Описание технологической схемы хво кнд. Эффективная водоподготовка котельной

На нужды горячего водоснабжения и подпитку поступает вода из существующего хозяйственно-питьевого водопровода котельной, отвечающая требованиям ГОСТ 2874–82 «Вода питьевая».

Требования к качеству подпиточной воды приняты по «Нормам качества подпиточной и сетевой воды тепловых сетей НР 34–70–051–83».

Для уменьшения содержания железа в проекте предусматривается установка обезжелезивания. Умягчение воды по способу натрий-катионирования.

Обезжелезивание воды происходит в фильтрах обезжелезивания. Через фильтр, загруженный сульфоуглем, пропускается аэрированная вода в течение 170–180 часов. За это время на поверхности зерен сульфоугля образуется пленка из соединений железа, служащая в дальнейшем катализатором. Когда потери напора в слое загрузки возрастают до 10 м. вод. ст., фильтр отключают на промывку.

Химводочистка воды принята по схеме двухступенчатого Na-катионирования. К установке принят блок из четырех Na-катионитовых фильтров. Два фильтра работают на 1-ой ступени умягчения, один - на 2-ой ступени умягчения и один резервный.

В баке мокрого хранения соли поддерживается постоянный уровень при помощи бачка постоянного уровня, 26% раствор соли из бака мокрого хранения поступает в емкость для хранения. Концентрированный раствор соли при помощи эжектора разбавляется до 7% концентрации и подается на регенерацию.

Для подпитки сети используется вода из системы водоснабжения, которая после химводоочистки поступает в вакуумную деаэрационную установку ДСА–50. Деаэрированная вода через регулятор давления поступает в обратный сетевой трубопровод для подпитки теплосети.

7.3. Выбор схемы водоподготовки

Расход пара на технологию D Т = 18 т/ч.

Количество потерянного конденсата:

G к =(1- ? ) ? D Т = (1-0,7) ? 18=5,4 т/ч

где ?- доля возврата конденсата, принимаем (60-70%);

D Т – расход пара на производство, т/ч.

Количество возвращаемого конденсата:

G Т = D Т - G К = 18 - 5,4 = 12,6 т/ч

Расход пара на деаэрацию и подогрев сырой воды.

Принимается равной 9% от D Т:

D д + D св = 0,09 ? D Т = 0,09 ? 18 = 1,62 т/ч

Потери пара внутри котельной принимается равными 2 % от D T:

D пот =0,02 ? D T =0,02 ? 18=0,36 т/ч

Полное количество пара, производимого котельной:

?D = D T + D д + D св + D пот = 18+1,62+0,36=19,98 т/ч

Количество пара, которое можно получить из расширителя непрерывной продувки:

где
т/ч

Р пр – величина прдувки (2-10%), принимаем 3%;

i l 1 - энтальпия котловой воды при давлении в котле

826,1кДж/кг;

i ll н иi l 2 – энтальпия пара и воды при давлении в

расширителе (1,5 кгс/см 2);

i ll н = 2692,39 кДж/кг;i 1 2 = 464,54 кДж/кг;

? - степень сухости пара, выходящего из расширителя

? под – КПД подогревателя (расширителя) (0,98)

Количество воды уходящей из расширителя:

G 1 пр = G пр - D пр =0,6 – 0,1=0,5 т/ч

Количество питательной воды, поступающей в котлы:

G пит = ? D + G 1 пр =19,98+0,5=20,48 т/ч

Общее количество воды на выходе из деаэратора (питательная вода):

G д = G пит =20,48 т/ч

Если принять, что количество выпара из деаэратора питательной воды равно 0,4% расхода подаваемой через него воды, то:

D вып =0,004 ? G д =0,004 ? 20,48=0,08 т/ч

Тогда производительность химводоочистки должна быть:

G хво = G к + G 1 пр + D пот + D вып =18+0,5+0,36+0,08=18,94 т/ч

Расход сырой воды на ХВО учитывается величиной коэффициентаk= 1,1-1,25. Этот коэффициент учитывает количество воды, идущей на взрыхление катионита, его регенерацию, обмывку и прочие нужды ХВО

G св = k ? G хво =1,25 ? 18,94=23,68 т/ч

Так как от производственных потребителей конденсат возвращается не полностью, то питание котлов предусматривается химически очищенной водой. Согласно нормам качества питательной воды для экранированных котлов давлением до 14 ата не должна превышать 20 мг-экв/кг.

(Справочник эксплуат-ка газ. котельных стр.223)

Замена в котлах твердого и жидкого топлив газовым позволяет увеличить их производительность за счет: дополнительного экранирования топок; повышения теплового напряжения топочного объема; правильного выбора количества горелок, их конструкции и мест установки; улучшения условий теплопередачи в конвективной части котла благодаря уменьшению загрязненности поверхностей нагрева; увеличения к.п.д. котла благодаря отсутствию потерь тепла с механическим и химическим недожогами и возможности сжигания газа с меньшими избытками воздуха.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Назначение ХВО

Химводоочистка (ХВО) предназначена для снабжения химочищенной водой производственных установок и паровой котельной.

Режим эксплуатации водоподготовительных установок и водно-химический режим должен обеспечить работу котельной и тепловых сетей без повреждений и снижения экономичности, вызванных коррозией внутренних поверхностей водоподготовительного, котельного и сетевого оборудования, а также образованием накипи и отложений на теплопередающих поверхностях, и шлама в оборудовании и трубопроводах котельной и тепловых сетей. Чтобы избежать подобных последствий, рекомендуется использовать химводоочистку (ХВО).

Система очистки воды для подпитки котлов включает в себя:

Удаление примесей на механических фильтрах;

Удаление солей жёсткости (умягчение воды) на Na-катионитовых фильтрах;

Обескислороживание и удаление углекислоты (декарбонизация).

Для предупреждения образования в котле кальциевой накипи применяется ввод фосфатов натрия в питательную воду на входе ее в барабаны котлов. Одновременно путем фосфатирования может поддерживаться определенная щелочность (РН) котловой воды, обеспечивающая защиту металла котла от коррозии. Раствор фосфата приготавливается в мешалках Е-9/1,2 с циркуляционными насосами Н-13/1,2, осветляется в фильтре Ф-6 и поступает в расходные емкости Е-10/1,2, откуда насосами-дозаторами Н-14/1-6 подается в котлы.

Для связывания углекислоты, выделяющейся в пар, из-за термического распада и гидролиза солей бикарбонатной и карбонатной щелочности, а также для защиты питательного тракта от углекислотной коррозии в питательную воду вводится раствор аммиачной воды. Аммиачная вода насосами-дозаторами Н-17/1,2 аммиачного хозяйства подается во всасывающую линию питательных насосов Н-9/1-3. Подача аммиачной воды ведется в автоматическом режиме.

Для поддержания солевых балансов котлов предусмотрена непрерывная продувка. В целях использования тепла продувки установлены сепараторы непрерывной продувки С-1,2. Вторичный пар, получаемый в сепараторах поступает в деаэраторы Да-1/1,2, а оставшаяся часть охлаждается в Х-2/1,2 и сбрасывается в остывочный колодец.

2. Химводоочистка для котельных, ТЭЦ и других энергообъектов

Вопросы подготовки и обработки воды для энергетических объектов в настоящее время приобрели особую актуальность в связи с неизбежностью замены устаревшего энергетического оборудования на современное и более совершенное, но требующего строгого соблюдения норм эксплуатации.

Непрерывное упаривание котловой воды в котлах с многократной естественной или принудительной циркуляцией приводит к возрастанию концентрации растворённых и взвешенных в ней примесей (солей, окислов, гидратов окислов) которые могут, отлагаясь на внутренней поверхности обогреваемых труб, значительно ухудшить условия их охлаждения, а также стать причиной перегрева металла и аварийной остановки котла из-за разрыва труб. Кроме того, чрезмерное повышение концентрации примесей в котловой воде недопустимо из-за уноса их паром из барабана с каплями воды или в виде парового раствора в пароперегреватель. Во избежание возрастания концентрации примесей в котловой воде производятся непрерывные и периодическиепродувки котла. Предельно допустимая концентрация примесей определяется конструкцией и параметрами котла, составом питательной воды и тепловыми напряжениями экранных поверхностей нагрева.

Продувка котла выполнятся с целью удаления загрязняющих примесей из пароводяного тракта котла. Различают непрерывную продувку котла: постоянный вывод растворённых примесей с частью котловой воды из верхнего барабана, и периодическую (шламовую) продувку котла - повторяющееся не чаще 1 раза в смену удаление нерастворимых примесей с частью котловой воды из нижних коллекторов циркуляционного контура котла. Тепло продувочной воды обычно утилизируется.

Наличие кислорода и агрессивных анионов, особенно хлоридов, в воде резко сокращает срок работы энергетических установок вследствие коррозии, которая в ряде случаев вызывает коррозионное растрескивание. За счёт деаэрации и водоподготовки изменяются стационарный потенциал и значения критических потенциалов и критических токов металла. Важным фактором, оказывающим влияние на коррозионную устойчивость материала котла, является значение pH котловой воды. Так, при уменьшении значения pH с 9,5 до 8,5 скорость растворения магнетита увеличивается в 5 раз. Требования к значению pH питательной воды строго регламентируются в требованиях к водно-химическому режиму котлов. Во многих случаях необходимой оказывается корректировка значения pH питательной воды, путём дозирования щелочи в воду, подготовленную для питания паровых котлов. химводоочистка паровой котел

В то же время, дополнительное введение щелочи в питательную воду увеличивает солесодержание в котловой воде, что приводит к увеличению потерь воды и тепла, связанных с непрерывной и периодической продувкой котла. Использование обессоленной воды, для подпитки котла позволяет на 5% увеличить экономичность котла и на столько же снизить расход подпиточной воды. Питание котлов обессоленной водой уменьшает и хлоридную коррозию металла, происходящую за счет анионов хлора. Следует отметить также, что необходимость дозирования щёлочи для коррекции pH в обессоленную воду приводит к увеличению солесодержания подпиточной воды практически до исходного значения.

Физические и химические свойства воды и/или пара во многом определяют срок службы оборудования. Накипь, кислородная и углекислотная коррозия обусловлены низкими качествами подпитывающей и питательной воды, а также отсутствием соответствующего контроля и химической коррекции свойств воды в котлах, пароконденсатных трактах и тепловых сетях. Эти проблемы приводят к снижению теплопередачи, уменьшению срока службы и выходу из строя оборудования, увеличению теплопотерь.

Правильный подбор водоподготовки позволяет избежать этих проблем уже на стадии проектирования и строительства новых систем тепло и водоснабжения и предотвратить их развитие в существующих системах.

Качество котловой и питательной воды регламентируется нормативными документами, а также соответствующими требованиями фирм-производителей котельного оборудования:

· ПБ 10-574-03? "Правила устройства и безопасной эксплуатации паровых и водогрейных котлов"

· ГОСТ 20995-75. "Котлы паровые стационарные с давлением до 3.9 Мпа. Показатели качества питательной воды и пара"

· "РД 24031.120-91. "Нормы качества сетевой и подпиточной воды водогрейных котлов, организация воднохимического режима и химического контроля"

· ПБ 10-575-03 "Правила устройства и безопасной эксплуатации электрических котлов и электрокотельных".

В зависимости от качества исходной воды и предъявляемых требований система водоподготовки может включать следующие стадии:

· предварительная очистка воды от механических примесей, сероводорода, железа;

· умягчение воды (Na+ -- катионирование) в одну или две ступени;

· обессоливание методом обратного осмоса или ионным обменом;

· глубокое обессоливание на фильтрах смешанного действия (ФСД) - декарбонизация и деаэрация;

· коррекционная обработка воды реагентами.

Широкий интерес к использованию метода обратного осмоса как метода обессоливания при подготовке воды для паровых котлов вызван тем, что его применение позволяет на 90% сократить количество потребляемых реагентов (поваренной соли, кислот, щелочей), избавившись таким образом от громоздкого и чрезвычайно вредного реагентного хозяйства, стоков, содержащих эти реагенты и снизить процент продувок паровых котлов до 0,5% вместо 10 и более процентов.

Мембранные методы могут применяться как в комбинациях, так и самостоятельно.

Мы предлагаем Вам рассмотреть наши предложения по:

· Установкам умягчения воды (Na+ -- катионирование), работающих в автоматическом режиме;

· Установкам обессоливания, работающим по технологии обратного осмоса;

· Оборудованию для снижения щелочности воды;

· Оборудованию для корректировки воднохимического режима котлов, путем дозирования химических реагентов.

Размещено на Allbest.ru

...

Подобные документы

    Понятие и строение парового котла, его назначение и функциональные особенности. Характеристика основных элементов рабочего процесса, осуществляемого в котельной установке. Конструкция парового котла типа ДЕ. Методы и средства управления работой котла.

    курсовая работа , добавлен 27.06.2010

    Краткое описание котельного агрегата ДКВР-6,5-13. Выбор водоподготовительного оборудования. Теплообменники, сепараторы непрерывной продувки. Принципиальная схема газоснабжения котельной. Автоматика безопасности котла. Отопление и вентиляция помещения.

    курсовая работа , добавлен 09.09.2014

    Генерация насыщенного или перегретого пара. Принцип работы парового котла ТЭЦ. Определение КПД отопительного котла. Применение газотрубных котлов. Секционированный чугунный отопительный котел. Подвод топлива и воздуха. Цилиндрический паровой барабан.

    реферат , добавлен 01.12.2010

    Реконструкция котельной на Новомосковском трубном заводе: определение нагрузок и разработка тепловых схем котельной, выбор основного и вспомогательного оборудования; расчет системы водоподготовки; автоматизация, обслуживание и ремонт парового котла.

    дипломная работа , добавлен 16.08.2012

    Элементы рабочего процесса в котельной установке. Обоснование необходимости автоматизации технологических параметров. Система автоматического регулирования и контроля питания котла, ее монтаж и наладка. Спецификация на монтажные изделия и материалы.

    дипломная работа , добавлен 01.06.2015

    Конструкция котельной установки, характеристика ее оборудования. Пуск котла, его обслуживание при нормальной эксплуатации. Перечень аварийных случаев и неполадок в котельном цехе. Экономичность работы парового котла. Требования по технике безопасности.

    дипломная работа , добавлен 01.03.2014

    Часовые производственные показатели котельной в номинальном режиме. Расход химочищенной воды для подпитки котлов и теплосети. Годовой отпуск тепловой энергии на теплофикацию. Абсолютные и удельные вложения капитала в котельной. Материальные затраты.

    курсовая работа , добавлен 11.12.2010

    Расчет и анализ основных параметров системы теплоснабжения. Основное оборудование котельной. Автоматизация парового котла. Предложения по реконструкции и техническому перевооружению источника тепловой энергии. Рекомендации по осуществлению регулировки.

    дипломная работа , добавлен 20.03.2017

    Принципиальное устройство парового котла ДЕ, предназначеного для выработки насыщенного пара. Расчет процесса горения. Тепловой баланс котла. Расчет топочной камеры, конвективных пучков, экономайзера. Расчет и выбор тягодутьевых устройств и дымовой трубы.

    курсовая работа , добавлен 11.06.2010

    Описание реконструкции котла КВ-ГМ-50 для сжигания угля. Выполнение теплового расчета котельной установки и вентиляции котельного зала. Краткая характеристика топлива. Определение количества воздуха, продуктов сгорания и их парциальных давлений.

Водоподготовка (ХВО) на котельной необходима для защиты оборудования от коррозии, накипи и отложений. Отсутствие ХВО или его неэффективная работа приводит к перерасходу топлива и выходу оборудования котельной и теплосети из строя. Остановка котельной представляет социальную опасность, т.к. при этом прекращается отопление и ГВС. К тому же имеет место экономический фактор - капитальные затраты на замену котлов и пр.

ХВО не просто должна присутствовать на котельной, но и должна соответствовать своей задаче (проекту, ТЗ, объему подпитки, режиму работы котельной, качеству и количеству исходной воды, качеству подпиточной воды), эффективно и стабильно работать.

За последние 10 лет на водогрейных котельных широкое распространение получили автоматические системы умягчения воды непрерывного действия серии KWS TA с управляющими механизмами Fleck 9000 и 9500. Конструктивно эти установки включают в себя:

  • Два полимерных корпуса диаметром от 200 до 610 мм
  • Верхние и нижние распределительные устройства из ПВХ
  • Катионит Room&Haas от 20 до 280 л на один корпус
  • Кварцевый гравий для поддерживающего слоя
  • Управляющий механизм с расходомером и адаптерами для подключения к трубопроводам и дренажу
  • Бак солерастворитель вместимостью до 300 кг соли
  • Автоматическая система умягчения воды непрерывного действия серии KWS TA

Преимущества автоматических фильтров KWS TA:

В качестве недостатков этих установок можно привести следующее:

  • Привередливы к качеству соли. Желательно использовать таблетированную соль. Но это может быть и преимуществом: нет солевого хозяйства, в диспетчерезированных котельных можно загружать полный солевой бак раз в неделю, 120кг/17кг=7дней

Особенности проектирования и эксплуатации установок ХВО

KWS TAВ процессе разработки множества комплексов водоподготовки специалисты нашей компании выявили ряд важных моментов, которые необходимо учитывать при создании водоочистных систем.

Соответствие проектируемых комплексов ХВО объемам теплосети, режимы работы котельных и объемы подпитки, время и периодичность регенерации систем водоподготовки, необходимость механической очистки исходной воды, диапазон изменения давления воды на входе, количество растворенного железа в воде.

Мы приводим в нашей статье основные рекомендации, касающиеся подбора оборудования водоподготовки на стадии проектирования ХВО и для последующей эксплуатации систем очистки воды на котельных. Наши рекомендации даны применительно рассмотренных выше автоматических систем умягчения воды непрерывного действия серии KWS TA с управляющими механизмами Fleck 9000 и 9500.

0

Курсовой проект

Автоматизация установки химводоочистки.

Введение............................................................................................... 3

1 Описание технологического процесса.............................................. 5

2 Описание существующей схемы автоматизации............................ 11

3 Обоснование необходимости структуры автоматизации

установки химводоочистки............................................................. 19

4 Описание разработанной схемы автоматизации.............................. 21

Заключение......................................................................................... 27

Список используемых источников..................................................... 28

Введение

Автоматизация технологических процессов является решающим фактором в повышении производительности труда и улучшении качества продукции. Поэтому вопросом автоматизации в нашей стране уделяется огромное внимание.

Качество работы любой автоматической системы регулирования (АСР) зависит от того, на сколько хорошо она спроектирована, смонтирована, налажена и эксплуатируется. Современное производство развивается быстрыми темпами. Основная тенденция этого развития связана с укрупнением единичной мощности технологических машин и аппаратов и совершенствованием автоматических схем регулирования такими объектами. При этом совершенствование схем регулирования идет благодаря применению не только более совершенных и надежных средств регулирования детерминистских методов анализа и синтеза АСР, когда уравнение объектов и внешнее воздействие полагается известными, в настоящее время оправдано лишь для простейших систем или для предварительной оценки поведением системы и выбора параметра её настройки. В том случае, когда внешнее воздействие и характеристики объектов регулирования непрерывно изменяются и заранее не могут быть определены однозначно, возникает необходимость в использовании вероятных методов анализа и синтеза АСР. Настройка систем регулирования вероятностными с учетом реальных условий их работы позволяет в ряде случаев получить лучшее качество регулирования.

Щиты и пульты систем автоматизации предназначены для размещения на них приборов, сигнальных устройств, аппаратуры автоматического управления, регулирования, защиты, блокировки и др.. в щитовых помещениях, как правило, предусматриваются условия, соответствующие условиям окружающей среды нормальных помещений, если примененные средства автоматизации не требуют для своей работы специальных условий.

Щитовые помещения не должны подвергаться воздействию вибраций, магнитных полей.

При проектировании схем автоматизации особое внимание стоить уделить правильному выбору микропроцессорных контроллеров. Микроконтроллеры

МК относятся к классу программно-аппаратных средств и ориентированы на решение конкретной задачи или набора однотипных задач.

Их внедрение — основное направление повышения уровня автома-тизации технологических процессов. По назначению они делят-ся на два типа: первый — МК, предназначенные для реализа-ции алгоритмов регулирования и различного преобразования аналоговых и дискретных сигналов, которые заменят регуля-торы; второй — МК, предназначенные для реализации задачи программно-логического управления; они должны заменить ре-лейные и логические схемы.

1 Описание технологического процесса

Установка химводоочистки производства аммиака мощностью 450 тысяч тонн в год предназначена для получения:

Обессоленной воды на приготовление питательной воды для котлов-утилизаторов агрегата аммиака - не более 300 м 3 /ч;

Обессоленной воды на впрыски в аппараты воздушного охлаждения - не более 117м 3 /ч;

Умягченной воды на подпитку ВОЦ-200 м 3 /ч;

Умягченной воды в сеть объединения - 100 м 3 /ч.

В состав установки химводоочистки (ХВО) входит:

Предочистка;

Ионитная очистка (2-х ступенчатое обессоливающее отделение).

В состав предочистки входят:

Два параллельно работающих осветлителя 7,

предназначенных для очистки исходной речной воды от взвешенных веществ, для снижения общего солесодержания (щелочности, жесткости), содержания кремнекислоты, железа и органических веществ методом коагулирования с известкованием;

Четыре параллельно работающих механических фильтра 16, за-груженных антрацитом, предназначенных для очистки осветленной воды от взвешенных веществ;

На данном этапе процесса происходит осветление исходной воды. Известкование с коагуляцией осуществляется для одновременного сниже-ния щелочности исходной воды и удаления взвешенных коллоидных веществ. Для этого в исходную воду вводят растворы реагентов -

известкового мо-лока и коагулянта. В процессе известкования и коагуляции происходит частичное умягчение и снижение сухого остатка обрабатываемой воды, а также удаление взвешенных веществ, соединений кремния и железа,

кроме того, снижается цветность воды.

При известковании воды протекают следующие процессы:

Удаляется свободная углекислота (СО 2) и образуется труднораствори-мое, выпадающее в осадок соединение - углекислый кальций (СаСОз):

СО 2 + Са(ОН2)->СаСОз?+ Н 2 О

При введении извести в большем количестве, чем это необходимо для связывания свободной углекислоты, в воде повышается содержание гидроксильных ионов (ОН -), что приводит к переходу бикарбонатов (НСОз -) в карбонаты (СОз 2-);

ОН - + НСОз<->СО 3 2- + Н 2 О

Карбонаты образуют с находящимися в воде ионами кальция, выпадаю-щий в осадок карбонат кальция

Са 2+ + СО 3 2- -> СаСО 3 ?

Ионы магния, взаимодействуя с гидроксильными ионами, выпадают в оса-док в виде труднорастворимого гидрата окиси магния:

Мg 2+ + 2ОН - ->Мg(ОН) 2 ?

Коагуляция при известковании является процессом, улучшающим форми-рование осадка и процесса удаления примесей. В качестве коагулянта использует-ся железный купорос - FеSО 4 ? 7Н 2 О. При введении в воду наряду с известью рас-твора железного купороса происходит его гидролиз - окисление растворенным в воде кислородом и образование гидроокиси железа (Fе(ОН) 3):

FеSО 4 + Са(ОН) 2 ->Fе(ОН) 2 + СаSО 4

4Fе(ОН) 2 + О 2 + 2Н 2 О->4Fе(ОН) 3 ?

Коагулянт образует нерастворимое соединение, имеющее рыхлую абсор-бирующую поверхность. Совместное известкование и коагуляция обеспечивают наилучший эффект протекания обоих процессов, так как Са(ОН) 2 является поставщиком гидроксил-ионов при гидролизе FеSО 4 , что резко ускоряет выпадение осадка Fе(ОН) 3 . В свою очередь, при удалении коллоидных

веществ в процессе коагуляции создаются благоприятные условия для роста

кристаллов СаСО 3 . Для полноты протекания процесса известкования с коагуляцией.

В воде поддерживается избыток извести (создается гидратная щелоч-ность 0,1+0,35 мг-экв/кг);

Обрабатываемая вода нагревается до 30°С;

Используется образующийся осадок в качестве контактной среды.

Повышение эффективности осветления воды достигается с помощью вы-сокомолекулярного вещества - флокулянта полиакриламида (ПАА). Механизм действия полиакриламида заключается в том, что ионогенные окончания каждой молекулы этого полимера адсорбируют различные микрочас-тицы, содержащиеся в воде и образующиеся в процессе известкования с коагуля-цией. Каждая частица может адсорбироваться несколькими ионогенными оконча-ниями, принадлежащими различным молекулам активатора. В результате проис-ходит слипание агрегативно неустойчивых частиц и образование крупных хлопь-ев. Дозируется флокулянт с массовой долей основного вещества до 0,1%. Смешивание воды с дозируемыми в нее реагентами (FеSО 4 , Са(ОН) 2 и ПАА), образование осадка, контактирование обрабатываемой воды со взвешенным осадком, надлежащее осветление воды, уплотнение осадка и удаление его с продувкой происходит в осветлителе поз.7. Обработанная в осветлителе вода при нормальной работе осветлителя со-держит небольшое количество механических примесей (до 10 мг/кг) - остатков процесса коагуляции и известкования, а в момент нарушения работы осветлителя и в паводковый период количество примесей резко возрастает. Для улавливания этих примесей служат механические фильтры 16, загруженные антрацитом. Интенсивность работы фильтра зависит от скорости фильтрования воды. При нормальной скорости фильтрования частицы взвеси, содержащиеся в осветленной воде, задерживаются в основном в виде пленки на поверхности фильтрующего слоя, образуя как бы дополнительный фильтр, который

задержи-вает даже мелкодисперсные частицы. При больших скоростях фильтрования рав-номерная пленка на поверхности фильтрующего слоя не образуется. При работе напорных осветлительных фильтров допускается конечная по-теря напора воды до 1,2 кгс/см 2 , при которой фильтр выводится на промывку. После механических фильтров вода освобождается от взвешенных веществ

(до 3 мг/кг). Затем осветленная известково-коагулированная вода направляется на блок обессоливания на обработку ее методом ионного обмена, где происходит обмен растворенных в воде ионов на ионы, находящиеся на поверхности ионооб-менных смол.

В состав отделения обессоливающей ионитной очистки входят шесть параллельных блоков (цепочек) ионитных фильтров, работающих по схеме: Н 1 п ->Н 1 0 ->ОН 1 -> Н 2 -> ОН 2

1) Н 1 П - предвключенный Н-катионитный фильтр 1 ступени, предназначен-ный для удаления из воды катионов (Са++, Мg++, Fе++), методом ионного обме-на.

2) H 1 0 - основной Н-катионитный фильтр 1 ступени, предназначен-ный для удаления из воды катионов (Nа+), оставшихся после Н 1 п - фильтра ка-тионов (Са++, Мg++, Fе++) методом ионного обмена.

OH 1 - анионитный фильтр 1 ступени, предназначенный для удаления из воды анионов сильных кислот (SО 4 -- , СL -- , NO 3) методом ионного обмена.

Н 2 - Н-катионитный фильтр 2 ступени, предназначенный для удаления из воды катионов (NA + , К + , NH 4 +), оставшихся после Н-катионирования первой ступени методом ионного обмена.

ОН 2 - анионитный фильтр 2 ступени, предназначенный для удаления из воды анионов кремниевой кислоты (SIO 3 -), оставшихся после ОН-анионирования 1 ступени других анионов.

Ионное обессоливание воды основано на способности некоторых практи-чески нерастворимых в воде материалов-ионитов вступать в ионный обмен

с дис-социированными на катионы и анионы солями, растворенными в воде, при этом в раствор переходит эквивалентное количество катионов или анионов, которыми периодически насыщается ионит при регенерации. Способность ионитов к ион-ному обмену объясняется их специфической структурой, состоящей из твердой, нерастворимой в воде молекулярной сетки, к которой на поверхности и внутри присоединены химически активные функциональные группы атомов ионита. Ка-ждая молекула является твердым электролитом. В результате электролитической диссоциации ионита вокруг нерастворимого в воде ядра образуется ионная атмо-сфера с подвижными, способными к обмену ионами. В зависимости от характера активных функциональных групп ионита его подвижные, способные к обмену, ионы могут иметь положительные заряды, и то-гда ионит называется «Катеонитом», или отрицательные заряды - ионит называ-ется «Анионитом».

По своей способности ионы, вступая в обмен с ионитами, содержащимися в воде, располагаются в следующем порядке:

Катионы? H + ->Fе 2+ ->Ва 2+ ->Sr 2+ ->Са 2+ ->Мg 2+ ->К + ->NH 4 + ->Na +

Анионы? SO 4 2- ->CL - ->NO 3 - ->HCO 3 - ->HsiO 3 -

Каждый предыдущий ион способен вытеснять последующий из ионита при отсутствии избытка предыдущего иона в этом ионите; при наличии избытка возможна и обратная реакция. Различная активность обусловлена различной подвижностью ионов.

Н-катионирование

При Н-катионировании все катионы, содержащиеся в воде, заменяются катионом водорода. Фильтрующую загрузку (катионит) условно разбивают на 4 зоны?

Верхняя зона насыщена кальцием и магнием;

Под верхней - зона, в которой вытесняются ионы натрия ионами

кальция и магния;

Ниже - зона замещения Н-катиона катионом натрия;

Еще ниже-зона Н-катионита, еще не участвующая в реакции обмена катионов.

По мере поглощения катионитом солей жесткости высота зоны с Са 2+ и увеличивается и смещается вниз. Как только зона замещения Н-катионита катионом натрия сместится до нижней границы катионита, начинается проскок иона Na + в фильтрат. В начале пропуска осветленной воды через фильтр в воде после Н-катионитного фильтра кислотность близка к сумме концентраций хлори-нов и сульфатов в исходной воде.Но после проскока натрия в фильтрат, кислот-ность уменьшается на величину концентрации натрия в данный момент. Как только насыщение катионита натрием достигает нижней границы, кислотность падает до нуля. При дальнейшей обработке воды через этот фильтр, в фильтрате появится щелочность, которая будет возрастать и постепенно достигнет щелочности исходной воды.

1-я ступень Н-катионирования предназначается для обмена всех катионов, содержащихся в фильтруемой воде, на катион водорода в Н-катионите.

2-я ступень Н-катионирования предназначается для обмена, главным образом остаточного натрия, после первой ступени Н-катионирования и катионов Na + , вымытых из низкоосновных фильтров. Регенерация катионита производится про-пуском через него раствора серной кислоты переменной концентрации последовательно со 2-й ступени на 1-ю ступень (Н - катионитный фильтр 2 ступени, Н-катионитный фильтр I ступени основной и, наконец, на предвключенный). Это даёт возможность снизить расход кислоты на регенерацию, сократить сброс сто-ков и увеличить фильтроцикл.

ОН-анионирование

При Н-катионировании воды в фильтрате остаются анионы сильных кислот SО 4 2- , С1 - , NO 3 и анионы слабых кислот НСО 3 - , НsiO 3 .

При ОН-анионировании все анионы, содержащиеся в воде, замещаются ОН - .

2 Описание существующей схемы автоматизации

Данная схема автоматизации технологического процесса основана на использовании локальных средств автоматизации. В схеме регулирования и контроля расхода, давления, уровня используются пневмотические приборы (13ДД11, ДПП2, УБ-П, ПВ10-1Э, ПВ10-2Э, РПВ4-2Э, ПКР2, ПР3.31), температуры (КСП3, КСМ3, КСП4, КСМ4, ФЩЛ), анализа (АЖК3101, РН-метр).

Обработка речной воды на предочистке (осветление и умягчение воды в осветлителях 7 методом известкования с коагуляцией.)

Речная вода поступает из общего коллектора ОАО «СНОС» в емкость 1. Уровень в емкости 1 регулируется клапаном LCV-137. центробежным насосом 2 вода из емкости 1 с объемным расходом не более 700 м 3 /ч (регулируется автоматически клапаном FCV-135, установленным на входе в осветлитель 7) подается в теплообменники 3 и параллельно в 4. В теплообменнике 3 вода нагревается до Т=30°С ± 1 (Т1RСА L H -138) паром, поступающим из сети объединения с избыточным давлением 0,7 МПа (7кгс/см 2). Регулирование температуры речной воды после теплообменников 3 осуществляется автоматически клапаном ТСV-138, установленным на линии подачи пара в теплообменник 3. Образовавшийся в теплообменнике 3 конденсат направляется в теплообменник 4 для доохлаждения и далее в емкость 5, откуда насосом 6 подается в сеть объединения.

Из теплообменников подогретая вода подаётся в воздухоотделитель осветлителя 7, оттуда по отводящей линии через тангенциальный ввод поступает в нижнюю конусную часть смесителя осветлителя. Туда же вводятся известковое молоко, раствор коагулянта (FеSО 4 ?7Н 2 О). За счет тангенциального ввода воды в смеситель осветлителя возникает интенсивное вращательное движение потока, обеспечивающее хорошее перемешивание воды с реагентами. При этом происходит образование хлопьевидного осадка, которое заканчивается в цилиндрической части смесителя, в верхнюю часть которого подается флокулянт (полиакриламид ПАА). Интенсивность перемешивания регулируется регулирующим устройством, установленным на входе воды в

смеситель осветлителя.

В осветлителе 7 речная вода исветляется и умягчается. Основная часть воды, поступившей в осветлитель, проходит помимо шламоуплотнителя, встречает на своем пути верхнюю распределительную решетку, выравнивающую нагрузку по площади сечения и поступает в сборный желоб осветленной воды. По сборному желобу вода поступает в приемный короб распределительного устройства и далее самотеком поступает в емкость 14. Для удаления избытка «шламового фильтра» при постоянной подаче новых реагентов часть обрабатываемой воды вместе с увлекаемым ею осадком поступает в шламоуплотнитель. Шлам по линии продувки направляется в шламовую емкость 12, откуда насосом 13 откачивается на очистные сооружения. Из грязевика осветлителя крупный мусор и шлам удаляются через дренаж по трубопроводу в дренажный коллектор и далее также поступают на очистные сооружения.

Доосветление известково-коагулированной воды на механических фильтрах 16.

Обработанная в осветлителе вода доосветляется в механических фильтрах от мелких хлопьев остатков процесса коагуляции и известкования. Из осветлителя 7 известково-коагулированная вода самотеком поступает в емкости 14, откуда насосами 15 подается в осветлительные 2-х камерные механические фильтры 16 и после фильтров 16 собирается в ёмкости 18. Механический фильтр представляет собой стальной цилиндрический корпус, торцы которого закрыты сферическими днищами. Корпус фильтра разделен на две камеры плоским днищем. В верхней части каждой камеры имеются распределительные воронки для равномерного распределения потока воды по всему сечению фильтра. В нижней части каждой камеры находятся щелевые распределительные устройства для отвода осветленной воды. Фильтрующим материалом служит антрацит. Нагрузка осветлительных фильтров контролируется по расходомеру, установленному на выходе из фильтра (FI-75, от 160 до 220 м 3 /ч).

Обессоливание осветленной воды на блоке ионитных фильтров. Умягченная вода из ёмкости 18 насосом 17 из отделения предочистки подается на ионитное отделение, состоящее из шести блоков. В каждый блок входят два

Н-катионитных 19 и 20, один ОН-анионитный фильтры I ступени.21, один

Н-катионитный 22 и один ОН-анионитный фильтр 2 ступени 23.

Производительность одного блока (по FIR-151) до 150 м 3 /ч. Полученная частично-обессоленная вода (ЧОВ) с содержанием силикатов не более 200 мкг/кг и солесодержанием не более 5,0 мг/кг при рН от 7,0 до 8,0 со всех работающих блоков по общему коллектору поступает в емкость обессоленной воды 24. Емкости 24 снабжены уровнемером (LIRA L H -150) с сигнализацией по минимуму - 1000 мм и максимуму - 5340 мм. Из ёмкости 24 частично обессоленная вода насосом 25 с объ-емным расходом не более 300 м 3 /ч (расходомер FIR-83) подается на блок 10 для приготовления глубоко-обессоленной воды, которой питаются котлы-утилизаторы агрегата аммиака и насосом 26 с объемным расходом до 117 м 3 /ч (FIR-222) на впрыск в аппараты воздушного охлаждения (АВО). Из ёмкости 24 также насосами 25 от линии ЧОВ на блок 10 осуществляется подача химически очищенной воды (ХОВ) в коллектор воды объ-единения, для корректировки качественных показателей которой производится её амминирование. Регулирование расхода амминированной воды после насосов 28 производится клапаном FCV-91г. Слабоаммиачный раствор необ-ходимой концентрации готовится в ёмкости 29 путем разбавления обес-соленной водой крепкого аммиачного раствора концентрацией 25-50%, завозимо-го с агрегата аммиака.

Выдача ХОВ в коллектор воды объединения также осуществляется из емко-сти 24 напрямую насосами 27 и амминируется раствором из ём-кости 29 насосами-дозаторами 30. Расход выдачи ХОВ в коллектор воды объединения регулируется клапаном FCV-90. При остановке насосов 25 и 27 установлена световая и звуковая сигнализация.

Таблица 1- Нормы технологического режима

Наименование стадий процесса, аппара-ты, показатели режима

Номер позиции прибора на схеме

Допускаемые пре-делы тех. па рамет-ров

Примечание

Температура исходной воды на линии подачи пара в теплообменник поз.3

Показание, регистрация, регулирование сигнализация

Продолжение таблицы 1

Давление на нагнетательном трубопрово-де насосов 8.

не более 1,0 (10)

Давление на нагнетательном трубопрово-де насосов 11.

не более 1,0 (10)

Давление воздуха КИП на входе на уста-новку.

Показание, сигнализация

Давление на трубопроводе подачи пара на ХВО.

не более 0,7 (7,0)

Показание, регистрация

Расход исходной воды на трубопроводе перед емкостями 1.

не более 700

Показание, регистрация

Расход исходной воды на входе в освет-литель 7

не более 700

Показание, регистрация регулирование

Расход осветленной воды с механических фильтров 16.

в пределах 160-220

Показание

Расход пара на входе в ХВО.

не более 40

Показание Регистрация

Расход конденсата на выходе с установки

не нормируется

Показание Регистрация

Давление на нагнетательном трубо-проводе насосов 30.

не более 1,0(10,0)

Показание, сигнализация, блокировка

Расход умягченной воды на входе блоков (1-6) обессоливания.

не более 150

Показание, регистрация

Расход обессоленной воды на блок 10 от насосов 25

не более 300

Показание, регистрация

Расход обессоленной воды на АВО от насосов 26.

не более 117

Показание, регистрация, регулирование

Уровень шлама в емкости 12

в пределах 240-2240

Показание, сигнализация

Уровень конденсата в емкости 5

в пределах 400-2000

Уровень раствора сернокислого железа (FеSО4) в емкости 9.

в пределах 400-1700

Уровень раствор полиакриламида (ПАА) в ёмкости 10.

в пределах 450-2950

Показание, регистрация, сигнализация

Продолжение таблицы 1

Уровень умягченной воды в емкости 14.

в пределах 300-8000

Показание, регистрация регулирование сигнализация

Уровень обессоленной воды в ёмкости 24.

в пределах 300-6640

Показание, регистрация, сигнализация

Уровень обессоленной воды в емкости 29.

в пределах 300-4000

Показание, регистрация, сигнализация

Таблица 2 - Перечень блокировок и сигнализации

Наименование параметра

Наименование оборудования

Блокировка

Сигнализация

Операции по воздействию.

1.Температура исходной воды, Т1RCA L H -138,°С.

Трубопровод исход-ной воды после теп-лообменника 3.

Автоматическое регулирование температуры исходной воды подачей пара в теплообменник 3.

2.Уровень исходной во-ды, LIRCA L H - 137, мм

Емкость 1

Автоматическое регулирование расхода воды клапаном на ли-нии подачи бельской воды в емкость 1.

3. Уровень умягченной воды, LIRA L H -135, мм

Емкость 14

Регулирование расхода воды в осветлитель 7.

4. Уровень осветленной воды, LIRCA L H -139, мм

Емкость 18

Регулирование уровня воды в 18

5. Уровень раствора сернокислого железа (FеSО4), LIRA L H -101, мм

Емкость 9

Продолжение таблицы 2

6. Уровень раствора полиакриламида (ПАА), LIRA L H -102, мм

Емкость 10

Обслуживающий персонал за-полняет емкости или прекра-щает заполнять в зависимости от загорания лампочек верхнего или нижнего уровня.

7. Уровень шлама, LIA L H -103, мм

Ёмкость 12

Откачка шлама по мере запол-нения ёмкости.

8.Уровень конденсата, LIRA L H -110, мм

Ёмкость 5

Откачка конден-сата по мере за-полнения емко-сти в коллектор объединения.

9. Уровень обессолен-ной воды, LIRCA L H -150, мм

Ёмкость 24

Регулирование производитель-ности на блоке обессоливания расходом воды на фильтры

10. Уровень обессолен-ной воды, LIRA L H -231/3, мм

Емкость 29

По мере убыли или набора уровня персонал начинает или прекращает прием воды из ем-кости 29.

11. Давление на нагнета-тельном трубопроводе PIS H A H -191, МПа (кгс/см 2)

Насос-дозатор 8

Автоматическая остановка на-соса со светозвуковой сигна-лизацией.

12. Давление на нагнета-тельном трубопроводе Р1S H A H -192,МПа (кгс/см 2)

Насос-дозатор 11

13. Давление на нагнета-тельном трубопроводе Р1S H A H -47, МПа(кгс/см 2)

Насос-дозатор 30

Автоматическая остановка на-соса со светозвуковой сигнализацией.

3 Обоснование необходимости структуры автоматизации установки химводоочистки

На данный момент в качестве систем управления и регулирования используется система «СТАРТ», основные средства контроля и регулирования это пневматические первичные и вторичные приборы. Их использование имеет ряд недостатков:

По приборам расположенным на щите в операторной, оператор не может контролировать одновременно несколько параметров, и одновременно следить за работой технологического оборудования и исполнительных механизмов;

При возникновении механических повреждений приборов невозможна правильное ведение технологического процесса;

При понижении температуры окружающего воздуха возможны обрывы импульсных линий, пневмокабелей и выход из строя измерительных частей приборов;

При ручном управлении технологическим процессом малейшее замешательство человека и несвоевременное воздействие его на процесс могут привести к различным серьёзным последствиям;

Действующие прибора учета расходов сырья, продукции и энергоресурсов не предоставляют возможности автоматизированного расчета экономических показателей.

Курсовой проект предусматривает реконструкцию АСУ установки химводоочистки. Устранения перечисленных недостатков путём внедрения централизованной АСУ на основе микропроцессорных устройств, создания АРМ оператора, внедрением новых приборов, заменой позиционного регулирования на непрерывное. Автоматизация приводит к улучшению основных показате-лей эффективности производства: увеличению количества продукции, улуч-шению качества и снижению себестоимости выпускаемой про-дукции, повышению производительности труда. Внедрение автоматических устройств обеспечивает высокое качество продукции, сокращение брака и отходов, уменьшение затрат сырья и энергии, уменьшение численности основных рабочих, снижение капитальных затрат на строительство, удлинение сроков межре-монтного пробега оборудования.

Внедрение специальных автоматических устройств способствует безаварийной работе оборудования, исключает случаи травматизма, предупреждает загрязнения атмосферного воздуха и водоемов промышленными отходами.

В автоматизированном производстве человек переключается на творческую работу — анализ результатов управления, со-ставление заданий и программ для автоматических приборов, наладку сложных автоматических устройств и т. д. С повышением квалификации и культурного уровня рабочих стирается грань между физическим и умственным трудом.

4 Описание разработанной ФСА

Реконструкция АСУ ТП установки химводоочистки, состоит в создании многоуровневой АСУ, состоящей из нижнего (полевого), контроллерного и операторского уровней.

На нижнем уровне используется датчиковая аппаратура, предназначенная для сбора первичной информации о ходе контролируемого процесса, а также исполнительные механизмы для непосредственного управления процессом.

Контроллерный уровень обеспечивает:

Сбор и первичную обработку данных от датчиковой аппаратуры;

Математическую обработку исходных данных процесса;

Логико-программное управление;

Технологическую сигнализацию;

Предварительное архивирование расчетных и исходных данных

Для организации контроллерного уровня используются контроллеры общего или специального назначения, объединение которых в сеть возможно на основе интерфейса RS232C/485 с использованием протокола Bell202 или Modbus со скоростью обмена до 19,6 Кбит.

Операторский уровень предназначен для визуализации контролируемого технологического процесса, ведения архивов, оперативного вмешательства в ход технологического процесса и формирования отчетов.

Реконструкция существующей АСУ состоит из следующих основных этапов:

Установка новых интеллектуальных датчиков температуры, уровня и давления для сбора и дистанционной передачи данных о параметрах технологического процесса;

Установка новых интеллектуальных расходомеров для сбора и обработки информации о расходе сырья и продукции;

Внедрение логических программируемых контроллеров для автоматизированного управления уровнем, давлением, расходом и температурой в технологических процессах;

Создания АРМ оператора установки химводоочистки;

Замена исполнительных механизмов и регулирующих органов дискретного действия на механизмы и органы непрерывного действия.

Для получения необходимой информации о параметрах технологического процесса в реальном времени, централизованного отображения этой информации, и управления процессом в проекте применены следующие датчики - первичные преобразователи.

1) Датчики температуры

Термоэлектрический преобразователь ТСПУ - 055 с диапазоном измеряемой температуры -50…50°С, который обеспечивает непрерывное преобразование значения измеряемого параметра в унифицированный токовый сигнал 4-20мА.

2)Датчики давления

Для измерения давления на установке ХВО предлагаю использовать первичный преобразователь давления Метран - 43 - Ех - ДИ, который обеспечивает непрерывное преобразование значения измеряемого параметра в унифицированный токовый сигнал 4-20мА.

3)Датчики уровня

Датчик гидростатического давления (уровня) Метран-43Ф-ДГ 3595, обеспечивает непрерывное преобразование значения измеряемого параметра в унифицированный токовый сигнал 4-20мА, устанавливается непосредственно на фланце аппарата, в котором измеряется уровень, имеет встроенный микропроцессорный преобразователь за счет чего имеет преимущество перед аналогичными датчиками с аналоговым преобразователем по метрологическим, функциональным, эксплуатационным показателям.

4)Датчики расхода

Для получения данных о расходе воды, воздуха, реагентов и пара в проекте применены следующие преобразователи расхода.

Преобразователь расхода вихреакустический Метран-300ПР, предел измерения 0,18…700 м 3 /ч, выходной сигнал - унифицированный токовый 4-20мА. Данный преобразователь использует принцип ультразвукового

детектирования вихрей образующихся в потоке жидкости при обтекании ею

призмы, расположенной поперек потока. Преимущество этого

преобразователя состоит в возможности поверки на месте без демонтажа, большом межповерочном интервале, самодиагностики. Устанавливается на трубопроводе АМЖ-1 на входе в изотермическое хранилище поз. 301

Интеллектуальный вихревой расходомер модели 8800 фирмы Fisher-Rosemount, выходной сигнал 4-20мА. Использует принцип определения частоты вихрей, образующихся в потоке измеряемой среды при обтекании тела специальной формы, которая прямопропорциональна скорости движущейся среды. Данный преобразователь благодаря использованию цифровой технологии позволяет расходомеру обеспечить максимальную точность и надежность измерений.

5)Устройства сбора и обработки данных

В качестве основного УСОД (устройства сбора и обработки данных) в проекте применена группа программируемых модульных контроллеров Twido фирмы Schineider Electric. Предусмотрена установка шести модульных контроллеров TWD LMDA 20DRT с разным количеством модулей расширения (модули аналогового и дискретного ввода/вывода). Контроллер предназначен для сбора, первичной обработки и предварительной архивации информации о потребленных и отпущенных энергоресурсах, таких как вода, воздух, пар, реагенты.

ПК Twido выполняет следующие технологические функции:

Регулирование уровня в ёмкости 1 и 18 по заданному закону управления;

Регулирование температуры в 3 путем воздействия на исполнительный механизм, стоящий на линии подачи пара на входе в теплообменник;

Регулирование производительности осветлителя путем воздействия на исполнительный механизм, стоящий на линии подачи воды в 7;

Регулирование РН осветлителя путем воздействия на исполнительный механизм, стоящий на линии подачи извести в 7;

Регулирование расхода воды после 28 и 27 путем воздействия на исполнительный механизм, стоящий на линии нагнетания насосов;

Преобразование и вывод информации о параметрах

технологического процесса с помощью интерфейса RS232/485 на операторскую станцию.

Компактные программируемые контроллеры Twido применяются в малых системах автоматизации. Они отличаются высокой производительностью процессора, большим количеством входов/выходов, напряжением питания 100-240В переменного тока и обеспечивает питание датчиков напряжением 24В постоянного тока.

Преимущества компактных ПК Twido:

Значительное количество точек входа/выхода (до 24 точек), при небольших занимаемых габаритах, позволяет уменьшить размеры панелей там, где параметры занимаемого места имеют важное значение;

Разнообразие модулей расширения и дополнительных модулей, обепчивающее пользователю степень гибкости платформ больших контроллеров. Возможности компактного контроллера TWD LMDA4 точками входа/вывода можно увеличить при помощи подключения до семи модулей расширения дискретного ввода/вывода (соответствующая конфигурация с 14 точками входа/выхода) и таких дополнительных модулей, как цифровой дисплей, катридж памяти, катридж часов реального времени, а также дополнительными портами связи с интерфейсами RS485 или RS232C;

Для подключения модулей расширения к контроллеру, предлагается несколько вариантов подключения, таких как съемные винтовые клеммные колодки и пружинные разъемы, обеспечивающие простое, быстрое и безопасное подсоединение;

Использование дисплея и встраиваемой памяти позволяет осуществлять настройку, передачу и резервирование приложений. Цифровой дисплей можно использовать как инструмент для локального отображения и настройки. Модули памяти EEPROM позволяют резервировать и передавать программы в любой компактный ПК Twido;

Программное обеспечение Twido Soft позволяет осуществлять простое программирование при помощи инструкций языка Instroction List или графических объектов языка Ladder;

Компактные контроллеры имеют два аналоговых потенциометра, расположенные на передней панели. Значения потенциометров хранятся в

системных словах и обновляются после каждого цикла программы.

Для возможности подключения к контроллеру датчиков с аналоговыми выходными сигналами и управления исполнительными механизмами в проекте предусматривается подключение дополнительных модулей расширения аналогового входа/выхода. К каждому контроллеру подключается два модуля TWD AMI 2HT 2 входа и 1 выход высокого уровня

Дополнительно к контроллеру подключаются адаптер RS485 TWD NAC485D (для связи с операторской станцией через дополнительный порт) и цифровой дисплей TWD XCP ODC.

Программирование контроллеров осуществляется с помощью программного обеспечения Twido Soft, через встроенный последовательный порт mini-DIN типа RS485

Для создания АРМ оператора установки ХВО на базе IBM совместимого ПК, в проекте предусмотрено использование SCADA системы на базе программного обеспечения Monitor Pro фирмы Schineider Electric.

Этот продукт базируется на открытых и стандартных на сегодняшний день технологиях и предлагает полный набор простых в использовании графических функций для систем визуализации.

Программное обеспечение для систем супервизорного управления и сбора данных (SCADA) Monitor Pro включает базовые пакеты для создания приложений супервизорного (диспетчерского) контроля и управления, а также дополнительные элементы (опции), усовершенствующие функции этих пакетов для таких специальных областей применения, как статистическое управление технологическими процессами или интеграция с базами данных.

Имеется четыре различных базовых варианта продукта в зависимости от размера доступной базы данных реального времени и максимального числа входных/выходных параметров процесса (тэгов). В широком смысле функциональность всех этих вариантов одинакова для всех вариантов базовой операционной системы. Это упрощает миграцию приложений от одной платформы к другой. В настоящее время Monitor Pro расчитан на работу под операционными системами Windows NT, Windows 95 и 98. Полный набор опций Monitor Pro возможен под Windows NT. Ограниченное число опций возможно под Windows 95 и 98. Версия Monitor Pro для OS/2 отсутствует.

Monitor Pro является многопользовательским SCADA-сервером приложений реального времени для автоматизации производственных и технологических процессов. Он позволяет собирать важнейшую информацию от многочисленных приборов и устройств промышленного объекта и затем распространять ее по всему предприятию (организации).

Monitor Pro обеспечивает такие важнейшие элементы функциональности SCADA-системы, как ретроспективные данные, сигнализацию и статистическое управление процессом. Кроме того, обновляемая по изменению база данных Monitor Pro обеспечивает уникальную масштабируемость - существуют приложения, обрабатывающие более 2 миллионов тэгов.

Функции визуализации Monitor Pro используются для:

Чтения значений переменных из ПЛК и отображение на экране этих переменных;

Управления и контроля систем с регулированием процессов;

Архивирования в базу данных значений переменных ПЛК или внутренних переменных системы регулирования;

Встроенной программной обработки данных.

Подключение к ПЛК производится через шину Modbus и выполняется с помощью интерфейса RS 485B в многоточечном режиме.

Заключение

В курсовом проекте рассмотрен вопрос реконструкции АСУ установки химводоочистки цеха № 54 ОАО «СНОС»

Разработанная система управления основана на использовании технических и программных средств фирмы Schineider Electric. Особое преимущество техники Schineider Electric состоит в том, что она охватывает все уровни автоматизации, что позволяет избежать проблем с совместимостью, масштабированием и добиться высокого уровня быстродействия, функциональности и надежности.

Внедрение системы обеспечит за счёт эффективного автоматизированного регулирования процесса высокое качество продукции, уменьшение затрат на сырьё и энергоносители, снижение нагрузки на обслуживающий персонал, снижение вредных выбросов в атмосферу.

В результате расчётов определён предполагаемый экономический эффект от реконструкции АСУ ТП в сумме 1022,120 тысяч рублей, который получен в результате снижении себестоимости продукции, срок окупаемости внедряемого оборудования составил 0,79года.

Список используемых источников

1 Башлыков А.А., Карев А.А. SCADA-системы. - Датчики и системы, 2003, №3, с.27-35.

3 Верёвкин А.П., Денисов С.В. Современные технологии управления процессами: Учеб. Пособие - Уфа: Изд-во УГНТУ, 2001. - 86 с.

4 Гревцов В.В., Страшун Ю.П. Семейство программируемых промышленных контроллеров СМ1820.ПК // Датчики и системы. 2000. № 1.

5 Клиначёв Н. В. Теория систем автоматического регулирования и управления: Учебно-методический комплекс. - Offline версия 3.5. - Челябинск, 2004. - 655 файлов, ил.

6 Технологический регламент цеха № 54 ОАО “Салаватнефтеоргсинтез”.

7 Шкамарда А.Н., Страшун Ю.П. Программно технические комплексы СМ1820М для создание систем автоматизации в промышленности // Датчики и системы. 2000. № 1.

Чертежи:

Скачать: У вас нет доступа к скачиванию файлов с нашего сервера.

Инженерные сооружения , в которых происходит обработка, нагрев теплоносителя (воды) и дальнейшая его транспортировка до конечного потребителя, называются котельными. Котельные обеспечивают конечных потребителей теплом и горячей водой. Различаются котельные по типу расположения (отдельно стоящие, пристроенные и встроенные, блочно-модульные), типу используемого топлива (газ, мазут и дизельное топливо, уголь и кокс), по типу котлов (водогрейные, паровые, смешанные), по назначению тепловой нагрузки (отопительные, производственные, смешанные) и по категории надёжности (1-ой, 2-ой и 3-ей).

Котельное оборудование, использующее воду в качестве теплоносителя или источника для производства пара очень требовательно к её качественному составу. Ведь из-за наличия в воде солей жёсткости (карбонатная жёсткость), на нагревательных элементах водогрейных и паровых котлов происходит отложение накипи, белого известкового налёта, который снижает теплоотдачу нагревательного элемента, происходит его перегрев и как следствие быстрый выход из строя котельного оборудования. Чтобы избежать этого, котельные и тепловые энергоустановки комплектуются системами ХВО (ХВП) для химической и реагентной обработки исходной воды.

ГК "ВиВком" осуществляет подбор, поставку и монтаж химводоочистки (ХВО), химводоподготовки (ХВП) для нужд энергетических, отопительных и производственно-отопительных водогрейных и паровых котельных местного и группового назначения.

НАЗНАЧЕНИЕ

Химводоочистка (ХВО) призвана обеспечить бесперебойную работу котельного оборудования, предотвратить накипеобразование на внутренних поверхностях котлов, коррозию и образование шлама в трубопроводах тепловых сетей.

Назначение ХВО для котельных заключается как раз в умягчении теплоносителя (воды) до норм РД 24.032.01-91 путём удаления или снижения карбонатной жёсткости, чтобы обеспечить оптимальный рабочий режим дорогостоящего котельного оборудования и продлить его безаварийную эксплуатацию.

Цели ХВО для энергетического комплекса:

  • подготовка питательной воды паровых котлов в соответствии с РД 24.032.01-91
  • подготовка котловой воды водогрейных котлов в соответствии с РД 24.032.01-91
  • коррекционная обработка воды реагентами (Аминат КО 2 и КО 5 и др.)

По жёсткости воды различают:

  • очень жёсткая вода – свыше 12 мг-экв/л
  • жёсткая вода – 8-12 мг-экв/л
  • средней жёсткости – 4-8 мг-экв/л
  • мягкая вода – 0-4 мг-экв/л

Жёсткость может быть временной (карбонатная жёсткость), обусловлена гидрокарбонатами кальция и магния Са(НСО3)2; Mg(НСО3)2, которая откладывается в форме накипи на нагревательных элементах котлов и прочего оборудования и постоянная (некарбонатная) вызванная присутствием других солей, не выделяющихся при кипячении воды: в основном, сульфатов и хлоридов Са и Mg (CaSO4, CaCl2, MgSO4, MgCl2).

ПОЛУЧИТЬ ТКП

ПРИНЦИП ОЧИСТКИ

Химводоочистка (ХВО) для котельных представляет собой комплекс, в котором установлено водоподготовительное оборудование предочистки, ионитные фильтры для снижения жёсткости и насосы дозаторы для коррекционной обработки воды. Процесс умягчения сводится к следующему: при прохождении воды через катионит в Na форме (синтетический материал на основе сополимера стирола и дивинилбензола) соли жёсткости замещаются на соли натрия, при этом происходит истощение ионообменной ёмкости смолы. Чем больше в воде жёсткость, тем интенсивнее ионообменная смола теряет свою рабочую ёмкость. По мере полного истощения смолы, управляющий клапан фильтра даёт сигнал на регенерацию.

Регенерация происходит исходной водой с добавлением 26% раствора соли (NaCl). Для этих нужд, ионитный фильтр-умягчитель комплектуется солевым баком для приготовления солевого раствора. Для подготовки котловой воды достаточно одноступенчатого умягчения, для подготовки питательной воды используется двухступенчатое умягчение. Дополнительно, для реагентной обработки воды, связывания кислорода и корректировки показателя рН используются дозировочные комплексы, состоящие из насоса дозатора и ёмкости с для дозирующего вещества (Аминат КО 2 и КО 5). Комплексы ХВО используют непрерывный режим работы, круглосуточно снабжая котельные умягчённой водой. Это обеспечивают установки Twin и Duplex, в которых используются от двух и более катионообменных фильтров.

ПОЛУЧИТЬ ТКП

ПРЕИМУЩЕСТВА

Для ХВО водогрейных и паровых котельных специалистами ГК "ВиВком" используются комплектующие и фильтрующие материалы известных мировых брендов. Все схемы очистки подбираются с учётом возможного ухудшения качественных показателей исходной воды до 30%. Мы гарантируем качество очистки в соответствии с РД 24.032.01-91.

  • материал изготовления фильтров умягчителей – армированный стеклопластик с внутренним полиэтиленовым стаканом (Structural – Бельгия,Canature - Китай)
  • надёжные управляющие клапана (Clack, Autotrol – США, RUNXIN - Китай)
  • распределительные устройства из полимерных материалов: верхнее – лучи, фильера или корзина, нижнее – лучи, дренажный колпачок
  • DOWEX – США, Lewatit – Германия, Purolite – Англия, ПЮРЕЗИН, КУ-2-8 - Россия)
  • широкий диапазон по производительности – от 1 до 100 куб/час
  • дозирующие комплексы с дозаторами Etatron, Seko, Tekna – Италия, Grundfos – Дания
  • простота и удобство обслуживания водоподготовительных комплексов
  • монтаж и пуско-наладка оборудования
  • гарантия на оборудование - 1 год
  • гарантия на работы - 2 года
  • гарантия качества воды в соответствие с РД 24.032.01-91