Калькулятор онлайн. Уравнение прямой касательной к графику функции в заданной точке. Касательная к графику функции

Касательная – это прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка (рис.1).

Другое определение : это предельное положение секущей при Dx ->0.

Пояснение : Возьмем прямую, пересекающую кривую в двух точках: А и b (см.рисунок). Это секущая. Будем поворачивать ее по часовой стрелке до тех пор, пока она не обретет только одну общую точку с кривой. Так мы получим касательную.

Строгое определение касательной:

Касательная к графику функции f , дифференцируемой в точке x о , - это прямая, проходящая через точку (x о ; f (x о )) и имеющая угловой коэффициент f ?(x о ).

Угловой коэффициент имеет прямая вида y = kx + b . Коэффициент k и является угловым коэффициентом этой прямой.

Угловой коэффициент равен тангенсу острого угла, образуемого этой прямой с осью абсцисс:


k = tg a

Здесь угол a – это угол между прямой y = kx + b и положительным (то есть против часовой стрелки) направлением оси абсцисс. Он называется углом наклона прямой (рис.1 и 2).

Если угол наклона прямой y = kx + b острый, то угловой коэффициент является положительным числом. График возрастает (рис.1).

Если угол наклона прямой y = kx + b тупой, то угловой коэффициент является отрицательным числом. График убывает (рис.2).

Если прямая параллельна оси абсцисс, то угол наклона прямой равен нулю. В этом случае угловой коэффициент прямой тоже равен нулю (так как тангенс нуля есть ноль). Уравнение прямой будет иметь вид y = b (рис.3).

Если угол наклона прямой равен 90? (p/2), то есть она перпендикулярна оси абсцисс, то прямая задается равенством x = c , где c – некоторое действительное число (рис.4).

Уравнение касательной к графику функции y = f (x ) в точке x о :


Пример : Найдем уравнение касательной к графику функции f (x ) = x 3 – 2x 2 + 1 в точке с абсциссой 2.

Решение .

Следуем алгоритму.

1) Точка касания x о равна 2. Вычислим f (x о ):

f (x о ) = f (2) = 2 3 – 2 ? 2 2 + 1 = 8 – 8 + 1 = 1

2) Находим f ?(x ). Для этого применяем формулы дифференцирования, изложенные в предыдущем разделе. Согласно этим формулам, х 2 = 2х , а х 3 = 3х 2 . Значит:

f ?(x ) = 3х 2 – 2 ? 2х = 3х 2 – 4х .

Теперь, используя полученное значение f ?(x ), вычислим f ?(x о ):

f ?(x о ) = f ?(2) = 3 ? 2 2 – 4 ? 2 = 12 – 8 = 4.

3) Итак, у нас есть все необходимые данные: x о = 2, f (x о ) = 1, f ?(x о ) = 4. Подставляем эти числа в уравнение касательной и находим окончательное решение:

у = f (x о ) + f ?(x о ) (x – x о ) = 1 + 4 ? (х – 2) = 1 + 4х – 8 = –7 + 4х = 4х – 7.

Ответ : у = 4х – 7.

Пример 1. Дана функция f (x ) = 3x 2 + 4x – 5. Напишем уравнение касательной к графику функции f (x ) в точке графика с абсциссой x 0 = 1.

Решение. Производная функции f (x ) существует для любого x R . Найдем ее:

= (3x 2 + 4x – 5)? = 6x + 4.

Тогда f (x 0) = f (1) = 2; (x 0) = = 10. Уравнение касательной имеет вид:

y = (x 0) (x x 0) + f (x 0),

y = 10(x – 1) + 2,

y = 10x – 8.

Ответ. y = 10x – 8.

Пример 2. Дана функция f (x ) = x 3 – 3x 2 + 2x + 5. Напишем уравнение касательной к графику функции f (x ), параллельной прямой y = 2x – 11.

Решение. Производная функции f (x ) существует для любого x R . Найдем ее:

= (x 3 – 3x 2 + 2x + 5)? = 3x 2 – 6x + 2.

Так как касательная к графику функции f (x ) в точке с абсциссой x 0 параллельна прямой y = 2x – 11, то ее угловой коэффициент равен 2, т. е. (x 0) = 2. Найдем эту абсциссу из условия, что 3x – 6x 0 + 2 = 2. Это равенство справедливо лишь при x 0 = 0 и при x 0 = 2. Так как в том и в другом случае f (x 0) = 5, то прямая y = 2x + b касается графика функции или в точке (0; 5), или в точке (2; 5).

В первом случае верно числовое равенство 5 = 2x0 + b , откуда b = 5, а во втором случае верно числовое равенство 5 = 2x2 + b , откуда b = 1.

Итак, существует две касательные y = 2x + 5 и y = 2x + 1 к графику функции f (x ), параллельные прямой y = 2x – 11.

Ответ. y = 2x + 5, y = 2x + 1.

Пример 3. Дана функция f (x ) = x 2 – 6x + 7. Напишем уравнение касательной к графику функции f (x ), проходящей через точку A (2; –5).

Решение. Так как f (2) –5, то точка A не принадлежит графику функции f (x ). Пусть x 0 - абсцисса точки касания.

Производная функции f (x ) существует для любого x R . Найдем ее:

= (x 2 – 6x + 1)? = 2x – 6.

Тогда f (x 0) = x – 6x 0 + 7; (x 0) = 2x 0 – 6. Уравнение касательной имеет вид:

y = (2x 0 – 6)(x x 0) + x – 6x + 7,

y = (2x 0 – 6)x x + 7.

Так как точка A принадлежит касательной, то справедливо числовое равенство

–5 = (2x 0 – 6)x2– x + 7,

откуда x 0 = 0 или x 0 = 4. Это означает, что через точку A можно провести две касательные к графику функции f (x ).

Если x 0 = 0, то уравнение касательной имеет вид y = –6x + 7. Если x 0 = 4, то уравнение касательной имеет вид y = 2x – 9.

Ответ. y = –6x + 7, y = 2x – 9.

Пример 4. Даны функции f (x ) = x 2 – 2x + 2 и g (x ) = –x 2 – 3. Напишем уравнение общей касательной к графикам этих функции.

Решение. Пусть x 1 - абсцисса точки касания искомой прямой с графиком функции f (x ), а x 2 - абсцисса точки касания той же прямой с графиком функции g (x ).

Производная функции f (x ) существует для любого x R . Найдем ее:

= (x 2 – 2x + 2)? = 2x – 2.

Тогда f (x 1) = x – 2x 1 + 2; (x 1) = 2 x 1 – 2. Уравнение касательной имеет вид:

y = (2x 1 – 2)(x x 1) + x – 2x 1 + 2,

y = (2x 1 – 2)x x + 2. (1)

Найдем производную функции g (x ):

= (–x 2 – 3)? = –2x .

Рассмотрим следующий рисунок:

На нем изображена некоторая функция y = f(x), которая дифференцируема в точке a. Отмечена точка М с координатами (а; f(a)). Через произвольную точку Р(a + ?x; f(a + ?x)) графика проведена секущая МР.

Если теперь точку Р сдвигать по графику к точке М, то прямая МР будет поворачиваться вокруг точки М. При этом ?х будет стремиться к нулю. Отсюда можно сформулировать определение касательной к графику функции.

Касательная к графику функции

Касательная к графику функции есть предельное положение секущей при стремлении приращения аргумента к нулю. Следует понимать, что существование производной функции f в точке х0, означает, что в этой точке графика существует касательная к нему.

При этом угловой коэффициент касательной будет равен производной этой функции в этой точке f’(x0). В этом заключается геометрический смысл производной. Касательная к графику дифференцируемой в точке х0 функции f - это некоторая прямая, проходящая через точку (x0;f(x0)) и имеющая угловой коэффициент f’(x0).

Уравнение касательной

Попытаемся получить уравнение касательной к графику некоторой функции f в точке А(x0; f(x0)). Уравнение прямой с угловым коэффициентом k имеет следующий вид:

Так как у нас угловой коэффициент равен производной f’(x0) , то уравнение примет следующий вид: y = f’(x0) *x + b.

Теперь вычислим значение b. Для этого используем тот факт, что функция проходит через точку А.

f(x0) = f’(x0)*x0 + b, отсюда выражаем b и получим b = f(x0) - f’(x0)*x0.

Подставляем полученное значение в уравнение касательной:

y = f’(x0)*x + b = f’(x0)*x + f(x0) - f’(x0)*x0 = f(x0) + f’(x0)*(x - x0).

y = f(x0) + f’(x0)*(x - x0).

Рассмотрим следующий пример: найти уравнение касательной к графику функции f(x) = x 3 - 2*x 2 + 1 в точке х = 2.

2. f(x0) = f(2) = 2 2 - 2*2 2 + 1 = 1.

3. f’(x) = 3*x 2 - 4*x.

4. f’(x0) = f’(2) = 3*2 2 - 4*2 = 4.

5. Подставим полученные значения в формулу касательной, получим: y = 1 + 4*(x - 2). Раскрыв скобки и приведя подобные слагаемые получим: y = 4*x - 7.

Ответ: y = 4*x - 7.

Общая схема составления уравнения касательной к графику функции y = f(x):

1. Определить х0.

2. Вычислить f(x0).

3. Вычислить f’(x)

Пусть дана функция f , которая в некоторой точке x 0 имеет конечную производную f (x 0). Тогда прямая, проходящая через точку (x 0 ; f (x 0)), имеющая угловой коэффициент f ’(x 0), называется касательной.

А что будет, если производная в точке x 0 не существует? Возможны два варианта:

  1. Касательная к графику тоже не существует. Классический пример - функция y = |x | в точке (0; 0).
  2. Касательная становится вертикальной. Это верно, к примеру, для функции y = arcsin x в точке (1; p /2).

Уравнение касательной

Всякая невертикальная прямая задается уравнением вида y = kx + b , где k - угловой коэффициент. Касательная - не исключение, и чтобы составить ее уравнение в некоторой точке x 0 , достаточно знать значение функции и производной в этой точке.

Итак, пусть дана функция y = f (x ), которая имеет производную y = f ’(x ) на отрезке . Тогда в любой точке x 0 ? (a ; b ) к графику этой функции можно провести касательную, которая задается уравнением:

y = f ’(x 0) · (x - x 0) + f (x 0)

Здесь f ’(x 0) - значение производной в точке x 0 , а f (x 0) - значение самой функции.

Задача. Дана функция y = x 3 . Составить уравнение касательной к графику этой функции в точке x 0 = 2.

Уравнение касательной: y = f ’(x 0) · (x - x 0) + f (x 0). Точка x 0 = 2 нам дана, а вот значения f (x 0) и f ’(x 0) придется вычислять.

Для начала найдем значение функции. Тут все легко: f (x 0) = f (2) = 2 3 = 8;
Теперь найдем производную: f ’(x ) = (x 3)’ = 3x 2 ;
Подставляем в производную x 0 = 2: f ’(x 0) = f ’(2) = 3 · 2 2 = 12;
Итого получаем: y = 12 · (x - 2) + 8 = 12x - 24 + 8 = 12x - 16.
Это и есть уравнение касательной.

Задача. Составить уравнение касательной к графику функции f (x ) = 2sin x + 5 в точке x 0 = p /2.

В этот раз не будем подробно расписывать каждое действие - укажем лишь ключевые шаги. Имеем:

f (x 0) = f (p /2) = 2sin (p /2) + 5 = 2 + 5 = 7;
f ’(x ) = (2sin x + 5)’ = 2cos x ;
f ’(x 0) = f ’(p /2) = 2cos (p /2) = 0;

Уравнение касательной:

y = 0 · (x - p /2) + 7 => y = 7

В последнем случае прямая оказалась горизонтальной, т.к. ее угловой коэффициент k = 0. Ничего страшного в этом нет - просто мы наткнулись на точку экстремума.

На современном этапе развития образования в качестве одной из основных его задач выступает формирование творчески мыслящей личности. Способность же к творчеству у учащихся может быть развита лишь при условии систематического привлечения их к основам исследовательской деятельности. Фундаментом для применения учащимися своих творческих сил, способностей и дарований являются сформированные полноценные знания и умения. В связи с этим проблема формирования системы базовых знаний и умений по каждой теме школьного курса математики имеет немаловажное значение. При этом полноценные умения должны являться дидактической целью не отдельных задач, а тщательно продуманной их системы. В самом широком смысле под системой понимается совокупность взаимосвязанных взаимодействующих элементов, обладающая целостностью и устойчивой структурой.

Рассмотрим методику обучения учащихся составлению уравнения касательной к графику функции. По существу, все задачи на отыскание уравнения касательной сводятся к необходимости отбора из множества (пучка, семейства) прямых тех из них, которые удовлетворяют определенному требованию – являются касательными к графику некоторой функции. При этом множество прямых, из которого осуществляется отбор, может быть задано двумя способами:

а) точкой, лежащей на плоскости xOy (центральный пучок прямых);
б) угловым коэффициентом (параллельный пучок прямых).

В связи с этим при изучении темы «Касательная к графику функции» с целью вычленения элементов системы нами были выделены два типа задач:

1) задачи на касательную, заданную точкой, через которую она проходит;
2) задачи на касательную, заданную ее угловым коэффициентом.

Обучение решению задач на касательную осуществлялось при помощи алгоритма, предложенного А.Г. Мордковичем . Его принципиальное отличие от уже известных заключается в том, что абсцисса точки касания обозначается буквой a (вместо x0), в связи с чем уравнение касательной приобретает вид

y = f(a) + f "(a)(x – a)

(сравните с y = f(x 0) + f "(x 0)(x – x 0)). Этот методический прием, на наш взгляд, позволяет учащимся быстрее и легче осознать, где в общем уравнении касательной записаны координаты текущей точки, а где – точки касания.

Алгоритм составления уравнения касательной к графику функции y = f(x)

1. Обозначить буквой a абсциссу точки касания.
2. Найти f(a).
3. Найти f "(x) и f "(a).
4. Подставить найденные числа a, f(a), f "(a) в общее уравнение касательной y = f(a) = f "(a)(x – a).

Этот алгоритм может быть составлен на основе самостоятельного выделения учащимися операций и последовательности их выполнения.

Практика показала, что последовательное решение каждой из ключевых задач при помощи алгоритма позволяет формировать умения написания уравнения касательной к графику функции поэтапно, а шаги алгоритма служат опорными пунктами действий. Данный подход соответствует теории поэтапного формирования умственных действий, разработанной П.Я. Гальпериным и Н.Ф. Талызиной .


В первом типе задач были выделены две ключевые задачи:

  • касательная проходит через точку, лежащую на кривой (задача 1);
  • касательная проходит через точку, не лежащую на кривой (задача 2).

Задача 1. Составьте уравнение касательной к графику функции в точке M(3; – 2).

Решение. Точка M(3; – 2) является точкой касания, так как

1. a = 3 – абсцисса точки касания.
2. f(3) = – 2.
3. f "(x) = x 2 – 4, f "(3) = 5.
y = – 2 + 5(x – 3), y = 5x – 17 – уравнение касательной.

Задача 2. Напишите уравнения всех касательных к графику функции y = – x 2 – 4x + 2, проходящих через точку M(– 3; 6).

Решение. Точка M(– 3; 6) не является точкой касания, так как f(– 3) ­ 6 (рис. 2).


2. f(a) = – a 2 – 4a + 2.
3. f "(x) = – 2x – 4, f "(a) = – 2a – 4.
4. y = – a 2 – 4a + 2 – 2(a + 2)(x – a) – уравнение касательной.

Касательная проходит через точку M(– 3; 6), следовательно, ее координаты удовлетворяют уравнению касательной.

6 = – a 2 – 4a + 2 – 2(a + 2)(– 3 – a),
a 2 + 6a + 8 = 0 ^ a 1 = – 4, a 2 = – 2.

Если a = – 4, то уравнение касательной имеет вид y = 4x + 18.

Если a = – 2, то уравнение касательной имеет вид y = 6.

Во втором типе ключевыми задачами будут следующие:

  • касательная параллельна некоторой прямой (задача 3);
  • касательная проходит под некоторым углом к данной прямой (задача 4).

Задача 3. Напишите уравнения всех касательных к графику функции y = x 3 – 3x 2 + 3, параллельных прямой y = 9x + 1.

1. a – абсцисса точки касания.
2. f(a) = a 3 – 3a 2 + 3.
3. f "(x) = 3x 2 – 6x, f "(a) = 3a 2 – 6a.

Но, с другой стороны, f "(a) = 9 (условие параллельности). Значит, надо решить уравнение 3a 2 – 6a = 9. Его корни a = – 1, a = 3 (рис. 3).

4. 1) a = – 1;
2) f(– 1) = – 1;
3) f "(– 1) = 9;
4) y = – 1 + 9(x + 1);

y = 9x + 8 – уравнение касательной;

1) a = 3;
2) f(3) = 3;
3) f "(3) = 9;
4) y = 3 + 9(x – 3);

y = 9x – 24 – уравнение касательной.

Задача 4. Напишите уравнение касательной к графику функции y = 0,5x 2 – 3x + 1, проходящей под углом 45° к прямой y = 0 (рис. 4).

Решение. Из условия f "(a) = tg 45° найдем a: a – 3 = 1 ^ a = 4.

1. a = 4 – абсцисса точки касания.
2. f(4) = 8 – 12 + 1 = – 3.
3. f "(4) = 4 – 3 = 1.
4. y = – 3 + 1(x – 4).

y = x – 7 – уравнение касательной.

Несложно показать, что решение любой другой задачи сводится к решению одной или нескольких ключевых задач. Рассмотрим в качестве примера следующие две задачи.

1. Напишите уравнения касательных к параболе y = 2x 2 – 5x – 2, если касательные пересекаются под прямым углом и одна из них касается параболы в точке с абсциссой 3 (рис. 5).

Решение. Поскольку дана абсцисса точки касания, то первая часть решения сводится к ключевой задаче 1.

1. a = 3 – абсцисса точки касания одной из сторон прямого угла.
2. f(3) = 1.
3. f "(x) = 4x – 5, f "(3) = 7.
4. y = 1 + 7(x – 3), y = 7x – 20 – уравнение первой касательной.

Пусть a – угол наклона первой касательной. Так как касательные перпендикулярны, то – угол наклона второй касательной. Из уравнения y = 7x – 20 первой касательной имеем tg a = 7. Найдем

Это значит, что угловой коэффициент второй касательной равен .

Дальнейшее решение сводится к ключевой задаче 3.

Пусть B(c; f(c)) есть точка касания второй прямой, тогда

1. – абсцисса второй точки касания.
2.
3.
4.
– уравнение второй касательной.

Примечание. Угловой коэффициент касательной может быть найден проще, если учащимся известно соотношение коэффициентов перпендикулярных прямых k 1 k 2 = – 1.

2. Напишите уравнения всех общих касательных к графикам функций

Решение. Задача сводится к отысканию абсцисс точек касания общих касательных, то есть к решению ключевой задачи 1 в общем виде, составлению системы уравнений и последующему ее решению (рис. 6).

1. Пусть a – абсцисса точки касания, лежащей на графике функции y = x 2 + x + 1.
2. f(a) = a 2 + a + 1.
3. f "(a) = 2a + 1.
4. y = a 2 + a + 1 + (2a + 1)(x – a) = (2a + 1)x + 1 – a 2 .

1. Пусть c – абсцисса точки касания, лежащей на графике функции
2.
3. f "(c) = c.
4.

Так как касательные общие, то

Итак, y = x + 1 и y = – 3x – 3 – общие касательные.

Основная цель рассмотренных задач – подготовить учащихся к самостоятельному распознаванию типа ключевой задачи при решении более сложных задач, требующих определенных исследовательских умений (умения анализировать, сравнивать, обобщать, выдвигать гипотезу и т. д.). К числу таких задач можно отнести любую задачу, в которую ключевая задача входит как составляющая. Рассмотрим в качестве примера задачу (обратную задаче 1) на нахождение функции по семейству ее касательных.

3. При каких b и c прямые y = x и y = – 2x являются касательными к графику функции y = x 2 + bx + c?

Пусть t – абсцисса точки касания прямой y = x с параболой y = x 2 + bx + c; p – абсцисса точки касания прямой y = – 2x с параболой y = x 2 + bx + c. Тогда уравнение касательной y = x примет вид y = (2t + b)x + c – t 2 , а уравнение касательной y = – 2x примет вид y = (2p + b)x + c – p 2 .

Составим и решим систему уравнений

Ответ: