цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Система счисления - это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами.

Все системы счисления делятся на две большие группы: позиционные и непозиционные системы счисления. В позиционных системах счисления значение цифры зависит от ее положения в числе, а в непозиционных - не зависит.

Непозиционные системы счисления возникли раньше позиционных, поэтому рассмотрим сначала различные непозиционные системы счисления.

Непозиционные системы счисления

Непозиционной системой счисления называется такая система счисления, у которой количественный эквивалент («вес») цифры не зависит от ее местоположения в записи числа.

К непозиционным системам относятся: римская система счисления, алфавитные системы счисления и другие.

Сначала люди просто различали ОДИН предмет перед ними или нет. Если предмет был не один, то говорили «МНОГО».

Первыми понятиями математики были "меньше", "больше", "столько же".

Если одно племя меняло пойманных рыб на сделанные людьми другого племени каменные ножи, не нужно было считать, сколько принесли рыб и сколько ножей. Достаточно было положить рядом с каждой рыбой по ножу, чтобы обмен между племенами состоялся.

Счет появился тогда, когда человеку потребовалось сообщать своим соплеменникам о количестве найденных им предметов.

И, так как многие народы в древности не общались друг другом, то у разных народов возникли разные системы счисления и представления чисел и цифр.

Имена числительные во многих языках указывают, что у первобытного человека орудием счета были преимущественно пальцы.

Пальцы оказались прекрасной вычислительной машиной. С их помощью можно было считать до 5, а если взять две руки, то и до 10. В древние времена люди ходили босиком. Поэтому они могли пользоваться для счета пальцами как рук, так и ног. До сих пор существуют в Полинезии племена, использующие с 20-ую систему счисления.

Однако известны народы, у которых единицами счёта были не пальцы, а их суставы.

Довольно широкое распространение имела двенадцатеричная система счисления. Происхождение её связано со счетом на пальцах. Считали большим пальцем руки фаланги остальных четырёх пальцев: всего их 12.

Элементы двенадцатеричной системы счисления сохранились в Англии в системе мер (1 фут = 12 дюймам) и в денежной системе (1 шиллинг = 12 пенсам). Нередко и мы сталкиваемся в быту с двенадцатеричной системой счисления: чайные и столовые сервизы на 12 персон, комплект носовых платков - 12 штук.

Числа в английском языке от одного до двенадцати имеют свое название, последующие числа являются составными:

Для чисел от 13 до 19 -- окончание слов -- teen. Например, 15 -- fiveteen.

Пальцевой счет сохранился кое-где и поныне. Например, на крупнейшей мировой хлебной бирже в Чикаго предложения и запросы, как и цены объявляются маклерами на пальцах без единого слова.

Запоминать большие числа было трудно, поэтому к «счетной машине» рук и ног стали добавлять различные приспособления. Появилась потребность в записи чисел.

Количество предметов изображалось нанесением черточек или засечек на какой-либо твердой поверхности: камне, глине…

Единичная («палочная») система счисления

Потребность в записи чисел появилась в очень древние времена, как только люди начали считать. Количество предметов изображалось нанесением чёрточек или засечек на какой - либо твёрдой поверхности: камне, глине, дереве (до изобретения бумаги было ещё очень и очень далеко). Каждому объекту в такой записи соответствовала одна чёрточка. Археологами найдены такие "записи" при раскопках культурных слоёв, относящихся к периоду палеолита (10 - 11 тысяч лет до н.э.).

Учёные назвали этот способ записи чисел единичной ("палочной") системой счисления. В ней для записи чисел применялся только один вид знаков - "палочка". Каждое число в такой системе счисления обозначалось с помощью строки, составленной из палочек, количество которых и равнялось обозначаемому числу. Перуанцы употребляли для запоминания чисел разноцветные шнуры с завязанными на них узлами. Интересный способ для записи чисел использовался индийскими цивилизациями примерно в VIII веке до новой эры. Они применяли «узелковое письмо» - связанные между собой нити. Знаками на этих нитях служили узелки, часто с вплетенными в них камнями или ракушками. Узелковая запись чисел позволяла Инкам передавать информацию о числе воинов, обозначать количество умерших или родившихся в той или иной провинции и так далее.


Около 1100 года н. э. английский король Генрих I изобрел одну из самых необычных денежных систем в истории, названную системой «мерных реек». Эта денежная система продержалась 726 лет и была отменена в 1826 году.

Деревянная полированная рейка с зарубками, обозначающими номинал, расщеплялась по всей длине так, чтобы сохранить зарубки.

Неудобства такой системы записи чисел и ограниченность её применения очевидны: чем большее число надо записать, тем длиннее строка из палочек. Да и при записи большого числа легко ошибиться, нанеся лишнее количество палочек или, наоборот, не дописав их.

Древнеегипетская десятичная система счисления (2,5 тысяч лет до н.э.)

Примерно в третьем тысячелетии до нашей эры древние египтяне придумали свою числовую систему, в которой для обозначения ключевых чисел 1, 10, 100 и т.д. использовались специальные значки - иероглифы.

Все остальные числа составлялись из этих ключевых при помощи операции сложения. Система счисления Древнего Египта является десятичной, но непозиционной и аддитивной.

Записывались цифры числа начиная с больших значений и заканчивая меньшими. Если десятков, единиц, или какого-то другого разряда не было, то переходили к следующему разряду.

Попробуйте сложить эти два числа, зная, что более 9 одинаковых иероглифов использовать нельзя, и вы сразу поймете, что для работы с этой системой нужен специальный человек. Обычному человеку это не под силу.

Римская десятичная система счисления (2 тысячи лет до н.э. и до наших дней)

Самой распространенной из непозиционных систем счисления является римская система.

Главная проблема с римскими цифрами заключается в том, что сложно производить умножение и деление. Другим недостатком римской системы является: Запись больших чисел требует введения новых символов. А дробные числа можно записывать только как отношение двух чисел. Тем не менее, они были основными до конца средних веков. Но и в наше время их ещё используют.

Вспомните где?

Значение цифры не зависит от ее положения в числе.

Например, в числе XXX (30) цифра X встречается трижды и в каждом случае обозначает одну и ту же величину - число 10, три числа по 10 в сумме дают 30.

Величина числа в римской системе счисления определяется как сумма или разность цифр в числе. Если меньшая цифра стоит слева от большей, то она вычитается, если справа - прибавляется.

Запомните: 5, 50, 500 не повторяются!

А какие могут повторяться?

Если слева от старшей цифры стоит младшая, то она отнимается. Если младшая цифра стоит справа от старшей, то она прибавляется - I, X, C, M могут повторяться до 3-х раз.

Например:

1) MMIV = 1000+1000+5-1 = 2004

2) 149 = (Сто - C, сорок - XL, а девять - IX) = CXLIX

Например, запись десятичного числа 1998 в римской системе счисления будет выглядеть следующим образом: МСМХСVIII = 1000 + (1000 - 100) + (100 - 10) + 5 + 1 + 1 + 1.

Алфавитные системы счисления
Славянская кириллическая десятеричная алфавитная

Эта нумерация была создана вместе со славянской алфавитной системой для перевода священных библейских книг для славян греческими монахами братьями Кириллом и Мефодием в IX веке. Эта форма записи чисел получила большое распространение в связи с тем, что имела полное сходство с греческой записью чисел. До XVII века эта форма записи чисел была официальной на территории современной России, Белоруссии, Украины, Болгарии, Венгрии, Сербии и Хорватии. До сих пор православные церковные книги используют эту нумерацию.

Числа записывали из цифр так же слева, направо, от больших к меньшим. Числа от 11 до 19 записывались двумя цифрами, причем единица шла перед десятком:

Читаем дословно "четырнадцать" - "четыре и десять". Как слышим, так и пишем: не 10+4, а 4+10, - четыре и десять. Числа от 21 и выше записывались наоборот, сначала писали знак полных десятков.

Запись числа, использованная славянами аддитивная, то есть в ней используется только сложение:

= 800+60+3

Для того чтобы не перепутать буквы и цифры, использовались титла - горизонтальные черточки над числами, что мы видим на рисунке.

Для обозначения чисел больших, чем 900 использовались специальные значки, которые дорисовывались к букве. Так образовывались числа:

Славянская нумерация просуществовала до конца XVII столетия, пока с реформами Петра I в Россию из Европы не пришла позиционная десятичная система счисления.

Древнеиндийские системы счисления

Система счисления кхарошти имела хождение в Индии между VI веком до нашей эры и III веком нашей эры. Эта была непозиционная аддитивная система счисления. О ней мало что известно, так как сохранилось мало письменных документов той эпохи. Система кхарошти интересна тем, что в качестве промежуточного этапа между единицей и десятью выбирается число четыре. Числа записывались справа налево.

Наряду с этой системой существовала в Индии еще одна система счисления брахми.

Числа брахми записывались слева направо. Однако в обеих системах было не мало общего. В частности первые три цифры очень похожи. Общим было то, что до сотни применялся аддитивный способ, а после мультипликативный. Важным отличием цифр брахми, было то, что цифры от 4 до 90, были представлены только одним знаком. Эта особенность цифр брахми в дальнейшем была использована при создании в Индии позиционной десятичной системы.

В древней Индии так же была словесная система счисления. Она была мультипликативная, позиционная. Знак нуля произносился как «пустое», или «небо», или «дыра». Единица как «луна», или «земля». Двойка как «близнецы», или «глаза», или «ноздри», или «губы». Четыре как «океаны», «стороны света». Например, число 2441 произносилось так: глаза океанов стороны света луны.

Недостатки непозиционных систем счисления:

1. Существует постоянная потребность введения новых знаков для записи больших чисел.

2. Невозможно представлять дробные и отрицательные числа.

3. Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения. В частности, у всех народов наряду с системами счисления были способы пальцевого счета, а у греков был счетная доска абак – что-то наподобие наших счетов.

Вплоть до конца средневековья не существовало никакой универсальной системы записи чисел. Только с развитием математики, физики, техники, торговли, финансовой системы возникла потребность в единой универсальной системе счисления, хотя и сейчас многие племена, нации и народности используют другие системы счисления.

Но мы до сих пор пользуемся элементами непозиционной системы счисления в обыденной речи, в частности, мы говорим сто, а не десять десятков, тысяча, миллион, миллиард, триллион.

Позиционные системы счисления

Позиционной системой счисления называется такая система счисления, у которой количественный эквивалент («вес») цифры зависит от ее местоположения в записи числа.

Любая позиционная система счисления характеризуется своим основанием.

Основание позиционной системы счисления - количество различных цифр, используемых для изображения чисел в данной системе счисления.

За основание можно принять любое натуральное число - два, три, четыре, ..., образовав новую позиционную систему: двоичную, троичную, четверичную и... т.д.

Вавилонская десятеричная / шестидесятеричная

В древнем Вавилоне примерно во II тысячелетие до нашей эры была такая система счисления - числа менее 60 обозначались с помощью двух знаков: для единицы, и для десятка. Они имели клинообразный вид, так как вавилоняне писали на глиняных табличках палочками треугольной формы. Эти знаки повторялись нужное число раз, например

Считается, что десятичная система была у шумеров, а после того как их завоевали семиты, их система была приспособлена под шестидесятеричную систему семитов.

Шестидесятеричная запись целых чисел не получила широкого распространения за пределами Ассиро-вавилонского царства, но шестидесятеричные дроби применяются до сих пор при измерении времени. Например, одна минута = 60 секунд, один час = 60 минут.

Древнекитайская десятеричная

Эта система одна из старейших и самых прогрессивных, поскольку в нее заложены такие же принципы, как и в современную «арабскую», которой мы с Вами пользуемся. Возникла эта система около 4 000 тысяч лет тому назад в Китае.

Числа в этой системе, так же как и у нас записывались слева направо, от больших к меньшим. Если десятков, единиц, или какого-то другого разряда не было, то сначала ничего не ставили и переходили к следующему разряду. (Во времена династии Мин был введен знак для пустого разряда - кружок - аналог нашего нуля). Чтобы не перепутать разряды использовали несколько служебных иероглифов, писавшихся после основного иероглифа, и показывающих какое значение принимает иероглиф-цифра в данном разряде.

Эта мультипликативная запись, так как в ней используется умножение. Она десятичная, в ней есть знак нуля, кроме этого она позиционная. Т.е. она почти соответствует «арабской» системе счисления.

Двадцатеричная система счисления индейцев Майя или долгий счет

Эта система очень интересна тем, что на ее развитие не повлияла ни одна из цивилизаций Европы и Азии. Эта система применялась для календаря и астрономических наблюдений. Характерной особенностью ее было наличие нуля (изображение ракушки). Основанием этой системы было число 20, хотя сильно заметны следы пятеричной системы. Первые 19 чисел получались путем комбинирование точек (один) и черточек (пять).

Число 20 изображалось из двух цифр, ноль и один наверху и называлось уиналу. Записывались числа столбиком, внизу располагались наименьшие разряды, вверху наибольшие, в результате получалась «этажерка» с полками. Если число ноль появлялось без единицы наверху, то это обозначало, что единиц данного разряда нет. Но, если хоть одна единица была в этом разряде, то знак нуля исчезал, например, число 21, это будет . Так же в нашей системе счисления: 10 – с нулем, 11 – без него. Вот несколько примеров чисел:

В двадцатеричной системе счета древних майя есть исключение: стоит прибавить к числу 359 только одну единицу первого порядка, как это исключение немедленно вступает в силу. Суть его сводится к следующему: 360 является начальным числом третьего порядка и его место уже не на второй, а на третьей полке.

Но тогда выходит, что начальное число третьего порядка больше начального числа второго не в двадцать раз (20x20=400, а не 360!), а только в восемнадцать! Значит, принцип двадцатеричности нарушен! Все верно. Это и есть исключение.

Дело в том, что у индейцев Майя 20 дней-кинов образовывали месяц или уинал. 18 месяцев-уиналов образовывали год или туну (360 дней в году) и так далее:

К"ин = 1 день. Виналь = 20 к"ин = 20 дней. Тун = 18 виналь = 360 дней = около 1 года. К"атун = 20 тун = 7200 дней = около 20 лет. Бак"тун = 20 к"атун = 144000 дней = около 400 лет. Пиктун = 20 бак"тун = 2880000 дней = около 8000 лет. Калабтун = 20 пиктун = 57 600 000 дней = около 160000 лет. К"инчильтун = 20 калабтун = 1152000000 дней = около 3200000 лет. Алавтун = 20 к"инчильтун = 23040000000 дней = около 64000000 лет.

Это довольно сложная система счисления, в основном использовалась жрецами для астрономических наблюдений, другая система индейцев Майя была аддитивной, похожей на египетскую и применялась в повседневной жизни.

История «арабских» чисел.

История наших привычных «арабских» чисел очень запутана. Нельзя сказать точно и достоверно как они произошли. Вот один из вариантов этого истории этого происхождения. Одно точно известно, что именно благодаря древним астрономам, а именно их точным расчетам мы и имеем наши числа.

Как мы уже знаем, в вавилонской системе счисления присутствует знак для обозначения пропущенных разрядов. Примерно во II веке до н.э. с астрономическими наблюдениями вавилонян познакомились греческие астрономы (например, Клавдий Птолемей). Они переняли их позиционную систему счисления, но целые числа они записывали не с помощью клиньев, а в своей алфавитной нумерации, а дроби в вавилонской шестидесятеричной системой счисления. Но для обозначения нулевого значения разряда греческие астрономы стали использовать символ "0" (первая буква греческого слова Ouden - ничто).

Между II и VI веками н.э. индийские астрономы познакомились с греческой астрономией. Они переняли шестидесятеричную систему и круглый греческий нуль. Индийцы соединили принципы греческой нумерации с десятичной мультипликативной системой взятой из Китая. Так же они стали обозначать цифры одним знаком, как было принято в древнеиндийской нумерации брахми. Это и был завершающий шаг в создании позиционной десятичной системы счисления.

Блестящая работа индийских математиков была воспринята арабскими математиками и Аль-Хорезми в IX веке написал книгу "Индийское искусство счета", в которой описывает десятичную позиционную систему счисления. Простые и удобные правила сложения и вычитания сколь угодно больших чисел, записанных в позиционной системе, сделали ее особенно популярной в среде европейских купцов.

В XII в. Хуан из Севильи перевел на латынь книгу "Индийское искусство счета", и индийская система счета широко распространилась по всей Европе. А так как труд Аль-Хорезми был написан арабском языке, то за индийской нумерацией в Европе закрепилось неправильное название - "арабская". Но сами арабы именуют цифры индийскими, а арифметику, основанную на десятичной системе - индийским счетом.

Форма «арабских» цифр со временем сильно изменялась. Та форма, в которой мы их пишем, установилась в XVI веке.

Даже Пушкин предложил свой вариант формы арабских чисел. Он решил, что все десять арабских цифр, включая нуль, помещаются в магическом квадрате.


Десятичная позиционная система счисления

Индийские ученые сделали одно из важнейших в математике открытий - изобрели позиционную систему счисления, которой теперь пользуется весь мир. Ал-Хорезми подробно описал индийскую арифметику в своей книге.

Мухаммед бен Муса ал-Хорезм

Приблизительно в 850 году н.э. он написал книгу об общих правилах решения арифметических задач при помощи уравнений. Она называлась "Китаб ал-Джебр". Эта книга дала имя науке алгебре.

Триста лет спустя (в 1120 г.) эту книгу перевели на латинский язык, и она стала первым учебником "индийской" арифметики для всех европейских городов.

История нуля.

Нуль бывает разный. Во-первых, нуль – это цифра, которая используется для обозначения пустого разряда; во-вторых, нуль – это необычное число, так как на нуль делить нельзя и при умножении на нуль любое число становиться нулем; в-третьих, нуль нужен для вычитания и сложения, иначе, сколько будет, если из 5 вычесть 5?

Впервые нуль появился в древневавилонской системе счисления, он использовался для обозначения пропущенных разрядов в числах, но такие числа как 1 и 60 у них записывали одинаково, так как нуль в конце числа у них не ставился. В их системе нуль выполнял роль пробела в тексте.

Изобретателем формы нуля можно считать великого греческого астронома Птолемея, так как в его текстах на месте знака пробела стоит греческая буква омикрон, очень напоминающая современный знак нуля. Но Птолемей использует нуль в том же смысле, что и вавилоняне. На стенной надписи в Индии в IX веке н.э. впервые символ нуля встречается в конце числа. Это первое общепринятое обозначение современного знака нуля. Именно индийские математики изобрели нуль во всех его трех смыслах. Например, индийский математик Брахмагупта еще в VII века н.э. активно стал использовать отрицательные числа и действия с нулем. Но он утверждал, что число, деленное на нуль, есть нуль, что конечно ошибка, но настоящая математическая дерзость, которая привела к другому замечательному открытию индийских математиков. И в XII веке другой индийский математик Бхаскара делает еще попытку понять, что же будет при делении на нуль. Он пишет: "количество, деленное на нуль, становится дробью, знаменатель которой равен нулю. Эту дробь называют бесконечностью".

Леонардо Фибоначчи, в своем сочинении "Liber abaci" (1202) называет знак 0 по-арабски zephirum. Слово zephirum – это арабское слово as-sifr, которое произошло от индийского слова sunya, т. е. пустое, служившего названием нуля. От слова zephirum произошло французское слово zero (нуль) и итальянское слово zero. С другой стороны, от арабского слова as-sifr произошло русское слово цифра. Вплоть до середины XVII века это слово употреблялось специально для обозначения нуля. Латинское слово nullus (никакой) вошло в обиход для обозначения нуля в XVI веке.

Нуль - это уникальный знак. Нуль – это чисто абстрактное понятие, одно из величайших достижений человека. Его нет в природе окружающей нас. Без нуля можно спокойно обойтись в устном счете, но невозможно обойтись для точной записи чисел. Кроме этого, нуль находится в противовесе всем остальным числам, и символизирует собой бесконечный мир. И если “все есть число”, то ничто есть все!

Основания, используемые в наши дни:

10 - привычная десятичная система счисления (десять пальцев на руках). Алфавит: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0

60 - придумано в Древнем Вавилоне: деление часа на 60 минут, минуты - на 60 секунд, угла - на 360 градусов.

12 - распространили англосаксы: в году 12 месяцев, в сутках два периода по 12 часов, в футе 12 дюймов

7 - используется для счета дней недели

Система счисления - это совокупность приемов и правил для обозначения и именования чисел.

Современный человек в повседневной жизни постоянно сталкивается с числами: мы запоминаем номера автобусов и телефонов, в магазине подсчитываем стоимость покупок, ведём свой семейный бюджет в рублях и копейках (сотых долях рубля) и т.д. Числа, цифры... они с нами везде. А что знал человек о числах несколько тысяч лет назад? Вопрос непростой, но очень интересный. Историки доказали, что и пять тысяч лет назад люди могли записывать числа и производить над ними арифметические действия. Конечно, принципы записи были совсем не такими, как сейчас. Но влюбом случае число изображалось с помощью одного или нескольких символов.

Эти символы, участвующие в записи числа, в математике и информатике принять называть цифрами

Но что же люди понимают тогда под словом "число"?

Первоначально понятие отвлечённого числа отсутствовало, число было "привязано" к тем конкретным предметам, которые пересчитывали. Отвлечённое понятие натурального числа появляется вместе с развитием письменности. Дробные же числа изобрели тогда, когда возникла необходимость производить измерения. Измерение, как известно, это сравнение с другой величиной того же рода, выбираемой в качестве эталона.

Эталон называется ещё единицей измерения. Понятно, что единица измерения не всегда укладывалась целое число раз в измеряемой величине. Отсюда и возникла практическая потребность ввести более "мелкие" числа, чем натуральные. Дальнейшее развитие понятия числа было обусловлено уже развитием математики.

Понятие числа - фундаментальное понятие как математики, так и информатики. В дальнейшем при изложении материала под числом мы будем понимать его величину, а не его символьную запись.

Сегодня, в самом конце XX века, для записи чисел человечество использует в основном десятичную систему счисления. А что такое система счисления?

Система счисления - это способ записи (изображения) чисел.

Различные системы счисления, которые существовали раньше и которые используются в настоящее время, делятся на две группы: позиционные и непозиционные.

Наиболее совершенными являются позиционные системы счисления, т.е. системы записи чисел, в которых вклад каждой цифры в величину числа зависит от её положения (позиции) в последовательности цифр, изображающей число. Например, наша привычная десятичная система является позиционной: в числе 34 цифра 3 обозначает количество десятков и "вносит" в величину числа 30, а в числе 304 та же цифра 3 обозначает количество сотен и "вносит" в величину числа 300.

Системы счисления, в которых каждой цифре соответствует величина, не зависящая от её места в записи числа, называются непозиционными.

Позиционные системы счисления - результат длительного исторического развития непозиционных систем счисления.

Единичная система

Потребность в записи чисел появилась в очень древние времена, как только люди начали считать. Количество предметов, например овец, изображалось нанесением чёрточек или засечек на какой - либо твёрдой поверхности: камне, глине, дереве (до изобретения бумаги было ещё очень и очень далеко). Каждой овце в такой записи соответствовала одна чёрточка. Археологами найдены такие "записи" при раскопках культурных слоёв, относящихся к периоду палеолита (10 - 11 тысяч лет до н.э.).

Учёные назвали этот способ записи чисел единичной ("палочной") системой счисления. В ней для записи чисел применялся только один вид знаков - "палочка". Каждое число в такой системе счисления обозначалось с помощью строки, составленной из палочек, количество которых и равнялось обозначаемому числу.

Неудобства такой системы записи чисел и ограниченность её применения очевидны: чем большее число надо записать, тем длиннее строка из палочек. Да и при записи большого числа легко ошибиться, нанеся лишнее количество палочек или, наоборот, не дописав их.

Можно предложить, что для облегчения счёта люди стали группировать предметы по 3, 5, 10 штук. И при записи использовали знаки, соответствующие группе из нескольких предметов. Естественно, что при подсчёте использовались пальцы рук, поэтому первыми появились знаки для обозначения группа предметов из 5 и 10 штук (единиц). Таким образом, возникли уже более удобные системы записи чисел.

Древнеегипетская десятичная непозиционная система

В древнеегипетской системе счисления, которая возникла во второй половине третьего тысячелетия до н.э., использовались специальные цифры для обозначения чисел 1, 10, 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 . Числа в египетской системе счисления записывались как комбинации этих цифр, в которых каждая из них повторялась не более девяти раз.

Пример. Число 345 древние египтяне записывали так:

Единицы Десятки Сотни

В основе как палочной, так и древнеегипетской системы счисления лежал простой принцип сложения, согласно которому значение числа равно сумме значений цифр, участвующих в его записи . Учёные относят древнеегипетскую систему счисления к десятичной непозиционной.

Вавилонская шестидесятеричная система

Также далеко от наших дней, за две тысячи лет до н.э., в другой великой цивилизации - вавилонской - люди записывали цифры по-другому.

Числа в этой системе счисления составлялись из знаков двух видов: прямой клин служил для обозначения единиц, а лежачий клин - для обозначения десятков.

Для определения значения числа надо было изображение числа разбить на разряды справа налево. Новый разряд начинался с появления прямого клина после лежачего, если рассматривать число справа налево.

Например: Число 32 записывали так:

Знаки прямой клин и лежачий клин служили цифрами в этой системе. Число 60 снова обозначалось тем же прямым клином, что и 1, этим же знаком обозначались и числа 3600=60 2 , 216000=60 3 и все другие степени 60. Поэтому вавилонская система счисления получила название шестидесятеричной .

Значение числа определяли по значениям составляющих его цифр, но с учётом того, что цифры в каждом последующем разряде значили в 60 раз больше тех же цифр в предыдущем разряде.

Пример. Число 92=60+32 записывали так:

а число 444 в этой системе записи чисел имело вид

т.к. 444=7*60+24.

Исключительно для наглядности разделён пробелом (которого не было у вавилонян) старший разряд (левый) и младший.

Все числа от 1 до 59 вавилоняне записывали в десятичной непозиционной системе, а число в целом - в позиционной системе с основанием 60. число единичный шестидесятеричный

Запись числа у вавилонян была неоднозначной, т.к. не существовало цифры для обозначения нуля. Запись числа 92, приведённая выше, могла обозначать не только 92=60+32, но и, например, 3632=3600+32. Для определения абсолютного значения числа требовались дополнительные сведения. Впоследствии вавилоняне ввели специальный символ для обозначения пропущенного шестидесятеричного разряда

что соответствует появлению цифры 0 в записи десятичного числа.

Пример. Число 3632 теперь нужно было записывать так:

Но в конце числа этот символ обычно не ставился, т.е. этот символ всё же не был цифрой "ноль" в нашем понимании, и опять же требовались дополнительные сведения для того, чтобы отличить 1 от 60, от 3600 и т.д.

Таблицу умножения вавилоняне никогда не запоминали, т.к. это было практически невозможно. При вычислениях использовались готовые таблицы умножения.

Шестидесятеричная вавилонская система - первая известная нам система счисления, частично основанная на позиционном принципе.

Система вавилонян сыграла большую роль в развитии математики и астрономии, её следы сохранились и до наших дней. Так, мы до сих пор делим час на 60 минут, а минуту на 60 секунд. Следуя примеру вавилонян, мы и окружность делим на 360 частей (градусов).

Римская система

Знакомая нам римская система не слишком принципиально отличается от египетской. В ней для обозначения чисел 1, 5, 10, 50, 100, и 1000 используются заглавные латинские буквы I, V, X, C, D и M соответственно, являющиеся цифрами этой системы счисления.

Число в римской системе счисления обозначается набором стоящих подряд цифр. Значение числа равно:

  • 1. сумме значений идущих подряд нескольких одинаковых цифр (назовём их группой первого вида);
  • 2. разности значений двух цифр, если слева от большей цифры стоит меньшая. В этом случае от значения большей цифры отнимается значение меньшей цифры. Вместе они образуют группу второго вида. Заметим, что левая цифра может быть меньше правой максимум на один порядок: так, перед L(50) и С(100) из "младших" может стоять только X(10), перед D(500) и M(1000) - только C(100), перед V(5) - только I(1);
  • 3. сумме значений групп и цифр, не вошедших в группы первого или второго вида.

Пример 1. Число 32 в римской системе счисления имеет вид XXXII=(X+X+X)+(I+I)=30+2 (две группы первого вида).

Пример 2. Число 444, имеющее в своей десятичной записи 3 одинаковые цифры, в римской системе счисления будет записано в виде CDXLIV=(D-C)+(L-X)+(V-I)=400+40+4 (три группы второго вида).

Пример 3. Число 1974 в римской системе счисления будет иметь вид MCMLXXIV=M+(M-C)+L+(X+X)+(V-I)=1000+900+50+20+4 (наряду с группами обоих видов в формировании числа участвуют отдельные "цифры").

Издревле человек проявляет интерес к окружающему миру, пытается его изучить, а полученные знания систематизировать и упорядочить. Один из таких способ - счет. Для этого были придуманы В настоящее время существует множество способов счета и учета информации. В этой статье мы расскажем о том, что такое натуральные числа, какие бывают системы счисления, как их использовать, а также историю их возникновения.

Общие сведения

Так что такое натуральные числа? Определение говорит, что они являются простейшими, то есть используются в повседневной жизни для подсчета количества каких-либо предметов. В настоящее время применяется позиционная десятеричная система счисления. Приведем определение данному понятию. Системы счисления - это представление чисел при помощи письменных символов (знаков), символический способ записи чисел. Стоит разделять понятия "число" и "цифра". Первое представляет собой некую абстрактную сущность, меру для определения количества. Цифрами называют определенные символы, которые используются для записи чисел. Самая популярная и распространенная - это арабская система символов. В ней цифры представляются знаками от 0 (нуля) и до 9 (девяти). Именно она используется для обозначения натуральных чисел в настоящее время. Менее распространенной является римская система счисления. Но о ней подробнее мы расскажем дальше.

Из выше сказанного можно сделать вывод, что натуральные числа - это те, которые используются для счета предметов, указывают на порядковый номер какого-либо предмета среди аналогичных. Например, 5, 18, 596, 10873 и так далее.

Что такое числовой ряд?

Все натуральные числа, которые располагаются в порядке возрастания, образуют так называемый числовой ряд. Свое начало он берет с наименьшей цифры - единицы. Самого большого числа нет, так как данный ряд бесконечен. Таким образом, если к последующему числу мы прибавляем один, то получим следующее число. Стоит отметить, что число ноль не является натуральным числом. Оно означает полное отсутствие чего-либо, не имеет под собой материального основания. Следовательно, ноль нельзя отнести к классу под названием "натуральные числа". Обозначается множество натуральных чисел при помощи заглавной латинской буквы N.

Как они появились?

В самые древние времена для написания чисел использовали палочки. Такой способ позаимствовали римляне для своей непозиционной системы счисления (что это такое, мы расскажем дальше). При этом число записывалось без каких-либо символов, а как разность или сумма палочек.

Следующий этап развития системы счисления - обозначение при помощи букв. Затем появился позиционный класс чисел, который используется и по сей день. Новаторами в этой области стали древние вавилоняне и индусы, придумавшие шестидесятеричную и десятеричную системы соответственно. Стоит отметить, что широко используемая арабская система является производной от древнеиндийской. Арабские математики только дополнили ее цифрой нуль.

Классификация системы счисления

Так как чисел намного больше, чем соответствующих цифр, то для их записи принято использовать комбинацию (набор) цифр. Малое количество чисел (небольшое по величине) обозначается одной цифрой. Выходит, что системы счисления - это способы записи числовых значений при помощи цифр. Величина может зависеть от того, в каком порядке идут цифры, а может и не иметь значения. Данное свойство определяется системами счета, что служит основанием для классифицирования. Существует три группы (класса).

  1. Смешанные.
  2. Позиционные.
  3. Непозиционные.

В качестве примера первой группы приведем денежные знаки. Рассмотрим российскую монетарную систему. В ней используются купюры и монеты таких номиналов, как: один, два, пять, десять, сто, пятьсот, тысяча и пять тысяч рублей, а также одна, пять, десять и пятьдесят копеек. Чтобы получить определенную сумму в рублях, необходимо использовать соответствующее количество денежных знаков различного номинального достоинства. Например, микроволновая печь стоит 6379 российских рублей. Чтобы сделать покупку, можно взять шесть купюр номиналом в тысячу рублей, 3 банкноты по сто рублей, одну купюру в пятьдесят рублей, две - по десять, одну монету в пять рублей и две монеты по два рубля. Если мы запишем количество монет или купюр, начиная от одной тысячи рублей и заканчивая копейкой, при этом заменяя неиспользуемые номиналы нулями, то получим следующее число: 603121200000. Если перемешать цифры в полученном ранее числе, то мы получим ложную цену на микроволновую печь. Поэтому такой способ записи относится к позиционному классу. Натуральные числа - это прямой пример позиционного класса.

Непозиционный класс - что это такое?

Непозиционная система счисления чисел характеризуются тем, что общая величина числа не зависит от положения цифры пи написании. Если к каждой цифре мы припишем соответствующий знак номинала, то такие составные символы (номинал плюс цифра) можно перемешивать. Другими словами, такая запись является непозиционной. В качестве чистого примера можно привести римскую систему. Ее рассмотрим более подробно.

Римские цифры

Этим понятием называют систему знаков (символов), которая была придумана древними римлянами для своей системы счисления. Суть ее состоит в следующем: все натуральные числа записываются повторением цифр. При этом, если меньшая цифра стоит перед большей, то первая вычитается из последней. Это называется принципом вычитания. Если имеет место четырехкратное повторение, данное правило на него не распространяется. А если же большая цифра стоит перед меньшей, то, наоборот, они складываются (принцип сложения). Историки отмечают, что данная система датируется примерно пятым веком до нашей эры у этрусков, которые, в свою очередь, могли ее перенять у протокельтов. Для правильного написания большого числа римскими символами необходимо сначала написать количество тысяч, потом - сотен, затем - десятков и в конце - единиц. Стоит отметить, что при этом только некоторые из цифр (например, I, M, X, C) могут дублироваться, но не больше, чем три раза. Следовательно, при помощи римских цифр можно записать практически любое целое число. Для современного человека, чтобы упростить подсчет, существует специальная таблица систем счисления римских цифр.

Использование римских цифр

Данная система счисления очень широко применялась в СССР при обозначении даты для указания месяца. Очень часто на надгробиях даты жизни и смерти указываются в особом формате, где порядковый номер месяца пишется римскими символами. В настоящее время, с переходом на компьютеризированную обработку информации, использование данной системы счисления практически кануло в Лету. Однако есть сферы, где «римский стиль» изображения цифр имеет свои особенности. Например, в странах Западной Европы очень часто используют эти символы на фронтонах зданий для обозначения номера года или в титрах видео- и кинопродукции. Так, в Литве на витринах магазинов или дорожных знаках, вывесках римскими цифрами обозначаются дни недели.

Современное применение римской системы счисления

В настоящее время данный способ написания чисел не имеет широкого применения. Однако исторически устоялось, что она применяется в сферах, о которых мы подробно расскажем в этом разделе. Во всем мире принято указывать номер тысячелетия или века римскими символами. Так же происходит и при написании "порядкового номера" монаршей особы. Например, Елизавета II, Людовик XIV и т.д. Это связано с тем, что данная система счисления более "величественная". Само ее появление ассоциируется с рассветом Римской империи - образцом традиции и классики. По тому же принципу данная система изображения цифр используется для маркировки циферблата в некоторых моделях часов. Еще один распространенный случай применения римских цифр - номера томов в многотомном литературном произведении. Например: «Война и мир», том III. Иногда таким образом нумеруются части книги, разделы или главы. В некоторых изданиях можно встретить обозначение страниц с предисловием к произведению. Это делают для того, чтобы при изменении текста предисловия не менять ссылки на него в теле основного текста. Римские цифры используют для обозначения важных исторических событий или пунктов перечня. Например, II мировая война, XVII съезд КПСС, XXII Олимпийские игры и тому подобное. Помимо тем, так или иначе связанных с историей, данную систему счисления используют в химии - для указания валентности элементов; в музыкальном искусстве - для указания порядкового номера ступени в звуковом ряде. Также римские цифры используют в медицине.