Почему возникает электрическая дуга. Электрическая дуга в высоковольтных выключателях. Методы ее гашения. Методы борьбы с электрической дугой

При коммутации электрических приборов или перенапряжений в цепи между токоведущими частями может появится электрическая дуга. Она может использоваться в полезных технологических целях и в то же время нести вред оборудованию. В настоящее время инженеры разработали ряд методов борьбы и использования в полезных целях электрической дуги. В этой статье мы рассмотрим, как она возникает, ее последствия и область применения.

Образование дуги, её строение и свойства

Представим, что мы в лаборатории проводим эксперимент. У нас есть два проводника, например, металлических гвоздя. Расположим их острием друг к другу на небольшом расстоянии и подключим к гвоздям выводы регулируемого источника напряжения. Если постепенно увеличивать напряжение источника питания, то при определенном его значении мы увидим искры, после чего образуется устойчивое свечение подобное молнии.

Таким образом можно наблюдать процесс её образования. Свечение, которое образуется между электродами — это плазма. Фактически это и есть электрическая дуга или протекание электрического тока через газовую среду между электродами. На рисунке ниже вы видите её строение и вольт-амперную характеристику:

А здесь – приблизительные величины температур:

Почему возникает электрическая дуга

Всё очень просто, мы рассматривали в статье об , а также в статье о , что если любое проводящее тело (стальной гвоздь, например) внести в электрическое поле — на его поверхности начнут скапливаться заряды. При том, чем меньше радиус изгиба поверхности, тем их больше скапливается. Говоря простым языком — заряды скапливаются на острие гвоздя.

Между нашими электродами воздух — это газ. Под действием электрического поля происходит его ионизация. В результате всего этого возникают условия для образования электрической дуги.

Напряжение, при котором возникает дуга, зависит от конкретной среды и её состояния: давления, температуры и прочих факторов.

Интересно: по одной из версий это явление так называется из-за её формы. Дело в том, что в процессе горения разряда воздух или другой окружающий её газ разогревается и поднимается вверх, в результате чего происходит искажение прямолинейной формы и мы видим дугу или арку.

Для зажигания дуги нужно либо преодолеть напряжение пробоя среды между электродами, либо разорвать электрическую цепь. Если в цепи есть большая индуктивность, то, согласно законам коммутации, ток в ней не может прерваться мгновенно, он будет протекать и далее. В связи с этим будет возрастать напряжение между разъединенными контактами, а дуга будет гореть пока не исчезнет напряжение и не рассеется энергия, накопленная в магнитном поле катушки индуктивности.

Рассмотрим условия зажигания и горения:

Между электродами должен быть воздух или другой газ. Для преодоления напряжения пробоя среды потребуется высокое напряжение в десятки тысяч вольт – это зависит от расстояния между электродами и других факторов. Для поддержания горения дуги достаточно 50-60 Вольт и тока в 10 и больше Ампер. Конкретные величины зависят от окружающей среды, формы электродов и расстояния между ними.

Вред и борьба с ней

Мы рассмотрели причины возникновения электрической дуги, теперь давайте разберемся какой вред она наносит и способы её гашения. Электрическая дуга наносит вред коммутационной аппаратуре. Вы замечали, что, если включить мощный электроприбор в сеть и через какое-то время выдернуть вилку из розетки — происходит небольшая вспышка. Это дуга образуется между контактами вилки и розетки в результате разрыва электрической цепи.

Важно! Во время горения электрической дуги выделяется много тепла, температура её горения достигает значений более 3000 градусов Цельсия. В высоковольтных цепях длина дуги достигает метра и более. Возникает опасность как нанесения вреда здоровью людей, так и состоянию оборудования.

Тоже самое происходит и в выключателях освещения, другой коммутационной аппаратуре среди которых:

  • автоматические выключатели;
  • магнитные пускатели;
  • контакторы и прочее.

В аппаратах, которые используются в сетях 0,4 кВ, в том числе и привычные 220 В, используют специальные средства защиты – дугогасительные камеры. Они нужны чтобы уменьшить вред, наносимый контактам.

В общем виде дугогасительная камера представляет собой набор проводящих перегородок особой конфигурации и формы, скрепленных стенками из диэлектрического материала.

При размыкании контактов образовавшаяся плазма изгибается в сторону камеры дугогашения, где разъединяется на небольшие участки. В результате она охлаждается и гасится.

В высоковольтных сетях используют масляные, вакуумные, газовые выключатели. В масляном выключателе гашение происходит коммутацией контактов в масляной ванне. При горении электрической дуги в масле оно разлагается на водород и газы. Вокруг контактов образуется газовый пузырь, который стремиться вырваться из камеры с большой скоростью и дуга охлаждается, так как водород обладает хорошей теплопроводностью.

В вакуумных выключателях не ионизируются газы и нет условий для горения дуги. Также есть выключатели, заполненные газом под высоким давлением. При образовании электрической дуги температура в них не повышается, повышается давление, а из-за этого уменьшается ионизация газов или происходит деионизация. Перспективным направлением считаются .

Также возможна коммутация при нулевом значении переменного тока.

Полезное применение

Рассмотренное явление нашло и целый ряд полезных применений, например:


Теперь вы знаете, что такое электрическая дуга, какие причины возникновения данного явления и возможные сферы применения. Надеемся, предоставленная информация была для вас понятной и полезной!

Материалы

17 января 2012 в 10:00

При размыкании электрической цепи возникает электрический разряд в виде электрической дуги. Для появления электрической дуги достаточно, чтобы напряжение на контактах было выше 10 В при токе в цепи порядка 0,1А и более. При значительных напряжениях и токах температура внутри дуги может достигать 10...15 тыс. °С, в результате чего плавятся контакты и токоведущие части.

При напряжениях 110 кВ и выше длина дуги может достигать нескольких метров. Поэтому электрическая дуга, особенно в мощных силовых цепях, на напряжение выше 1 кВ представляет собой большую опасность, хотя серьезные последствия могут быть и в установках на напряжение ниже 1 кВ. Вследствие этого электрическую дугу необходимо максимально ограничить и быстро погасить в цепях на напряжение как выше, так и ниже 1 кВ.

Причины возникновения электрический дуги

Процесс образования электрической дуги может быть упрощенно представлен следующим образом. При расхождении контактов вначале уменьшается контактное давление и соответственно контактная поверхность, увеличиваются переходное сопротивление (плотность тока и температура — начинаются местные (на отдельных участках площади контактов) перегревы, которые в дальнейшем способствуют термоэлектронной эмиссии, когда под воздействием высокой температуры увеличивается скорость движения электронов и они вырываются с поверхности электрода.

В момент расхождения контактов, то есть разрыва цепи, на контактном промежутке быстро восстанавливается напряжение. Поскольку при этом расстояние между контактами мало, возникает электрическое поле высокой напряженности, под воздействием которого с поверхности электрода вырываются электроны. Они разгоняются в электрическом поле и при ударе в нейтральный атом отдают ему свою кинетическую энергию. Если этой энергии достаточно, чтобы оторвать хотя бы один электрон с оболочки нейтрального атома, то происходит процесс ионизации.

Образовавшиеся свободные электроны и ионы составляют плазму ствола дуги, то есть ионизированного канала, в котором горит дуга и обеспечивается непрерывное движение частиц. При этом отрицательно заряженные частицы, в первую очередь электроны, движутся в одном направлении (к аноду), а атомы и молекулы газов, лишенные одного или нескольких электронов, — положительно заряженные частицы — в противоположном направлении (к катоду). Проводимость плазмы близка к проводимости металлов.

В стволе дуги проходит большой ток и создается высокая температура. Такая температура ствола дуги приводит к термоионизации — процессу образования ионов вследствие соударения молекул и атомов, обладающих большой кинетической энергией при высоких скоростях их движения (молекулы и атомы среды, где горит дуга, распадаются на электроны и положительно заряженные ионы). Интенсивная термоионизация поддерживает высокую проводимость плазмы. Поэтому падение напряжения по длине дуги невелико.

В электрической дуге непрерывно протекают два процесса: кроме ионизации, также деионизация атомов и молекул. Последняя происходит в основном путем диффузии, то есть переноса заряженных частиц в окружающую среду, и рекомбинации электронов и положительно заряженных ионов, которые воссоединяются в нейтральные частицы с отдачей энергии, затраченной на их распад. При этом происходит теплоотвод в окружающую среду.

Таким образом, можно различить три стадии рассматриваемого процесса: зажигание дуги, когда вследствие ударной ионизации и эмиссии электронов с катода начинается дуговой разряд и интенсивность ионизации выше, чем деионизации, устойчивое горение дуги, поддерживаемое термоионизацией в стволе дуги, когда интенсивность ионизации и деионизации одинакова, погасание дуги, когда интенсивность деионизации выше, чем ионизации.

Способы гашения дуги в коммутационных электрических аппаратах

Для того чтобы отключить элементы электрической цепи и исключить при этом повреждение коммутационного аппарата, необходимо не только разомкнуть его контакты, но и погасить появляющуюся между ними дугу. Процессы гашения дуги, так же как и горения, при переменном и постоянном токе различны. Это определяется тем, что в первом случае ток в дуге каждый полупериод проходит через нуль. В эти моменты выделение энергии в дуге прекращается и дуга каждый раз самопроизвольно гаснет, а затем снова загорается.

Практически ток в дуге становится близким нулю несколько раньше перехода через нуль, так как при снижении тока энергия, подводимая к дуге, уменьшается, соответственно снижается температура дуги и прекращается термоионизация. При этом в дуговом промежутке интенсивно идет процесс деионизации. Если в данный момент разомкнуть и быстро развести контакты, то последующий электрический пробой может не произойти и цепь будет отключена без возникновения дуги. Однако практически это сделать крайне сложно, и поэтому принимают специальные меры ускоренного гашения дуги, обеспечивающие охлаждение дугового пространства и уменьшение числа заряженных частиц.

В результате деионизации постепенно увеличивается электрическая прочность промежутка и одновременно растет восстанавливающееся напряжение на нем. От соотношения этих величин и зависит, загорится ли на очередную половину периода дуга или нет. Если электрическая прочность промежутка возрастает быстрее и оказывается больше восстанавливающего напряжения, дуга больше не загорится, в противном же случае будет обеспечено устойчивое горение дуги. Первое условие и определяет задачу гашения дуги.

В коммутационных аппаратах используют различные способы гашения дуги.

Удлинение дуги

При расхождении контактов в процессе отключения электрической цепи возникшая дуга растягивается. При этом улучшаются условия охлаждения дуги, так как увеличивается ее поверхность и для горения требуется большее напряжение.

Деление длинной дуги на ряд коротких дуг

Если дугу, образовавшуюся при размыкании контактов, разделить на К коротких дуг, например затянув ее в металлическую решетку, то она погаснет. Дуга обычно затягивается в металлическую решетку под воздействием электромагнитного поля, наводимого в пластинах решетки вихревыми токами. Этот способ гашения дуги широко используется в коммутационных аппаратах на напряжение ниже 1 кВ, в частности в автоматических воздушных выключателях.

Охлаждение дуги в узких щелях

Гашение дуги в малом объеме облегчается. Поэтому в коммутационных аппаратах широко используют дугогасительные камеры с продольными щелями (ось такой щели совпадает по направлению с осью ствола дуги). Такая щель обычно образуется в камерах из изоляционных дугостойких материалов. Благодаря соприкосновению дуги с холодными поверхностями происходят ее интенсивное охлаждение, диффузия заряженных частиц в окружающую среду и соответственно быстрая деионизация.

Кроме щелей с плоскопараллельными стенками, применяют также щели с ребрами, выступами, расширениями (карманами). Все это приводит к деформации ствола дуги и способствует увеличению площади соприкосновения ее с холодными стенками камеры.

Втягивание дуги в узкие щели обычно происходит под действием магнитного поля, взаимодействующего с дугой, которая может рассматриваться как проводник с током.

Внешнее магнитное поле для перемещения дуги наиболее часто обеспечивают за счет катушки, включаемой последовательно с контактами, между которыми возникает дуга. Гашение дуги в узких щелях используют в аппаратах на все напряжения.

Гашение дуги высоким давлением

При неизменной температуре степень ионизации газа падает с ростом давления, при этом возрастает теплопроводность газа. При прочих равных условиях это приводит к усиленному охлаждению дуги. Гашение дуги при помощи высокого давления, создаваемого самой же дугой в плотно закрытых камерах, широко используется в плавких предохранителях и ряде других аппаратов.

Гашение дуги в масле

Если контакты выключателя помещены в масло, то возникающая при их размыкании дуга приводит к интенсивному испарению масла. В результате вокруг дуги образуется газовый пузырь (оболочка), состоящий в основном из водорода (70...80 %), а также паров масла. Выделяемые газы с большой скоростью проникают непосредственно в зону ствола дуги, вызывают перемешивание холодного и горячего газа в пузыре, обеспечивают интенсивное охлаждение и соответственно деионизацию дугового промежутка. Кроме того, деионизирующую способность газов повышает создаваемое при быстром разложении масла давление внутри пузыря.

Интенсивность процесса гашения дуги в масле тем выше, чем ближе соприкасается дуга с маслом и быстрее движется масло по отношению к дуге. Учитывая это, дуговой разрыв ограничивают замкнутым изоляционным устройством — дугогасительной камерой. В этих камерах создается более тесное соприкосновение масла с дугой, а при помощи изоляционных пластин и выхлопных отверстий образуются рабочие каналы, по которым происходит движение масла и газов, обеспечивая интенсивное обдувание (дутье) дуги.

22 августа 2012 в 10:00

При размыкании электрической цепи возникает электрический разряд в виде электрической дуги. Для появления электрической дуги достаточно, чтобы напряжение на контактах было выше 10 В при токе в цепи порядка 0,1А и более. При значительных напряжениях и токах температура внутри дуги может достигать 10...15 тыс. °С, в результате чего плавятся контакты и токоведущие части.

При напряжениях 110 кВ и выше длина дуги может достигать нескольких метров. Поэтому электрическая дуга, особенно в мощных силовых цепях, на напряжение выше 1 кВ представляет собой большую опасность, хотя серьезные последствия могут быть и в установках на напряжение ниже 1 кВ. Вследствие этого электрическую дугу необходимо максимально ограничить и быстро погасить в цепях на напряжение как выше, так и ниже 1 кВ.

Причины возникновения электрический дуги

Процесс образования электрической дуги может быть упрощенно представлен следующим образом. При расхождении контактов вначале уменьшается контактное давление и соответственно контактная поверхность, увеличиваются переходное сопротивление(плотность тока и температура — начинаются местные (на отдельных участках площади контактов) перегревы, которые в дальнейшем способствуют термоэлектронной эмиссии, когда под воздействием высокой температуры увеличивается скорость движения электронов и они вырываются с поверхности электрода.

В момент расхождения контактов, то есть разрыва цепи, на контактном промежутке быстро восстанавливается напряжение. Поскольку при этом расстояние между контактами мало, возникает электрическое поле высокой напряженности, под воздействием которого с поверхности электрода вырываются электроны. Они разгоняются в электрическом поле и при ударе в нейтральный атом отдают ему свою кинетическую энергию. Если этой энергии достаточно, чтобы оторвать хотя бы один электрон с оболочки нейтрального атома, то происходит процесс ионизации.

Образовавшиеся свободные электроны и ионы составляют плазму ствола дуги, то есть ионизированного канала, в котором горит дуга и обеспечивается непрерывное движение частиц. При этом отрицательно заряженные частицы, в первую очередь электроны, движутся в одном направлении (к аноду), а атомы и молекулы газов, лишенные одного или нескольких электронов, — положительно заряженные частицы — в противоположном направлении (к катоду). Проводимость плазмы близка к проводимости металлов.

В стволе дуги проходит большой ток и создается высокая температура. Такая температура ствола дуги приводит к термоионизации — процессу образования ионов вследствие соударения молекул и атомов, обладающих большой кинетической энергией при высоких скоростях их движения (молекулы и атомы среды, где горит дуга, распадаются на электроны и положительно заряженные ионы). Интенсивная термоионизация поддерживает высокую проводимость плазмы. Поэтому падение напряжения по длине дуги невелико.

В электрической дуге непрерывно протекают два процесса: кроме ионизации, также деионизация атомов и молекул. Последняя происходит в основном путем диффузии, то есть переноса заряженных частиц в окружающую среду, и рекомбинации электронов и положительно заряженных ионов, которые воссоединяются в нейтральные частицы с отдачей энергии, затраченной на их распад. При этом происходит теплоотвод в окружающую среду.

Таким образом, можно различить три стадии рассматриваемого процесса: зажигание дуги, когда вследствие ударной ионизации и эмиссии электронов с катода начинается дуговой разряд и интенсивность ионизации выше, чем деионизации, устойчивое горение дуги, поддерживаемое термоионизацией в стволе дуги, когда интенсивность ионизации и деионизации одинакова, погасание дуги, когда интенсивность деионизации выше, чем ионизации.

Способы гашения дуги в коммутационных электрических аппаратах

Для того чтобы отключить элементы электрической цепи и исключить при этом повреждение коммутационного аппарата, необходимо не только разомкнуть его контакты, но и погасить появляющуюся между ними дугу. Процессы гашения дуги, так же как и горения, при переменном и постоянном токе различны. Это определяется тем, что в первом случае ток в дуге каждый полупериод проходит через нуль. В эти моменты выделение энергии в дуге прекращается и дуга каждый раз самопроизвольно гаснет, а затем снова загорается.

Практически ток в дуге становится близким нулю несколько раньше перехода через нуль, так как при снижении тока энергия, подводимая к дуге, уменьшается, соответственно снижается температура дуги и прекращается термоионизация. При этом в дуговом промежутке интенсивно идет процесс деионизации. Если в данный момент разомкнуть и быстро развести контакты, то последующий электрический пробой может не произойти и цепь будет отключена без возникновения дуги. Однако практически это сделать крайне сложно, и поэтому принимают специальные меры ускоренного гашения дуги, обеспечивающие охлаждение дугового пространства и уменьшение числа заряженных частиц.

В результате деионизации постепенно увеличивается электрическая прочность промежутка и одновременно растет восстанавливающееся напряжение на нем. От соотношения этих величин и зависит, загорится ли на очередную половину периода дуга или нет. Если электрическая прочность промежутка возрастает быстрее и оказывается больше восстанавливающего напряжения, дуга больше не загорится, в противном же случае будет обеспечено устойчивое горение дуги. Первое условие и определяет задачу гашения дуги.

В коммутационных аппаратах используют различные способы гашения дуги.

Удлинение дуги

При расхождении контактов в процессе отключения электрической цепи возникшая дуга растягивается. При этом улучшаются условия охлаждения дуги, так как увеличивается ее поверхность и для горения требуется большее напряжение.

Деление длинной дуги на ряд коротких дуг

Если дугу, образовавшуюся при размыкании контактов, разделить на К коротких дуг, например затянув ее в металлическую решетку, то она погаснет. Дуга обычно затягивается в металлическую решетку под воздействием электромагнитного поля, наводимого в пластинах решетки вихревыми токами. Этот способ гашения дуги широко используется в коммутационных аппаратах на напряжение ниже 1 кВ, в частности в автоматических воздушных выключателях.

Охлаждение дуги в узких щелях

Гашение дуги в малом объеме облегчается. Поэтому в коммутационных аппаратах широко используют дугогасительные камеры с продольными щелями (ось такой щели совпадает по направлению с осью ствола дуги). Такая щель обычно образуется в камерах из изоляционных дугостойких материалов. Благодаря соприкосновению дуги с холодными поверхностями происходят ее интенсивное охлаждение, диффузия заряженных частиц в окружающую среду и соответственно быстрая деионизация.

Кроме щелей с плоскопараллельными стенками, применяют также щели с ребрами, выступами, расширениями (карманами). Все это приводит к деформации ствола дуги и способствует увеличению площади соприкосновения ее с холодными стенками камеры.

Втягивание дуги в узкие щели обычно происходит под действием магнитного поля, взаимодействующего с дугой, которая может рассматриваться как проводник с током.

Внешнее магнитное поле для перемещения дуги наиболее часто обеспечивают за счет катушки, включаемой последовательно с контактами, между которыми возникает дуга. Гашение дуги в узких щелях используют в аппаратах на все напряжения.

Гашение дуги высоким давлением

При неизменной температуре степень ионизации газа падает с ростом давления, при этом возрастает теплопроводность газа. При прочих равных условиях это приводит к усиленному охлаждению дуги. Гашение дуги при помощи высокого давления, создаваемого самой же дугой в плотно закрытых камерах, широко используется в плавких предохранителях и ряде других аппаратов.

Гашение дуги в масле

Если контакты выключателя помещены в масло, то возникающая при их размыкании дуга приводит к интенсивному испарению масла. В результате вокруг дуги образуется газовый пузырь (оболочка), состоящий в основном из водорода (70...80 %), а также паров масла. Выделяемые газы с большой скоростью проникают непосредственно в зону ствола дуги, вызывают перемешивание холодного и горячего газа в пузыре, обеспечивают интенсивное охлаждение и соответственно деионизацию дугового промежутка. Кроме того, деионизирующую способность газов повышает создаваемое при быстром разложении масла давление внутри пузыря.

Интенсивность процесса гашения дуги в масле тем выше, чем ближе соприкасается дуга с маслом и быстрее движется масло по отношению к дуге. Учитывая это, дуговой разрыв ограничивают замкнутым изоляционным устройством — дугогасительной камерой. В этих камерах создается более тесное соприкосновение масла с дугой, а при помощи изоляционных пластин и выхлопных отверстий образуются рабочие каналы, по которым происходит движение масла и газов, обеспечивая интенсивное обдувание (дутье) дуги.

Дугогасительные камеры по принципу действия разделяют на три основные группы: с автодутьем, когда высокие давление и скорость движения газа в зоне дуги создаются за счет выделяющейся в дуге энергии, с принудительным масляным дутьем при помощи специальных нагнетающих гидравлических механизмов, с магнитным гашением в масле, когда дуга под действием магнитного поля перемещается в узкие щели.

Наиболее эффективны и просты дугогасительные камеры с автодутьем. В зависимости от расположения каналов и выхлопных отверстий различают камеры, в которых обеспечивается интенсивное обдувание потоками газопаровой смеси и масла вдоль дуги (продольное дутье) или поперек дуги (поперечное дутье). Рассмотренные способы гашения дуги широко используются в выключателях на напряжение выше 1 кВ.

Другие способы гашения дуги в аппаратах на напряжение выше 1 кВ

Кроме указанных выше способов гашения дуги, используют также: сжатый воздух, потоком которого вдоль или поперек обдувается дуга, обеспечивая ее интенсивное охлаждение (вместо воздуха применяются и другие газы, часто получаемые из твердых газогенерирующих материалов — фибры, винипласта и т. п. — за счет их разложения самой горящей дугой), элегаз (шестифтористая сера), обладающий более высокой электрической прочностью, чем воздух и водород, в результате чего дуга, горящая в этом газе, даже при атмосферном давлении достаточно быстро гасится, высокоразреженный газ (вакуум), при размыкании контактов в котором дуга не загорается вновь (гаснет) после первого прохождения тока через нуль.

Последние публикации

Отключение цепи контактным аппаратом характеризуется возникновением плазмы, которая проходит разные стадии газового разряда в процессе преобразования межконтактного промежутка из проводника электрического тока в изолятор.

При токах выше 0,5-1 А возникает стадия дугового разряда (область 1 )(рис. 1.); при снижении тока возникает стадия тлеющего разряда у катода (область 2 ); следующая стадия (область 3 ) – таунсендовский разряд, и наконец, область 4 – стадия изоляции, в которой носители электричества – электроны и ионы – не образуются за счет ионизации, а могут поступать только из окружающей среды.

Рис. 1. Вольтамперная характеристика стадий электрического разряда в газах

Первый участок кривой – дуговой разряд (область 1) – характе­ризуется малым падением напряжения у электродов и большой плотностью тока. С ростом тока напряжение на дуговом промежутке сначала резко падает, а затем изменяется незначительно.

Второй участок (область 2 ) кривой, представляющий собой область тлеющего разряда, характеризуется высоким падением напряжения у катода (250 – 300 В) и малыми токами. С ростом тока возрастет падение напряжения на разрядном промежутке.

Таунсендовский разряд (область 3 ) характеризуется чрезвычайно малыми значениями тока при высоких напряжениях.

Электрическая дуга сопровождается высокой температурой и связана с этой температурой. Поэтому дуга – явление не только электрическое, но и тепловое.

В обычных условиях воздух является хорошим изолятором. Так, для пробоя воздушного промежутка в 1 см требуется приложить напряжение не менее 30 кВ. Для того чтобы воздушный промежуток стал проводником, необходимо создать в нем определенную концентрацию заряженных частиц: отрицатель­ных – в основном свободных электронов, и положительных – ионов. Процесс отделения от нейтральной частицы одного или нескольких электронов с обра­зованием свободных электронов и ионов называется ионизацией.

Ионизация газа может происходить под действием света, рентгеновских лучей, высокой температуры, под влиянием электрического поля и ряда дру­гих факторов. Для дуговых процессов в электрических аппаратах наибольшее значение имеют: из процессов, происходящих у электродов, – термоэлектрон­ная и автоэлектронная эмиссии, а из процессов, происходящих в дуговом промежутке, – термическая ионизация и ионизация толчком.

В коммутационных электрических аппаратах, предна­значенных для замыкания и размыкания цепи с током, при отключении возникает разряд в газе либо в виде тлеющего разряда, либо в виде дуги. Тлеющий разряд возникает тогда, когда отключаемый ток ниже 0,1 А, а напряжение на контактах достигает величины 250 – 300 В. Такой разряд встречается либо на контактах ма­ломощных реле, либо как переходная фаза к разряду в виде электрической дуги.

Основные свойства дугового разряда.

1) Дуговой разряд имеет место только при токах большой величины; минимальный ток дуги для металлов со­ставляет примерно 0,5 А;

2) Температура центральной части дуги очень вели­ка и в аппаратах может достигать 6000 – 18000 К;

3) Плотность тока на катоде чрезвычайно велика и достигает 10 2 – 10 3 А/мм 2 ;

4) Падение напряжения у катода составляет всего 10 – 20 В и практически не зависит от тока.

В дуговом разряде можно различить три характер­ные области: околокатодную, область столба дуги (ствол дуги) и околоанодную (рис. 2.).

В каждой из этих областей процессы ионизации и деионизации протекают по-разному в зависимо­сти от условий, которые там существуют. Поскольку ре­зультирующий ток, проходящий через эти три области, одинаков, в каждой из них происходят процессы, обес­печивающие возникновение необходимого количества за­рядов.

Рис. 2. Распределение напряжения и напряжённости электрического поля в стационарной дуге постоянного тока

Термоэлектронная эмиссия. Термоэлектронной эмиссией называется явление испускания электронов из накаленной поверхности.

При расхождении контактов резко возрастают переходное сопротивление контакта и плотность тока в последней площадке контактирования. Эта площадка нагревается до температуры плавления и образования контактного перешейка из расплавленного металла, который при дальнейшем расхождении контактов рвется. Здесь происходит испарение металла контактов. На отрицательном электроде образуется так назы­ваемое катодное пятно (раскаленная площадка), которое служит основа­нием дуги и очагом излучения элект­ронов в первый момент расхождения контактов. Плотность тока термо­электронной эмиссии зависит от тем­пературы и материала электрода. Она невелика и может быть достаточной для возникновения электрической ду­ги, но она недостаточна для ее го­рения.

Автоэлектронная эмиссия. Это –явление испускания электронов из катода под воздействием сильного электрического поля.

Место разрыва электрической цепи может быть представлено как конденсатор переменной емкости. Емкость в начальный момент равна бесконеч­ности, затем убывает по мере расхождения контактов. Через сопротивление цепи этот конденсатор заряжается, и напряжение на нем растет постепенно от нуля до напряжения сети. Одновременно увеличивается расстояние между контактами. Напряженность поля между контактами во время нарастания напряжения проходит через значения, превышающие 100 МВ/см. Такие значения напряженности электрического поля достаточны для вырывания электронов из холодного катода.

Ток автоэлектронной эмиссии также весьма мал и может служить только началом развития дугового разряда.

Таким образом, возникновение дугового разряда на расходящихся контактах объясняется наличием термоэлектронной и автоэлектронной эмиссий. Преобладание того или иного фактора зависит от значения отключаемого тока, материала и чистоты поверхности контактов, скорости их расхождения и от ряда других факторов.

Ионизация толчком. Если свободный электрон будет обладать достаточной скоростью, то при столкновении с нейтральной частицей (атом, а иногда и молекула) он может выбить из неё электрон. В результате получатся новый свободный электрон и положительный ион. Вновь полученный электрон может, в свою очередь, ионизировать следующую частицу. Такая ионизация носит название ионизации толчком.

Для того чтобы электрон мог ионизировать частицу газа, он должен двигаться с некоторой определенной скоростью. Скорость электрона зависит от разности потенциалов на длине его свободного пробега. Поэтому обычно указывается не скорость движения электрона, а то минимальное значение разности потенциалов, какое необходимо иметь на длине свободного пути, чтобы электрон к концу пути приобрел необходимую скорость. Эта разность потенциалов носит название потенциала ионизации .

Потенциал ионизации для газов составляет 13 – 16 В (азот, кислород, водород) и до 24,5 В (гелий), для паров металла он примерно в два раза ниже (7,7 В для паров меди).

Термическая ионизация. Это – процесс ионизации под воздействием высокой температуры. Поддержание дуги после ее возникновения, т.е. обеспечение возникшего дугового разряда достаточным числом свободных зарядов, объяс­няется основным и практически единственным видом ионизации – термической ионизацией.

Температура столба дуги с среднем равна 6000 – 10000 К, но может достигать и более высоких значений – до 18000 К. При такой температуре сильно возрастает как число быстро движущихся частиц газа, так и скорость их движения. При столкновении быстро движущихся атомов или молекул большая часть их разрушается, образуя заряженные частицы, т.е. происходит иони­зация газа. Основной характеристикой термической ионизации является сте­пень ионизации , представляющая собой отношение числа ионизированных атомов в дуговом промежутке к общему числу атомов в этом промежутке. Одновременно с процессами ионизации в дуге происходят обратные процессы, т. е. воссоединение заряженных частиц и образование нейтральных частиц. Эти процессы носят название деионизации .

Деионизация происходит главным образом за счет рекомбинации и диф­фузии .

Рекомбинация. Процесс, при котором различно заряженные частицы, при­ходя во взаимное соприкосновение, образуют нейтральные частицы, называется рекомбинацией.

В электрической дуге отрицательными частицами являются в основном электроны. Непосредственное соединение электронов с положительным ионом ввиду большой разности скоростей маловероятно. Обычно рекомбинация происходит при помощи нейтральной частицы, которую электрон заряжает. При соударении этой отрицательно заряженной частицы с положительным ионом образуется одна или две нейтральные частицы.

Диффузия. Диффузия заряженных частиц представляет собой процесс выноса заряженных частиц из дугового промежутка в окружающее пространство, что уменьшает проводимость дуги.

Диффузия обусловлена как электрическими, так и тепловыми факторами. Плотность зарядов в столбе дуги возрастает от периферии к центру. Ввиду этого создается электрическое поле, заставляющее ионы двигаться от центра к периферии и покидать область дуги. В этом же направлении действует и разность температур столба дуги и окружающего пространства. В стабилизированной и свободно горящей дуге диффузия играет ничтожно малую роль.

Падение напряжения на стационарной дуге распределяется неравномерно вдоль дуги. Картина изменения падения напряжения U Д и напряжённости электрического поля (продольного градиента напряжения) Е Д = dU/dx вдоль дуги приведена на рисунке (рис. 2). Под градиентом напряжения Е Д по­нимается падение напряжения на единицу длины дуги. Как видно из рисунка, ход харак­теристик U Д и Е Д в приэлектродных областях резко отличается от хода характе­ристик на остальной части дуги. У электродов, в прикатодной и прианодной об­ластях, на промежутке дли­ны порядка 10 – 4 см имеет место резкое падение напря­жения, называемое катод­ным U к и анодным U а. Значение этого падения на­пряжения зависит от мате­риала электродов и окружа­ющего газа. Суммарное зна­чение прианодного и прикатодного падений напряжений составляет 15 – 30 В, градиент напряжения достигает 10 5 – 10 6 В/см.

В остальной части дуги, называемой столбом дуги, падение напряжения U Д практически прямо пропорционально длине дуги. Градиент здесь приблизительно постоянен вдоль ствола. Он зависит от многих факторов и может изменяться в широких пределах, достигая 100 – 200 В/см.

Околоэлектродное падение напряжения U Э не зависит от длины дуги, падение напряжения в столбе дуги пропорционально длине дуги. Таким образом, падение напряжения на дуговом промежутке

U Д = U Э + Е Д l Д,

где: Е Д – напряжённость электрического поля в столбе дуги;

l Д – длина дуги; U Э = U к + U а.

В заключение следует ещё раз отметить, что в стадии дугового разряда преобладает термическая ионизация – разбиение атомов на электроны и положительные ионы за счёт энергии теплового поля. При тлеющем – возникает ударная ионизация у катода за счет соударения с электронами, разгоняемыми электри­ческим полем, а при таунсендовском разряде ударная ионизация пре­обладает на всём промежутке газового разряда.

Статическая вольтамперная характеристика электрической

дуги постоянного тока.

Важнейшей характеристикой дуги является зависимость напряжения на ней от величины тока. Эта характерис­тика называется вольтамперной. С ростом тока i уве­личивается температура дуги, усиливается термическая ионизация, возрастает число ионизированных частиц в разряде и падает электрическое сопротивление дуги r д.

Напряжение на дуге равно ir д.При увеличении тока сопротивление дуги уменьшается так резко, что напря­жение на дуге падает, несмотря на то, что ток в це­пи возрастает. Каждому значению тока в установившем­ся режиме соответствует свой динамический баланс числа заряженных частиц.

При переходе от одного значения тока к другому тепловое состояние дуги не изменяется мгновенно. Дуго­вой промежуток обладает тепловой инерцией . Если ток изменяется во времени медленно, то тепловая инерция разряда не сказывается. Каждому значению тока со­ответствует однозначное значение сопротивления дуги или напряжения на ней.

Зависимость напряжения на дуге от тока при мед­ленном его изменении называется статической вольтамперной характеристикой дуги.

Статическая характеристика дуги зависит от рас­стояния между электродами (длины дуги), материала электродов и параметров среды, в которой горит дуга.

Статические вольтамперные характеристи­ки дуги имеют вид кривых, изображенных на рис. 3.

Рис. 3. Статические вольтамперные характеристики дуги

Чем больше длина дуги, тем выше лежит ее статическая вольтамперная характеристика. С ростом давления среды, в которой горит дуга, также увеличивается на­пряженность Е Д и поднимается вольтамперная характеристика аналогично рис. 3.

Охлаждение дуги существенно влияет на эту ха­рактеристику. Чем интенсивнее охлаждение дуги, тем больше от нее отводится мощность. При этом должна возрасти мощность, выделяемая дугой. При заданном токе это возможно за счет увеличения напряжения на дуге. Таким образом, с ростом охлаждения вольтампер­ная характеристика располагается выше. Этим широко поль­зуются в дугогасительных устройствах аппаратов.

Динамическая вольтамперная характеристика электрической

дуги постоянного тока.

Если ток в цепи изменяется медленно, то току i 1 со­ответствует сопротивление дуги r Д1 ,абольшему току i 2 соответствует меньшее сопротивление r Д2 , что отражено на рис. 4. (см. статичес­кую характеристику дуги – кривая А ).

Рис. 4. Динамическая вольтамперная характеристика дуги.

В реальных установках ток может меняться довольно быстро. Вследствие тепловой инерции дугового столба изменение сопротивления дуги отстает от изменения то­ка.

Зависимость напряжения на дуге от тока при быст­ром его изменении называется динамической вольтамперной характеристикой .

При резком возрастании тока динамическая характеристика идет выше статической (кривая В ), так как при быстром росте тока сопротивление дуги падает мед­леннее, чем растет ток. При уменьшении – ниже, по­скольку в этом режиме сопротивление дуги меньше, чем при медленном изменении тока (кривая С ).

Динамическая характеристика в значительной степе­ни определяется скоростью изменения тока в дуге. Если в цепь ввести очень большое сопротивление за время, бес­конечно малое по сравнению с тепловой постоянной вре­мени дуги, то в течение времени спада тока до нуля со­противление дуги останется постоянным. В этом случае динамическая характеристика изобразится прямой, про­ходящей из точки 2 в начало координат (прямая D ),т. е. дуга ведет себя как металлический проводник, так как напряжение на дуге пропорционально току.

Условия гашения дуги постоянного тока.

Чтобы погасить электрическую дугу постоянного тока, необходимо создать такие условия, чтобы в дуговом промежутке при всех значениях тока процессы деионизации протекали бы интенсивнее, чем процессы ионизации.

Рис. 5. Баланс напряжений в цепи с электрической дугой.

Рассмотрим электрическую цепь, содержащую сопротивление R , индуктивность L и дуговой промежуток с падением напряжения U Д, к которой приложено напряжение U (рис. 5, а ). При дуге, имеющей неизменную длину, для любого момента времени будет справедливо уравнение баланса напряжений в этой цепи:

где падение напряжения на индуктивности при изменении тока.

Стационарным режимом будет такой, при котором ток в цепи не меняется, т.е. а уравнение баланса напряжений примет вид:

Для погасания электрической дуги необходимо, чтобы ток в ней всё время уменьшался, т.е. , а

Графическое решение уравнения баланса напряжений представлено на рис. 5, б . Здесь прямая 1 представляет собой напряжение источника U ; наклонная прямая 2 – падение напряжения на сопротивлении R (реостатная характеристика цепи), вычитаемое из напряжения U , т.е. U – iR ; кривая 3 – вольтамперную характеристику дугового промежутка U Д.

Особенности электрической дуги переменного тока.

Если для гашения дуги постоянного тока необходимо создать такие усло­вия, при которых ток упал бы до нуля, то при переменном токе ток в дуге независимо от степени ионизации дугового промежутка переходит через нуль каждый полупериод, т.е. каждый полупериод дуга гаснет и зажигается вновь. Задача гашения дуги существенно облегчается. Здесь необходимо создать условия, при которых ток не восстановился бы после прохождения через нуль.

Вольтамперная характеристика дуги переменного тока за один период приведена на рис. 6. Поскольку, даже при промышленной частоте 50 Гц, ток в дуге меняется достаточно быстро, то представленная характеристика является динамической. При синусоидальном токе напряжение на дуге сначала увеличивается на участке 1, а затем, в связи с ростом тока, падает на участке 2 (участки 1 и 2 относятся к первой половине полупериода). После прохождения тока через максимум динамическая ВАХ возрастает по кривой 3 в связи с уменьшением тока, а затем уменьшается на участке 4 в связи с приближением напряжения к нулю (участки 3 и 4 относятся ко второй половине этого же полупериода).

Рис. 6. Вольтамперная характеристика дуги переменного тока

При переменном токе температура дуги является величиной переменной. Однако тепловая инерция газа оказывается довольно значительной, и к моменту перехода тока через нуль температура дуги хотя и уменьшается, но остаётся достаточно высокой. Всё же имеющее место снижение температуры при переходе тока через нуль способствует деионизации промежутка и облегчает гашение электрической дуги переменного тока.

Электрическая дуга в магнитном поле.

Электрическая дуга является газообразным про­водником тока. На этот проводник, так же как на метал­лический, действует магнитное поле, создавая силу, про­порциональную индукции поля и току в дуге. Магнитное поле, действуя на дугу, увеличивает ее длину и переме­щает элементы дуги в пространстве. Поперечное перемещение элементов дуги создает ин­тенсивное охлаждение, что приводит к повышению гради­ента напряжения на столбе дуги. При движении дуги в среде газа с большой скоро­стью возникает расслоение дуги на отдельные парал­лельные волокна. Чем длиннее дуга, тем сильнее проис­ходит расслоение дуги.

Дуга является чрезвычайно подвижным проводником. Известно, что на токоведущую часть действуют такие силы, которые стремятся увеличить электромагнит­ную энергию контура. Поскольку энергия пропорцио­нальна индуктивности, то дуга под действием своего собственного поля стремится образовывать витки, петли, так как при этом возрастает индуктивность цепи. Эта способность дуги тем сильнее, чем больше ее длина.

Движущаяся в воздухе дуга преодолевает аэродина­мическое сопротивление воздуха, которое зависит от ди­аметра дуги, расстояния между электродами, плотности газа и скорости движения. Опыт показывает, что во всех случаях в равномерном магнитном поле дуга движется с постоянной скоростью. Следовательно, электродинами­ческая сила уравновешивается силой аэродинамического сопротивления.

С целью создания эффективного охлаждения дуга с помощью магнитного поля втягивается в узкую (диаметр дуги больше ширины щели) щель между стен­ками из дугостойкого материала с высокой теплопровод­ностью. Из-за увеличения теплоотдачи стенкам щели гра­диент напряжения в столбе дуги при наличии узкой щели значительно выше, чем у дуги, свободно перемещающей­ся между электродами. Это дает возможность сократить необходимую для гашения длину и время гашения.

Способы воздействия на электрическую дугу в коммутационных аппаратах.

Цель воздействия на столб возникающей в аппарате дуги состоит в увеличении её активного электрического сопротивления вплоть до бесконечности, когда коммутационный орган переходит в изоляционное состояние. Практически всегда это достигается путем интенсивного охлаждения столба дуги, уменьшения её температуры и теплосодержания, в результате чего снижается степень ионизации и количество носителей электричества и ионизированных частиц и повышается электрическое сопротивление плазмы.

Для успешного гашения электрической дуги в коммутационных низковольтных аппаратах необходимо выполнить следующие условия:

1) увеличить длину дуги путем её растяжения или увели­чения числа разрывов на полюс выключателя;

2) переместить дугу на металлические пластины дугогасительной решётки, которые являются как радиаторами, поглощающими тепловую энергию столба дуги, так и разбивают её на ряд последовательно соединённых дуг;

3) переместить столб дуги магнитным полем в щелевую камеру из дугостойкого изоляционного материала с большой теплопроводностью, где дуга интенсивно охлаж­дается, соприкасаясь со стенками;

4) образовывать дугу в закрытой трубке из газогенерирующего материала – фибры; выделяемые под воздействием температуры газы создают высокое давление, что способствует гашению дуги;

5) уменьшить концентрацию паров металлов в дуге, для чего на этапе проектирования аппаратов использовать соответствующие материалы;

6) гасить дугу в вакууме; при очень низком давлении газа недо­статочно атомов газа, чтобы ионизировать их и поддержать проведение тока в дуге; электрическое сопротивление канала столба дуги стано­вится очень высоким и дуга гаснет;

7) размыкать контакты синхронно перед переходом переменно­го тока через нуль, что существенно снижает выделение тепловой энергии в образовавшейся дуге, т.е. способствует гашению дуги;

8) применять чисто активные сопротивления, шунтирующие дугу и облегчающие условия её гашения;

9) применять шунтирующие межконтактный промежуток полу­проводниковые элементы, переключающие на себя ток дуги, что практиче­ски исключает образование дуги на контактах.

В статье узнаете что такое электрическая дуга, вспышка, как она появляется, историю происхождения, а также ее опасность, что происходит во время электрической дуги и как себя обезопасить.

Электробезопасность имеет первостепенное значение для поддержания любого эффективного и производительного объекта, и одной из самых серьезных угроз для безопасности работников является электрическая дуга и вспышка дуги. Советуем вам статье .

Электрические пожары приводят к катастрофическим повреждениям, а в промышленных условиях они часто бывают вызваны электрическими дугами того или иного типа. В то время как некоторые типы электрических дуг трудно не заметить, «вспышка дуги громкая и сопровождается большим ярким взрывом», некоторые электрические дуги, такие как дуговой разряд, более тонкие, но могут быть столь же разрушительными. Неисправности дуги часто являются причиной электрических пожаров в жилых и коммерческих зданиях.

Проще говоря, электрическая дуга — это электрический ток, который намеренно или непреднамеренно разряжается через зазор между двумя электродами через газ, пар или воздух и создает относительно низкое напряжение на проводниках. Тепло и свет, производимые этой дугой, обычно интенсивны и могут использоваться для специальных применений, таких как дуговая сварка или освещения. Непреднамеренные дуги могут иметь разрушительные последствия, такие как: пожары, опасность поражения электрическим током и повреждение имущества.

Электрическая дуга

Электрическая дуга история происхождения

В 1801 году британский химик и изобретатель сэр Хэмфри Дэви продемонстрировал электрическую дугу своим товарищам в Лондонском королевском обществе и предложил название — электрическая дуга. Эти электрические дуги, выглядят как неровные удары молнии. За этой демонстрацией последовали дальнейшие исследования электрической дуги, показал русский ученый Василий Петров в 1802 году. Дальнейшие успехи в ранних исследованиях электрической дуги позволили получить такие важные в отрасли изобретения, как дуговая сварка.

По сравнению с искрой, которая является только мгновенной, дуговой разряд представляет собой непрерывный электрический ток, который выделяет так много тепла от несущих зарядов ионов или электронов, что он может испарять или плавить что-либо в пределах диапазона дуги. Дуга может поддерживаться в электрических цепях постоянного или переменного тока, и она должна включать в себя некоторое сопротивление, чтобы повышенный ток не оставался без контроля и полностью разрушал фактический источник цепи с его потреблением тепла и энергии.

Практическое применение

При правильном использовании электрические дуги могут иметь полезные цели. На самом деле, каждый из нас выполняет ряд ежедневных задач благодаря ограниченному применению электрических дуг.

Электрические дуги используются в:

  • вспышках камер
  • прожекторах для освещения сцены
  • люминесцентного освещения
  • дуговой сварки
  • дуговых печах (для производства стали и таких веществ, как карбид кальция)
  • плазменных резаках (в которых сжатый воздух объединяется с мощной дугой и преобразуется в плазму, которая имеет способность мгновенно разрезать сталь).

Опасность электрической дуги

Электрические дуги также могут быть чрезвычайно опасными, если они не преднамеренны в использовании. Ситуации, когда электрическая дуга создается в неконтролируемой среде, как в случае вспышки дуги, могут привести к травмам, смерти, пожару, повреждению оборудования и потере имущества.

Чтобы защитить работников от электрических дуг, компании должны использовать следующие продукты дуговой вспышки, чтобы уменьшить вероятность возникновения электрических дуг и уменьшить ущерб в случае их возникновения лучше использовать

Перчатки с защитным дуговым разрядом — эти перчатки предназначены для защиты рук от поражения электрическим током и сведения к минимуму травм в случае электрического проишествия.

Дуговая вспышка определение

Определение дуговых вспышек — нежелательный электрический разряда, который проходит через воздух между проводниками или из проводника к земле. Вспышка дуги является частью дугового разряда, который является примером электрического взрыва, вызванного соединением с низким импедансом, которое проходит через воздух к земле.

Когда возникает дуговая вспышка, она создает очень яркий свет и интенсивное тепло. Кроме того, он может создать дугу, которая может вызвать травмирующую силу, которая может серьезно ранить кого-либо в этом районе или повредить что-либо поблизости.

Что происходит во время вспышки дуги

Вспышка дуги начинается, когда электричество покидает намеченный путь, и начинает распространяться по воздуху в направлении заземленной зоны. Как только это происходит, он ионизирует воздух, что еще больше снижает общее сопротивление вдоль пути, по которому идет дуга. Это помогает привлечь дополнительную электрическую энергию.

Дуга будет двигаться таким образом, чтобы найти ближайшее расстояние к земле. Точное расстояние, которое может пройти вспышка дуги, называется границей вспышки дуги . Это определяется потенциальной энергией и множеством других факторов, таких как температура воздуха и влажность.


При работе по повышению безопасности вспышки дуги, установка будет часто отмечать границу вспышки дуги, используя клейкую ленту для пола. Любой, кто работает в этой области, должен будет носить средства индивидуальной защиты (СИЗ).

Потенциальная температура дуговой вспышки

Одной из самых больших опасностей, связанных с вспышкой дуги, является чрезвычайно высокая температура, которую она может создать. В зависимости от ситуации, они могут достигать высоких температур в 35000 градусов по Фаренгейту или 19426.667 градусов Цельсия. Это одна из самых высоких температур в мире, которая примерно в 4 раза выше, чем на поверхности Солнца.

Даже если фактическое электричество не касается человека, тело человека получит колоссальные повреждения, если он находится рядом с ним. В дополнение к прямым ожогам, эти температуры могут что-то поджечь в этом районе.

Как выглядит вспышка электрической дуги

Следующее видео показывает, насколько быстрой и взрывной может быть вспышка дуги. На этом видео показана управляемая вспышка дуги с «испытательным манекеном»:

Как долго длится вспышка электрической дуги

Вспышка дуги может длиться где-то от доли секунды до нескольких секунд, в зависимости от ряда факторов. Большинство вспышек дуги не длятся очень долго, потому что источник электричества быстро отключается автоматическими выключателями или другим защитным оборудованием.

Самые современные системы в настоящее время используют устройства, известные как элиминаторы дуги, которые обнаруживают и гасят дугу всего за несколько миллисекунд.

Однако, если система не имеет какого-либо типа защиты, вспышка дуги будет продолжаться до тех пор, пока поток электричества не прекратится физически. Это может произойти, когда работник физически отключает электричество от зоны или когда повреждение, вызванное вспышкой дуги, становится достаточно серьезным, чтобы каким-то образом остановить поток электричества.

Посмотрите на реальный пример дуговой вспышки, которая продолжается в течение длительного периода времени, в следующем видео. К счастью, люди на видео были одеты в свои средства индивидуальной защиты и остались без травм. Мощный взрыв, громкий шум, яркий свет и огромная температура — все это чрезвычайно опасно.

Потенциал повреждения от вспышки электрической дуги

Из-за высоких температур, интенсивных взрывов и других результатов дуговой вспышки, дуговые вспышки могут очень быстро нанести большой ущерб. Понимание различных типов повреждений, которые могут возникнуть, может помочь предприятиям планировать свои обязанности по обеспечению безопасности.

Потенциальный ущерб собственности

  • Тепло — тепло от дуговой вспышки может легко расплавить металл, что может повредить дорогостоящие машины и другое оборудование.
  • Пожар — тепло от этих вспышек может быстро привести к пожару, который может распространиться через объект, если его не остановить.
  • Взрывы — дуговой удар, который может возникнуть в результате дуговой вспышки, может разбить окна, расколоть дерево в этой области, погнуть металл и многое другое. Все, что хранится в радиусе взрыва дуги, может быть повреждено или уничтожено за считанные секунды.

Потенциальная травмы человека от вспышки электрической дуги

  • Ожоги — ожоги второй и третьей степени могут возникнуть в доли секунды, когда кто-то находится вблизи вспышки дуги.
  • Удар током — если вспышка дуги проходит через человека, он получит удар, как на электрическом стуле. В зависимости от силы тока, этот удар может быть смертельным.
  • Слуховое повреждение — дуговые вспышки могут вызывать очень громкие шумы, которые могут привести к необратимому повреждению слуха тех, кто находится в этом районе.
  • Повреждение зрения — Дуговые вспышки могут быть очень яркими, что может привести к временному или даже долговременному повреждению глаз.
  • Ущерб от взрыва дуги — Взрыв дуги может создать силу, которая составляет тысячи фунтов на метр. Это может сбить человека с ног на несколько метров. Это также может вызвать переломы костей, коллапс легких, сотрясение мозга и многое другое.

Ношение средств индивидуальной защиты может обеспечить значительную степень защиты, но не может устранить все риски. Сотрудники, которые присутствуют при возникновении дуговой вспышки, всегда находятся под угрозой, независимо от того, какие СИЗ они носят.

Потенциальные причины вспышки электрической дуги

Вспышки дуги могут возникать по разным причинам. В большинстве случаев основной причиной будет поврежденный элемент оборудования, такой как провод. Это также может быть результатом того, что кто-то работает над оборудованием, что позволяет электричеству выходить с пути, к которому он обычно привязан.

Даже когда есть потенциальный путь за пределами проводки, электричество будет идти по пути наименьшего сопротивления. Вот почему вспышка дуги не обязательно произойдет, как только что-то будет повреждено или появится альтернативный путь. Вместо этого электричество будет продолжать идти по намеченному пути, пока не станет доступен другой вариант с меньшим сопротивлением.

Вот некоторые вещи, которые могут создать путь с меньшим сопротивлением и, следовательно, вызвать вспышку дуги:

  • Пыль — в пыльных местах электричество может начать проходить через проводку или другое оборудование через пыль.
  • Уроненные инструменты — например, если инструмент упал на провод, он может повредить его и пропустить электричество в инструмент. Оттуда он должен найти другой путь, чтобы продолжить свое движение.
  • Случайное прикосновение — если человек касается поврежденной области, электричество может распространяться через его тело.
  • Конденсация — когда образуется конденсат, электричество может выходить из проводки через воду, и тогда возникнет дуга.
  • Отказ материала — Если провод поврежден до точки, в которой возникли проблемы с прохождением электричества, путь может быть более устойчивым, чем выход за пределы провода.
  • Коррозия — Коррозия может создать путь за пределами проволоки, после чего возникает вспышка дуги.
  • Неправильная установка — Если оборудование установлено неправильно, это может затруднить или сделать невозможным для электричества следовать по намеченному пути, что может вызвать вспышку дуги.

Предотвращение вспышек электрической дуги

Первый шаг в безопасности вспышки дуги сводит к минимуму риск возникновения. Это можно сделать, выполнив оценку электрического риска, которая может помочь определить, где находятся самые большие опасности на объекте. IEEE 1584 является хорошим вариантом для большинства объектов и поможет выявить общие проблемы.

Регулярные проверки всего высоковольтного оборудования и всей проводки являются еще одним важным шагом. Если есть какие-либо признаки коррозии, повреждения проводов или другие проблемы, их следует устранить как можно скорее. Это поможет безопасно хранить электрические токи внутри машин и проводов.

Некоторые конкретные области, которые должны быть проверены, включают в себя любые электрические распределительные щиты, щиты управления, панели управления, корпуса розеток и центры управления двигателями.

Надлежащая маркировка

В любом месте на объекте, где могут существовать высокие электрические токи, должны быть надлежащим образом отмечены предупреждающими метками дуги. Они могут быть приобретены предварительно изготовленными или распечатаны на любом промышленном принтере этикеток по мере необходимости. В статье 110.16 Национального электротехнического кодекса четко указано, что этот тип оборудования должен иметь маркировку для предупреждения людей о рисках.

Обесточивающее оборудование при выполнении технического обслуживания

Всякий раз, когда машина требует какой-либо работы, она должна быть полностью обесточена. Обесточивание машины — это больше, чем просто выключение. Все машины должны быть отключены и физически отключены от любого источника питания. После отсоединения следует также проверить напряжение, чтобы убедиться, что скрытая энергия не накапливалась.

В идеале должна существовать политика блокировки, которая установит физическую блокировку источника питания, чтобы его нельзя было случайно подключить обратно, пока кто-то работает на машине.

Предохранители

По возможности, автоматические выключатели должны быть установлены на всех машинах. Эти автоматические выключатели быстро обнаружат внезапный скачок напряжения и немедленно остановят поток. Даже при использовании автоматических выключателей может возникнуть дуговая вспышка, но она будет длиться лишь часть времени, так как электрический ток будет отключен.

Однако даже очень короткая вспышка дуги может привести к смертельному исходу, поэтому автоматические выключатели не должны рассматриваться как достаточная программа обеспечения безопасности вспышки дуги.

Стандарты безопасности

Все объекты должны учитывать различные стандарты безопасности при использовании дуговых вспышек, которые были установлены государственными и частными учреждениями. Определение того, какие стандарты должны соблюдаться, может помочь обеспечить соответствие объекта местным правилам и нормам, а также обеспечить безопасность объекта.

Ниже приведены наиболее распространенные стандарты безопасности дуговой электрической вспышки:

  • OSHA — OSHA имеет несколько стандартов, в том числе 29 CFR частей 1910 и 1926. Эти стандарты охватывают требования для производства, передачи и распределения электроэнергии.
  • Национальная ассоциация противопожарной защиты (NFPA) — стандарт NFPA 70-2014 , Национальный электротехнический кодекс (NEC) относится к безопасной электрической установке и практике. Стандарт NFPA 70E , Стандарт электробезопасности на рабочем месте, детализирует различные требования к предупредительным надписям, включая предупредительные надписи, касающиеся дуговых вспышек и дуговых взрывов. Он также предлагает рекомендации по внедрению лучших практик на рабочем месте, чтобы помочь сотрудникам, работающим с высоковольтным оборудованием, быть в безопасности.
  • Канадская ассоциация стандартов Z462 — Это очень похоже на стандарты NFPA 70E, но применимо для канадских компаний.
  • Лаборатории страховщиков Канады — этот набор стандартов предназначен для любой ситуации, когда производится, передается или распределяется электроэнергия, и охватывает требования безопасности. Аналогично стандартам OSHA, но для Канады.
  • IEEE 1584 — это набор руководящих принципов для точного расчета опасности дуговых вспышек.