Фазовые состояния и превращения воды. Диаграмма состояния воды Фазовая диаграмма состояния воды
Промежуточное состояние вещества между состоянием реального газа и жидкостью принято называть парообразным или просто паром. Превращение жидкости в пар представляет собой фазовый переход из одного агрегатного состояния в другое. При фазовом переходе наблюдается скачкообразное изменение физических свойств вещества.
Примерами таких фазовых переходов является процесс кипения жидкости с появлением влажного насыщенного пара и последующим переходом его в лишенный влаги сухой насыщенный пар или обратный кипению процесс конденсации насыщенного пара.
Одно из основных свойств сухого насыщенного пара заключается в том, что дальнейший подвод теплоты к нему приводит к возрастанию температуры пара, т. е. перехода его в состояние перегретого пара, а отвод теплоты — к переходу в состояние влажного насыщенного пара. В
Фазовые состояния воды
Рисунок 1. Фазовая диаграмма для водяного пара в T, s координатах.
Область I – газообразное состояние (перегретый пар, обладающий свойствами реального газа);
Область II – равновесное состояние воды и насыщенного водяного пара (двухфазное состояние). Область II также называют областью парообразования;
Область III – жидкое состояние (вода). Область III ограничена изотермой ЕК;
Область IV – равновесное состояние твердой и жидкой фаз;
Область V – твердое состояние;
Области III, II и I разделены пограничными линиями AK (левая линия) и KD (правая линия). Общая точка K для пограничных линий AK и KD обладает особыми свойствами и называется критической точкой . Эта точка имеет параметры p кр , v кр и Т кр , при которых кипящая вода переходит в перегретый пар, минуя двухфазную область. Следовательно, вода не может существовать при температурах выше Т кр.
Критическая точка К имеет параметры:
p кр = 22,136 МПа; v кр = 0,00326 м 3 /кг; t кр = 374,15 °С.
Значения p, t, v и s для обеих пограничных линий приводятся в специальных таблицах термодинамических свойств водяного пара.
Процесс получения водяного пара из воды
На рисунках 2 и 3 изображены процессы нагрева воды до кипения, парообразования и перегрева пара в p, v — и T, s -диаграммах.
Начальное состояние жидкой воды, находящейся под давлением p 0 и имеющей температуру 0 °С, изображается на диаграммах p, v и T, s точкой а . При подводе теплоты при p = const температура ее увеличивается и растет удельный объем. В некоторый момент температура воды достигает температуры кипения. При этом ее состояние обозначается точкой b. При дальнейшем подводе теплоты начинается парообразование с сильным увеличением объема. При этом образуется двухфазная среда — смесь воды и пара, называемая влажным насыщенным паром . Температура смеси не меняется, так как тепло расходуется на испарение жидкой фазы. Процесс парообразования на этой стадии является изобарно-изотермическим и обозначается на диаграмме как участок bc . Затем в некоторый момент времени вся вода превращается в пар, называемый сухим насыщенным . Это состояние обозначается на диаграмме точкой c .
Рисунок 2. Диаграмма p, v для воды и водяного пара.
Рисунок 3. Диаграмма T, s для воды и водяного пара.
При дальнейшем подводе теплоты температура пара будет увеличиваться и будет протекать процесс перегрева пара c — d . Точкой d обозначается состояние перегретого пара. Расстояние точки d от точки с зависит от температуры перегретого пара.
Индексация для обозначения величин, относящихся к различным состояниям воды и пара:
- величина с индексом «0» относится к начальному состоянию воды;
- величина с индексом «?» относится к воде, нагретой до температуры кипения (насыщения);
- величина с индексом «?» относится к сухому насыщенному пару;
- величина с индексом «x » относится к влажному насыщенному пару;
- величина без индекса относится к перегретому пару.
Процесс парообразования при более высоком давлении p 1 > p 0 можно отметить, что точка a, изображающая начальное состояние воды при температуре 0 °С и новом давлении, остается практически на той же вертикали, так как удельный объем воды почти не зависит от давления.
Точка b? (состояние воды при температуре насыщения) смещается вправо на p, v -диаграмме и поднимается вверх на T,s -диаграмме. Это потому, что с увеличением давления увеличивается температура насыщения и, следовательно, удельный объем воды.
Точка c? (состояние сухого насыщенного пара) смещается влево, т. к. с увеличением давления удельный объем пара уменьшается, несмотря на увеличение температуры.
Соединение множества точек b и c при различных давлениях дает нижнюю и верхнюю пограничные кривые ak и kc. Из p, v -диаграммы видно, что по мере увеличения давления разность удельных объемов v? и v? уменьшается и при некотором давлении становится равной нулю. В этой точке, называемой критической, сходятся пограничные кривые ak и kc. Состояние, соответствующее точке k , называется критическим. Оно характеризуется тем, что при нем пар и вода имеют одинаковые удельные объемы и не отличаются по свойствам друг от друга. Область, лежащая в криволинейном треугольнике bkc (в p, v -диаграмме), соответствует влажному насыщенному пару.
Состояние перегретого пара изображается точками, лежащими над верхней пограничной кривой kc .
На T, s -диаграмме площадь 0abs? соответствует количеству теплоты, необходимого для нагрева жидкой воды до температуры насыщения.
Количество подведенной теплоты, Дж/кг, равное теплоте парообразования r, выражается площадью s?bcs, и для нее имеет место соотношение:
r = T (s? — s? ).
Количество подведенной теплоты в процессе перегрева водяного пара изображается площадью s?cds .
На T, s -диаграмме видно, что по мере увеличения давления теплота парообразования уменьшается и в критической точке становиться равной нулю.
Обычно T, s -диаграмма применяется при теоретических исследованиях, так как практическое использование ее сильно затрудняется тем, что количества теплоты выражаются площадями криволинейных фигур.
По материалам моего конспекта лекций по термодинамике и учебника «Основы энергетики». Автор Г. Ф. Быстрицкий. 2-е изд., испр. и доп. — М. :КНОРУС, 2011. — 352 с.
Состояние воды изучено в широком диапазоне температур и давлений. При высоких давлениях установлено существование не менее десяти кристаллических модификаций льда. Наиболее изученным является лед I – единственная модификация льда, обнаруженная в природе.
Наличие различных модификаций вещества – полиморфизма приводит к усложнению диаграмм состояния.
Фазовая диаграмма воды в координатах Р - Т представлена на рис.6. Она состоит из 3 фазовых полей - областей различных Р,Т - значений, при которых вода существует в виде определенной фазы - льда, жидкой воды или пара (обозначены на рисунке буквами Л, Ж и П, соответственно). Эти фазовые поля разделены 3 граничными кривыми.
Кривая АВ - кривая испарения, выражает зависимость давления пара жидкой воды от температуры (или, наоборот, представляет зависимость температуры кипения воды от давления). Другими словами, эта линия отвечает двухфазномуравновесию
жидкая вода пар, и число степеней свободы, рассчитанное по правилу фаз, составляет С = 3 - 2 = 1. Такое равновесие называют моновариантным . Это означает, что для полного описания системы достаточно определить только одну переменную - либо температуру, либо давление, т.к. для данной температуры существует только одно равновесное давление и для данного давления - только одна равновесная температура.
При давлениях и температурах, соответствующих точкам ниже линии АВ, жидкость будет полностью испаряться, и эта область является областью пара. Для описания системы в данной однофазной области необходимы две независимые переменные: температура и давление (С = 3 - 1 = 2).
При давлениях и температурах, соответствующих точкам выше линии АВ, пар полностью сконденсирован в жидкость (С = 2). Верхний предел кривой испарения AB находится в точке В, которая называется критической точкой (для воды 374,2?С и 218,5 атм .). Выше этой температуры фазы жидкости и пара становятся неразличимыми (исчезает межфазная граница жидкость/пар), поэтому Ф = 1.
Линия АС - эта кривая возгонки льда (иногда ее называют линией сублимации), отражающая зависимость давления водяного пара надо льдом от температуры . Эта линия соответствует моновариантному равновесию лед <-> пар (С =1). Выше линии АС лежит область льда, ниже - область пара.
Линия АD -кривая плавления, выражает зависимость температуры плавления льда от давления и соответствует моновариантному равновесию лед <-> жидкая вода. Для большинства веществ линия АD отклоняется от вертикали вправо, но поведение воды
Рис.6. Фазовая диаграмма воды
аномально: жидкая вода занимает меньший объем, чем лед. Повышение давления будет вызывать сдвиг равновесия в сторону образования жидкости, т.е. точка замерзания будет понижаться.
Исследования, впервые проведенные Бриджменом для определения хода кривой плавления льда при высоких давлениях, показали, что всесуществующиекристаллические модификации льда, за исключением первой, плотнее воды. Таким образом, верхний предел линии AD - точка D, где в равновесии сосуществуют лед I (обычный лед), лед III и жидкая вода. Эта точка находится при -22?С и 2450 атм .
Тройная точка воды (точка, отражающая равновесие трех фаз - жидкости, льда и пара) в отсутствие воздуха находится при 0,0100?С (T = 273,16K ) и 4,58 мм рт.ст. Число степеней свободы С = 3-3 = 0 и такое равновесие называют инвариантным.
Эта диаграмма показана на рис. 6.5. Области фазовой диаграммы, ограниченные кривыми, соответствуют тем условиям (температурам и давлениям), при которых устойчива только одна фаза вещества. Например, при любых значениях температуры и давления, которые соответствуют точкам диаграммы, ограниченным кривыми ВТ и ТС, вода существует в жидком состоянии. При любых температуре и давлении, соответствующих точкам диаграммы, которые расположены ниже кривых АТ и ТС, вода существует в парообразном состоянии.
Кривые фазовой диаграммы соответствуют условиям, при которых какие-либо две фазы находятся в равновесии друг с другом. Например, при температурах и давлениях, соответствующих точкам кривой ТС, вода и ее пар находятся в равновесии. Это и есть кривая давления пара воды (см. рис. 3.13). В точке X на этой кривой жидкая вода и пар находятся в равновесии при температуре 373 К (100 °С) и давлении 1 атм (101,325 кПа); точка X представляет собой точку кипения воды при давлении 1 атм.
Кривая АТ является кривой давления пара льда; такую кривую обычно называют кривой сублимации.
Кривая ВТ представляет собой кривую плавления. Она показывает, как давление влияет на температуру плавления льда: если давление возрастает, температура плавления немного уменьшается. Такая зависимость температуры плавления от давления встречается редко. Обычно возрастание давления благоприятствует образованию твердого вещества, как мы убедимся на примере рассматриваемой далее фазовой диаграммы диоксида углерода. В случае воды повышение давления приводит к разрушению водородных связей, которые в кристалле льда связывают между собой молекулы воды, заставляя их образовывать громоздкую структуру. В результате
Рис. 6.5. Фазовая диаграмма воды.
разрушения водородных связей происходит образование более плотной жидкой фазы (см. разд. 2.2).
В точке У на кривой ВТ лед находится в равновесии с водой при температуре 273 К (0 °С) и давлении 1 атм. Она представляет собой точку замерзания воды при давлении 1 атм.
Кривая ST указывает давление пара воды при температурах ниже ее точки замерзания. Поскольку вода в нормальных условиях не существует в виде жидкости при температурах ниже ее точки замерзания, каждая точка на этой кривой соответствует воде, находящейся в метастабилъном состоянии. Это означает, что при соответствующих температуре и давлении вода находится не в своем наиболее устойчивом (стабильном) состоянии. Явление, которое соответствует существованию воды в метастабилъном состоянии, описываемом точками этой кривой, называется переохлаждением.
На фазовой диаграмме имеются две точки, представляющие особый интерес. Прежде всего отметим, что кривая давления пара воды заканчивается точкой С. Она называется критической точкой воды. При температурах и давлениях выше этой точки пары воды не могут быть превращены в жидкую воду никаким повышением давления (см. также разд. 3.1). Другими словами, выше этой точки паровая и жидкая формы воды перестают быть различимыми. Критическая температура воды равна 647 К, а критическое давление составляет 220 атм.
Точка Т фазовой диаграммы называется тройной точкой. В этой точке лед, жидкая вода и пары воды находятся в равновесии друг с другом. Этой точке соответствуют температура 273,16 К и давление атм. Лишь при указанных значениях температуры и давления все три фазы воды могут существовать вместе, находясь в равновесии друг с другом.
Иней может образовываться двумя способами: из росы либо непосредственно из влажного воздуха.
Образование инея из росы. Роса - это вода, образующаяся при охлаждении влажного воздуха, когда его температура понижается, пересекая (при атмосферном давлении) кривую ТС на рис. 6.5. Иней образуется в результате замерзания росы, когда температура понижается настолько, что пересекает кривую ВТ.
Образование инея непосредственно из влажного воздуха. Иней образуется из росы только в том случае, если давление пара воды превышает давление тройной точки Т, т.е. больше атм. Если же давление паров воды меньше этого значения, иней образуется непосредственно из влажного воздуха, без предварительного образования росы. В таком случае он появляется, когда понижающаяся температура пересекает кривую на рис. 6.5. В этих условиях образуется сухой иней.
Применение правила фаз Гиббса к однокомпонентным системам. Диаграммы состояния воды и серы
Для однокомпонентной системы К =1 и правило фаз записывается в виде:
С = 3 – Ф
Если Ф
= 1, то С
=2 , говорят, что система бивариантна
;
Ф
= 2, то С
=1 , система моновариантна
;
Ф
= 3, то С
= 0,
система инвариантна
.
Соотношение между давлением (Р ), температурой (Т ) и объемом (V ) фазы можно представить трехмерной фазовой диаграммой . Каждая точка (ее называют фигуративной точкой ) на такой диаграмме изображает некоторое равновесное состояние. Обычно удобнее работать с сечениями этой диаграммы плоскостью Р – Т (при V = const ) или плоскостью Р – V (при T = const ). В дальнейшем мы будем рассматривать только случай сечения плоскостью Р – Т (при V = const ).
Состояние воды изучено в широком диапазоне температур и давлений. При высоких давлениях установлено существование не менее десяти кристаллических модификаций льда. Наиболее изученным является лед I - единственная модификация льда, обнаруженная в природе.
Наличие различных модификаций вещества - полиморфизма приводит к усложнению диаграмм состояния.
Фазовая диаграмма воды в координатах Р – Т представлена на рис.15. Она состоит из 3 фазовых полей - областей различных Р,Т - значений, при которых вода существует в виде определенной фазы - льда, жидкой воды или пара (обозначены на рисунке буквами Л, Ж и П, соответственно). Эти фазовые поля разделены 3 граничными кривыми.
Кривая АВ - кривая испарения, выражает зависимость давления пара жидкой воды от температуры (или, наоборот, представляет зависимость температуры кипения воды от внешнего давления). Другими словами, эта линия отвечает двухфазномуравновесию.
Жидкая вода <-> пар, и число степеней свободы, рассчитанное по правилу фаз, составляет С = 3 – 2 = 1. Такое равновесие называют моновариантным . Это означает, что для полного описания системы достаточно определить только одну переменную - либо температуру, либо давление, т. к. для данной температуры существует только одно равновесное давление и для данного давления - только одна равновесная температура.
При давлениях и температурах, соответствующих точкам ниже линии АВ, жидкость будет полностью испаряться, и эта область является областью пара. Для описания системы в данной однофазной области необходимы две независимые переменные: температура и давление (С = 3 – 1 = 2).
При давлениях и температурах, соответствующих точкам выше линии АВ, пар полностью сконденсирован в жидкость (С = 2). Верхний предел кривой испарения AB находится в точке В, которая называется критической точкой (для воды 374,2?С и 218,5 атм .). Выше этой температуры фазы жидкости и пара становятся неразличимыми (исчезает межфазная граница жидкость/пар), поэтому Ф = 1.
Линия АС - эта кривая возгонки льда (иногда ее называют линией сублимации), отражающая зависимость давления водяного пара надо льдом от температуры . Эта линия соответствует моновариантному равновесию лед <-> пар (С = 1). Выше линии АС лежит область льда, ниже - область пара.
Линия АD - кривая плавления, выражает зависимость температуры плавления льда от давления и соответствует моновариантному равновесию лед <-> жидкая вода. Для большинства веществ линия АD отклоняется от вертикали вправо, но поведение воды аномально: жидкая вода занимает меньший объем, чем лед. Повышение давления будет вызывать сдвиг равновесия в сторону образования жидкости, т. е. точка замерзания будет понижаться.
Исследования, впервые проведенные Бриджменом для определения хода кривой плавления льда при высоких давлениях, показали, что всесуществующиекристаллические модификации льда, за исключением первой, плотнее воды. Таким образом, верхний предел линии AD - точка D, где в равновесии сосуществуют лед I (обычный лед), лед III и жидкая вода. Эта точка находится при –22?С и 2450 атм .
Рис. 15. Фазовая диаграмма воды
На примере воды видно, что фазовая диаграмма не всегда имеет такой простой характер, как показано на рис.15. Вода может существовать в виде нескольких твердых фаз, которые различаются своей кристаллической структурой (смотри рис.16).
Рис. 16. Развернутая фазовая диаграмма воды в широком диапазоне значений давления.
Тройная точка воды (точка, отражающая равновесие трех фаз - жидкости, льда и пара) в отсутствие воздуха находится при 0,01?С (T = 273,16K ) и 4,58 мм рт.ст . Число степеней свободы С = 3-3 = 0 и такое равновесие называют инвариантным.
В присутствии воздуха три фазы находятся в равновесии при 1 атм . и 0?С (T = 273,15K ). Понижение тройной точки на воздухе вызвано следующим причинами:
1. Растворимостью воздуха в жидкой воде при 1 атм , что приводит к снижению тройной точки на 0,0024?С;
2. Увеличением давления от 4,58 мм рт.ст . до 1 атм , которое снижает тройную точку еще на 0,0075?С.
Состояние воды изучено в широком диапазоне температур и давлений. При высоких давлениях установлено существование не менее десяти кристаллических модификаций льда. Наиболее изученным является лед I - единственная модификация льда, обнаруженная в природе.
Наличие различных модификаций вещества - полиморфизма приводит к усложнению диаграмм состояния.
Фазовая диаграмма воды в координатах Р – Т представлена на рис.15. Она состоит из 3 фазовых полей - областей различных Р,Т - значений, при которых вода существует в виде определенной фазы - льда, жидкой воды или пара (обозначены на рисунке буквами Л, Ж и П, соответственно). Эти фазовые поля разделены 3 граничными кривыми.
Кривая АВ - кривая испарения, выражает зависимость давления пара жидкой воды от температуры (или, наоборот, представляет зависимость температуры кипения воды от внешнего давления). Другими словами, эта линия отвечает двухфазному равновесию.
Жидкая вода <-> пар, и число степеней свободы, рассчитанное по правилу фаз, составляет С = 3 – 2 = 1. Такое равновесие называют моновариантным . Это означает, что для полного описания системы достаточно определить только одну переменную - либо температуру, либо давление, т. к. для данной температуры существует только одно равновесное давление и для данного давления - только одна равновесная температура.
При давлениях и температурах, соответствующих точкам ниже линии АВ, жидкость будет полностью испаряться, и эта область является областью пара. Для описания системы в данной однофазной области необходимы две независимые переменные: температура и давление (С = 3 – 1 = 2).
При давлениях и температурах, соответствующих точкам выше линии АВ, пар полностью сконденсирован в жидкость (С = 2). Верхний предел кривой испарения AB находится в точке В, которая называется критической точкой (для воды 374,2?С и 218,5 атм .). Выше этой температуры фазы жидкости и пара становятся неразличимыми (исчезает межфазная граница жидкость/пар), поэтому Ф = 1.
Линия АС - эта кривая возгонки льда (иногда ее называют линией сублимации), отражающая зависимость давления водяного пара надо льдом от температуры . Эта линия соответствует моновариантному равновесию лед <-> пар (С = 1). Выше линии АС лежит область льда, ниже - область пара.
Линия АD - кривая плавления, выражает зависимость температуры плавления льда от давления и соответствует моновариантному равновесию лед <-> жидкая вода. Для большинства веществ линия АD отклоняется от вертикали вправо, но поведение воды аномально: жидкая вода занимает меньший объем, чем лед. Повышение давления будет вызывать сдвиг равновесия в сторону образования жидкости, т. е. точка замерзания будет понижаться.
Исследования, впервые проведенные Бриджменом для определения хода кривой плавления льда при высоких давлениях, показали, что все существующие кристаллические модификации льда, за исключением первой, плотнее воды. Таким образом, верхний предел линии AD - точка D, где в равновесии сосуществуют лед I (обычный лед), лед III и жидкая вода. Эта точка находится при –22?С и 2450 атм .
Рис. 15. Фазовая диаграмма воды
На примере воды видно, что фазовая диаграмма не всегда имеет такой простой характер, как показано на рис.15. Вода может существовать в виде нескольких твердых фаз, которые различаются своей кристаллической структурой (смотри рис.16).
Рис. 16. Развернутая фазовая диаграмма воды в широком диапазоне значений давления.
Тройная точка воды (точка, отражающая равновесие трех фаз - жидкости, льда и пара) в отсутствие воздуха находится при 0,01?С (T = 273,16K ) и 4,58 мм рт.ст . Число степеней свободы С = 3-3 = 0 и такое равновесие называют инвариантным.
В присутствии воздуха три фазы находятся в равновесии при 1 атм . и 0?С (T = 273,15K ). Понижение тройной точки на воздухе вызвано следующим причинами:
1. Растворимостью воздуха в жидкой воде при 1 атм , что приводит к снижению тройной точки на 0,0024?С;
2. Увеличением давления от 4,58 мм рт.ст . до 1 атм , которое снижает тройную точку еще на 0,0075?С.
Что будем делать с полученным материалом:
Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:
Твитнуть |
Все темы данного раздела:
Предмет физической химии и её значение
Взаимосвязь химических и физических явлений изучает физическая химия. Этот раздел химии является пограничным между химией и физикой. Пользуясь теоретическими и экспериментальными методами об
Краткий очерк истории развития физической химии
Термин «физическая химия» и определение этой науки впервые были даны М.В.Ломоносовым, который в 1752-1754 гг. читал студентам Академии наук курс физической химии и оставил рукопись этого курса «Вве
Энергия. Закон сохранения и превращения энергии
Неотъемлемым свойством (атрибутом) материи является движение; оно неуничтожимо, как и сама материя. Движение материи проявляется в разных формах, которые могут переходить одна в другую. Мерой движе
Предмет, метод и границы термодинамики
Сосредотачивая своё внимание на теплоте и работе, как формах перехода энергии при самых различных процессах, термодинамика вовлекает в круг своего рассмотрения многочисленные энергетические зависим
Теплота и работа
Изменения форм движения при его переходе от одного тела к другому и соответствующие превращения энергии весьма разнообразны. Формы же самого перехода движения и связанных с ним превращений энергии
Эквивалентность теплоты и работы
Постоянное эквивалентное отношение между теплотой и работой при их взаимных переходах установлено в классических опытах Д.П.Джоуля (1842-1867). Типичный эксперимент Джоуля заключается в следующем (
Внутренняя энергия
Для некругового процесса равенство (I, 1) не соблюдается, так как система не возвращается в исходное состояние. Вместо этого равенства для некругового процесса можно записать (опуская коэффициент
Первый закон термодинамики
Первый закон (первое начало) термодинамики непосредственно связан с законом сохранения энергии. Он позволяет рассчитывать баланс энергии при протекании различных процессов, в том числе и химических
Уравнения состояния
Многие свойства системы, находящейся в равновесии, и составляющих её фаз являются взаимозависимыми. Изменение одного из них вызывает изменение других. Количественные функциональные зависимости межд
Работа различных процессов
Под названием работы объединяются многие энергетические процессы; общим свойством этих процессов является затрата энергии системы на преодоление силы, действующей извне. К таким процессам относится
Теплоёмкость. Вычисление теплоты различных процессов
Опытное определение удельной (с) или мольной (С) теплоёмкости тела заключается в измерении теплоты Q, поглощаемой при нагревании одного грамма или одного моля вещества н
Калорические коэффициенты
Внутренняя энергия системы U, будучи функцией состояния, является функцией независимых переменных (параметров состояния) системы.
В простейших системах будем рассматривать внутренню
Применение первого закона термодинамики к идеальному газу
Рассмотрим идеальный газ, т. е. газ, состояние одного моля которого описывается уравнением Менделеева-Клапейрона:
Адиабатические процессы в газах
Говорят, что термодинамическая система совершает адиабатический процесс, если он обратим и если система термически изолирована, так что во время процесса не происходит теплообмена между системой и
Энтальпия
Уравнение первого закона термодинамики для процессов, где совершается только работа расширения, приобретает вид:
dQ = dU + PdV (I, 51)
Если процесс идет при постоянном
Химическая переменная. Формулировка первого закона термодинамики для процессов, сопровождающихся химическими и фазовыми превращениями
Уравнения (I, 27), (I, 28) и ранее приведённые формулировки первого закона термодинамики справедливы для любой равновесной закрытой системы вне зависимости от того, происходят в ней химические или
Термохимия. Закон Гесса
При химических превращениях происходит изменение внутренней энергии системы, обусловленное тем, что внутренняя энергия продуктов реакции отличается от внутренней энергии исходных веществ.
Зависимость теплового эффекта от температуры. Уравнение Кирхгофа
По закону Гесса можно вычислить тепловой эффект реакции при той температуре, при которой известны теплоты образования или теплоты сгорания всех реагентов (обычно это 298К). Однако, часто воз
Самопроизвольные и несамопроизвольные процессы
Из первого закона термодинамики и вытекающих из него закономерностей обмена энергией между телами при различных процессах нельзя сделать вывода о том, возможен ли, вообще говоря, данный процесс и в
Второй закон термодинамики
Наиболее часто встречающимися и безусловно самопроизвольными являются процессы передачи теплоты от горячего тела к холодному (теплопроводность) и перехода работы в теплоту (трение). Многовековая жи
Методы расчета изменения энтропии
Уравнения (II, 12) и (II, 13), определяющие энтропию, являются единственными исходными уравнениями для термодинамического расчета изменения энтропии системы. Заменяя элементарную теплоту в уравнени
Постулат Планка
По уравнению (II, 3) невозможно вычислить абсолютное значение энтропии системы. Такую возможность дает новое, недоказуемое положение, не вытекающее из двух законов термодинамики, которое было сформ
Абсолютные значения энтропии
Постулат Планка используется при термодинамическом исследовании химических процессов для вычисления абсолютных значений энтропии химических соединений - величин, которые имеют большое значение при
Стандартная энтропия. Изменение энтропии при протекании химической реакции
Энтропию, как и другие термодинамические функции, принято относить к стандартному состоянию вещества.
Напомним, что стандартное состояние характеризуется стандартными усло
Статистическая интерпретация энтропии
В основу понятия энтропии как функции состояния положена макроскопическая концепция. Справедливость второго закона термодинамики связана с реальностью необратимых процессов. В отличие от необратимы
Энергия Гельмгольца
Напомним, что второй закон термодинамики определяет критерии самопроизвольного протекания процессов в изолированных системах. Однако, подобные условия (отсутствие обмена энергией и веществом с окр
Энергия Гиббса
Желая учесть в общей форме другие виды работы, кроме работы расширения, представим элементарную работу как сумму работы расширения и других видов работы:
dW = PdV + dW" (III, 15)
Характеристические функции. Фундаментальные (канонические) уравнения состояния
Ранее мы определили следующие термодинамические функции - свойства системы: внутреннюю энергию U, энтальпию H, энтропию S, энергию Гельмгольца F, энергию Гиббса G
Соотношения Максвелла
Рассмотрим теперь вторые смешанные производные характеристических функций. Принимая во внимание уравнения (III, 26), можем записать:
Уравнение Гиббса-Гельмгольца
Уравнение Гиббса-Гельмгольца позволяет определять изменение энергии Гиббса, сопровождающее химические реакции при любой заданной температуре, если известна зависимость теплоты химических реакций от
Энергия Гиббса смеси идеальных газов. Определение химического потенциала
Энергия Гиббса является экстенсивной функцией, что позволяет рассчитать ее значение для смеси идеальных газов.
Представим себе резервуар, разделенный перегородками на секции, как показано
Химический потенциал
Чтобы прояснить смысл понятия «химический потенциал», продифференцируем выражение (III,51) как произведение при постоянных Р и Т:
Фазовые переходы. Уравнение Клапейрона-Клаузиуса
В системе, состоящей из нескольких фаз чистого вещества, находящихся в равновесии, возможны переходы вещества из одной фазы в другую. Такие переходы называются фазовыми переходами.
Фазовые переходы первого рода. Плавление. Испарение
Фазовые переходы, характеризующиеся равенством изобарных потенциалов двух сосуществующих в равновесии фаз и скачкообразным изменением первых производных по энергии Гиббса (энтропии и объема) при пе
Фазовые переходы второго рода
Фазовый переход второго рода - это равновесный переход вещества из одной фазы в другую, при котором скачкообразно изменяются только вторые производные от энергии Гиббса по температуре и давлению.
Зависимость давления насыщенного пара от температуры
Давление насыщенного пара жидкости резко увеличивается с повышением температуры. Это видно из рисунка 12, на котором изображены кривые давления пара некоторых жидкостей, начинающиеся в точках плавл
Общие условия равновесия
Любая закрытая система, находящаяся в равновесии при постоянных давлении и температуре, характеризуется соотношением:
Правило фаз Гиббса
В 1876 г. Гиббс вывел простую формулу, связывающую число фаз (Ф), находящихся в равновесии, число компонентов (К) и число степеней свободы (С) системы. При равновесии должны бы
Применение правила фаз Гиббса к однокомпонентным системам. Диаграммы состояния воды и серы
Для однокомпонентной системы К =1 и правило фаз записывается в виде:
С = 3 – Ф
Если Ф = 1, то С =2 , говорят, что система бивариантна;
Фазовая диаграмма серы
Кристаллическая сера существует в виде двух модификаций - ромбической (Sр) и моноклинной (Sм). Поэтому возможно существование четырех фаз: ромбической, мо
Закон действующих масс. Константа равновесия для газофазных реакций
Допустим, что между газообразными веществами А1, А2 … Аi, А’1, А’2 … А’i протекает химически обратимая реакция по уравнению:
Уравнение изотермы химической реакции
Предположим, в смеси идеальных газов протекает химическая реакция по уравнению
Допустим, что в момент приг
Представление о химическом сродстве
Из того факта, что одни вещества реагируют друг с другом легко и быстро, другие с трудом, третьи - совсем не реагируют, возникает предположение о наличии или отсутствии особого химического сродства
Использование закона действующих масс для расчета состава равновесных смесей
Для определения состава системы при установившемся равновесии, а следовательно, и выхода продукта (продуктов) реакции необходимо знать константу равновесия и состав исходной смеси.
Состав
Гетерогенные химические равновесия
Закон действующих масс был выведен с использованием закона состояния идеальных газов и применим в первую очередь к газовым смесям. Однако его без существенных изменений можно применить и к значител
Влияние температуры на химическое равновесие. Уравнение изобары химической реакции
Для определения зависимости K0от температуры в дифференциальной форме воспользуемся уравнением Гиббса-Гельмгольца (III, 41)
Принцип Ле Шателье-Брауна
Выведенная из состояния равновесия система вновь возвращается к состоянию равновесия. Ле Шателье и Браун высказали простой принцип, которым можно воспользоваться для предсказания того, в каком напр
Тепловая теорема Нернста
Прямой и простой расчет изменения энергии Гиббса, а, следовательно, и констант равновесия химических реакций не вызывает затруднений, если известны теплота химической реакции и абсолютные значения
Химическое равновесие в неидеальных системах
Закон действующих масс (V, 5) применим, как уже говорилось, лишь к идеальным газам (или идеальным растворам). Для таких систем произведение равновесных относительных парциальных давлений реагирующи
Зависимость энтальпии веществ и тепловых эффектов химических реакций от давления
При рассмотрении зависимости энтальпии от давления воспользуемся хорошо нам известным выражением ее полного дифференциала (III, 27):
dH = VdP + TdS
Разделим е