Ядерные и термоядерные реакции
Вы уже знаете, что в середине XX в. возникла проблема поиска новых источников энергии. В связи с этим внимание учёных привлекли термоядерные реакции.
- Термоядерной называется реакция слияния лёгких ядер (таких как водород, гелий и др.), происходящая при температурах от десятков до сотен миллионов градусов
Создание высокой температуры необходимо для придания ядрам достаточно большой кинетической энергии - только при этом условии ядра смогут преодолеть силы электрического отталкивания и сблизиться настолько, чтобы попасть в зону действия ядерных сил. На таких малых расстояниях силы ядерного притяжения значительно превосходят силы электрического отталкивания, благодаря чему возможен синтез (т. е. слияние, объединение) ядер.
В § 58 на примере урана было показано, что при делении тяжёлых ядер может выделяться энергия. В случае с лёгкими ядрами энергия может выделяться при обратном процессе - при их синтезе. Причём реакция синтеза лёгких ядер энергетически более выгодна, чем реакция деления тяжёлых (если сравнивать выделившуюся энергию, приходящуюся на один нуклон).
Примером термоядерной реакции может служить слияние изотопов водорода (дейтерия и трития), в результате чего образуется гелий и излучается нейтрон:
Это первая термоядерная реакция, которую учёным удалось осуществить. Она была реализована в термоядерной бомбе и носила неуправляемый (взрывной) характер.
Как уже было отмечено, термоядерные реакции могут идти с выделением большого количества энергии. Но для того чтобы эту энергию можно было использовать в мирных целях, необходимо научиться проводить управляемые термоядерные реакции. Одна из основных трудностей в осуществлении таких реакций заключается в том, чтобы удержать внутри установки высокотемпературную плазму (почти полностью ионизированный газ), в которой и происходит синтез ядер. Плазма не должна соприкасаться со стенками установки, в которой она находится, иначе стенки обратятся в пар. В настоящее время для удерживания плазмы в ограниченном пространстве на соответствующем расстоянии от стенок применяются очень сильные магнитные поля.
Термоядерные реакции играют важную роль в эволюции Вселенной, в частности в преобразованиях химических веществ в ней.
Благодаря термоядерным реакциям, протекающим в недрах Солнца, выделяется энергия, дающая жизнь обитателям Земли.
Наше Солнце излучает в пространство свет и тепло уже почти 4,6 млрд лет. Естественно, что во все времена учёных интересовал вопрос о том, что является «топливом», за счёт которого на Солнце вырабатывается огромное количество энергии в течение столь длительного времени.
На этот счёт существовали разные гипотезы. Одна из них заключалась в том, что энергия на Солнце выделяется в результате химической реакции горения. Но в этом случае, как показывают расчёты, Солнце могло бы просуществовать всего несколько тысяч лет, что противоречит действительности.
Оригинальная гипотеза была выдвинута в середине XIX в. Она состояла в том, что увеличение внутренней энергии и соответствующее повышение температуры Солнца происходит за счёт уменьшения его потенциальной энергии при гравитационном сжатии. Она тоже оказалась несостоятельной, так как в этом случае срок жизни Солнца увеличивается до миллионов лет, но не до миллиардов.
Предположение о том, что выделение энергии на Солнце происходит в результате протекания на нём термоядерных реакций, было высказано в 1939 г. американским физиком Хансом Бете.
Им же был предложен так называемый водородный цикл , т. е. цепочка из трёх термоядерных реакций, приводящая к образованию гелия из водорода:
где - частица, называемая «нейтрино», что в переводе с итальянского означает «маленький нейтрон».
Чтобы получились два ядра , необходимые для третьей реакции, первые две должны произойти дважды.
Вы уже знаете, что в соответствии с формулой Е = mс 2 с уменьшением внутренней энергии тела уменьшается и его масса.
Чтобы представить, какое колоссальное количество энергии теряет Солнце в результате превращения водорода в гелий, достаточно знать, что масса Солнца ежесекундно уменьшается на несколько миллионов тонн. Но, несмотря на потери, запасов водорода на Солнце должно хватить ещё на 5-6 миллиардов лет.
Такие же реакции протекают в недрах других звёзд, масса и возраст которых сравнимы с массой и возрастом Солнца.
Вопросы
- Какая реакция называется термоядерной? Приведите пример реакции.
- Почему протекание термоядерных реакций возможно только при очень высоких температурах?
- Какая реакция энергетически более выгодна (в расчёте на один нуклон): синтез лёгких ядер или деление тяжёлых?
- В чём заключается одна из основных трудностей при осуществлении термоядерных реакций?
- Какова роль термоядерных реакций в существовании жизни на Земле?
- Что является источником энергии Солнца по современным представлениям?
- На какой период должно хватить запаса водорода на Солнце по подсчётам учёных?
Это любопытно...
Элементарные частицы. Античастицы
Частицы, из которых состоят атомы различных веществ - электрон, протон и нейтрон, - назвали элементарными. Слово «элементарный» подразумевало, что эти частицы являются первичными, простейшими, далее неделимыми и неизменяемыми. Но вскоре оказалось, что эти частицы вовсе не являются неизменяемыми. Все они обладают способностью превращаться друг в друга при взаимодействии.
Поэтому в современной физике термин «элементарные частицы» обычно употребляется не в своём точном значении, а для наименования большой группы мельчайших частиц материи, не являющихся атомами или ядрами атомов (исключение составляет протон, представляющий собой ядро атома водорода и в то же время относящийся к элементарным частицам).
В настоящее время известно более 350 различных элементарных частиц. Частицы эти очень разнообразны по своим свойствам. Они могут отличаться друг от друга массой, знаком и величиной электрического заряда, временем жизни (т. е. временем с момента образования частицы и до момента её превращения в какую-либо другую частицу), проникающей способностью (т. е. способностью проходить сквозь вещество) и другими характеристиками. Например, большинство частиц являются «коротко-живущими» - они живут не более двух миллионных долей секунды, в то время как среднее время жизни нейтрона, находящегося вне атомного ядра, 15 мин.
Важнейшее открытие в области исследования элементарных частиц было сделано в 1932 г., когда американский физик Карл Дейвид Андерсон обнаружил в камере Вильсона, помещённой в магнитное поле, след неизвестной частицы. По характеру этого следа (по радиусу кривизны, направлению изгиба и пр.) учёные определили, что он оставлен частицей, которая представляет собой как бы электрон с положительным по знаку электрическим зарядом. Эту частицу назвали позитроном.
Интересно, что за год до экспериментального открытия позитрона его существование было теоретически предсказано английским физиком Полем Дираком (существование именно такой частицы следовало из выведенного им уравнения). Более того, Дирак предсказал так называемые процессы аннигиляции (исчезновения) и рождения электрон-позитронной пары. Аннигиляция заключается в том, что электрон и позитрон при встрече исчезают, превращаясь в g-кванты (фотоны). А при столкновении g-кванта с каким-либо массивным ядром происходит рождение электрон-позитронной пары.
Оба эти процесса впервые удалось пронаблюдать на опыте в 1933 г. На рисунке 166 показаны треки электрона и позитрона, образовавшихся в результате столкновения g-кванта с атомом свинца при прохождении g-лучей сквозь свинцовую пластинку. Опыт проводился в камере Вильсона, помещённой в магнитное поле. Одинаковая кривизна треков свидетельствует об одинаковой массе частиц, а искривление в разные стороны - о противоположных знаках электрического заряда.
Рис. 166. Треки электрон-позитронной пары в магнитном поле
В 1955 г. была обнаружена еще одна античастица- антипротон (существование которой тоже вытекало из теории Дирака), а несколько позже - антинейтрон. Антинейтрон, так же как и нейтрон, не имеет электрического заряда, но он, бесспорно, относится к античастицам, поскольку участвует в процессе аннигиляции и рождения пары нейтрон-антинейтрон.
Возможность получения античастиц привела учёных к идее о создании антивещества. Атомы антивещества должны быть построены таким образом: в центре атома - отрицательно заряженное ядро, состоящее из антипротонов и антинейтронов, а вокруг ядра обращаются позитроны. В целом атом нейтрален. Эта идея тоже получила блестящее экспериментальное подтверждение. В 1969 г. на ускорителе протонов в г. Серпухове советские физики получили ядра атомов антигелия.
В настоящее время экспериментально обнаружены античастицы почти всех известных элементарных частиц.
Итоги главы. Самое главное
Ниже даны физические понятия и явления. Последовательность изложения определений и формулировок не соответствует последовательности понятий и т. п.
Перенесите в тетрадь названия понятий и в квадратные скобки впишите порядковый номер определения (формулировки), соответствующего данному понятию.
- Радиоактивность ;
- ядерная (планетарная) модель строения атома ;
- атомное ядро ;
- радиоактивные превращения атомных ядер ;
- экспериментальные методы изучения частиц в атомной и ядерной физике ;
- ядерные силы ;
- энергия связи ядра ;
- дефект масс атомного ядра ;
- цепная реакция ;
- ядерный реактор ;
- экологические и социальные проблемы, возникающие при использовании АЭС ;
- поглощённая доза излучения .
- Регистрация частиц с помощью счётчика Гейгера, изучение и фотографирование треков частиц (в том числе участвовавших в ядерных реакциях) в камере Вильсона и пузырьковой камере.
- Силы притяжения, действующие между нуклонами в ядрах атомов и значительно превосходящие силы электростатического отталкивания между протонами.
- Минимальная энергия, необходимая для расщепления ядра на отдельные нуклоны.
- Самопроизвольное излучение атомами некоторых элементов радиоактивных лучей.
- Устройство, предназначенное для осуществления управляемой ядерной реакции.
- Состоит из нуклонов (т. е. из протонов и нейтронов).
- Радиоактивные отходы, возможность аварий, содействие распространению ядерного оружия.
- Атом состоит из расположенного в его центре положительно заряженного ядра, вокруг которого на расстоянии, значительно превышающем размер ядра, обращаются электроны.
- Превращение одного химического элемента в другой при a- или v-распаде, в результате которого ядро исходного атома претерпевает изменения.
- Разность между суммой масс нуклонов, образующих ядро, и массой этого ядра.
- Самоподдерживающаяся реакция деления тяжёлых ядер, в которой непрерывно воспроизводятся нейтроны, делящие всё новые и новые ядра.
- Энергия ионизирующего излучения, поглощённая излучаемым веществом (в частности, тканями организма) и рассчитанная на единицу массы.
Проверь себя
Термоядерные реакции
Thermonuclear reactions
Термоядерные реакции
- реакции слияния (синтеза) лёгких ядер, протекающие при высоких температурах.
Эти реакции обычно идут с выделением энергии, поскольку в образовавшемся
в результате слияния более тяжёлом ядре нуклоны связаны сильнее, т.е. имеют,
в среднем, бoльшую энергию связи, чем в исходных сливающихся ядрах. Избыточная
суммарная энергия связи нуклонов при этом освобождается в виде кинетической
энергии продуктов реакции. Название “термоядерные реакции” отражает тот
факт, что эти реакции идут при высоких температурах (>
10 7 –10 8
К), поскольку для слияния лёгкие ядра должны сблизиться до расстояний, равных
радиусу действия ядерных сил притяжения, т.е. до расстояний ?10 -13
см. А вне зоны действия этих сил положительно заряженные ядра испытывают
кулоновское отталкивание. Преодолеть это отталкивание могут лишь ядра, летящие
навстречу друг другу с большими скоростями, т.е. входящие в состав сильно
нагретых сред, либо специально ускоренные.
Ниже приведены несколько основных реакций слияния ядер и указаны
для них значения энерговыделения Q. d означает дейтрон - ядро 2 Н,
t означает тритон - ядро 3 Н.
d + d -> 3 He + n + 4.0 МэВ,
d + d -> t + p + 3.25 МэВ,
t + d -> 4 He + n + 17.6 МэВ,
3 He + d -> 4 He + p + 18.3 МэВ.
Реакция слияния ядер начинается тогда, когда сталкивающиеся ядра находятся в области их взаимного ядерного притяжения. Чтобы так сблизиться, сталкивающиеся ядра должны преодолеть их взаимное дальнодействующее электростатическое отталкивание, т.е. кулоновский барьер. Скорость реакции слияния крайне мала при энергиях ниже нескольких кэВ, но она быстро растет с ростом кинетичской энергии ядер, вступающих в реакцию. Соответствующие эффективные сечения реакций в зависимости от энергии дейтрона приведены на рис. 1.
Рис. 1. Зависимость эффективных сечений реакции слияния
от энергии дейтрона.
Самоподдерживающиеся термоядерные реакции являются эффективным источником ядерной энергии. Однако осуществить их на Земле сложно, так как для этого нужно удерживать высокие концентрации ядер при огромных температурах. Необходимые условия для протекания самоподдерживающихся термоядерных реакций имеются в звёздах, где они являются главным источником энергии. Так внутри Солнца, где находятся ядра водорода при плотности ?100 г/см 3 и температуре 10 7 К, идёт цепочка термоядерных реакций превращения четырёх протонов (ядер водорода) в ядро гелия-4 (4 Не). При каждом таком превращении выделяется энергия 26.7 МэВ. Эта цепочка реакций (называемая протон-протонной) начинается с реакции (1) и приведена на рисунке.
Протон-протонная цепочка. |
На Земле самоподдерживающиеся термоядерные реакции с выделением огромной энергии осуществлялись в течение очень короткого времени (10 -7 –10 -6 сек) при взрывах водородных бомб. Одной из основных термоядерных реакций, обеспечивающих энерговыделение при таких взрывах, является реакция слияния двух тяжёлых изотопов водорода (дейтерия и трития) в ядро гелия с испусканием нейтрона.
Введение 3
Глава I: элементарные частицы и история
Немного истории 5
Строение атома 6
Глава II: термоядерные реакции
Виды термоядерных реакций 8
Протон-протонная реакция 9
Углеродно-азотный цикл 10
Глава III: солнечная энергия
Термоядерные реакции на более тяжёлых элементах 14
Первые опыты использования солнечной энергии 15
Преобразование солнечной энергии в теплоту, работу
и электричество 15
Заключение 18
Список используемой литературы 19
ВВЕДЕНИЕ
Рождение энергетики произошло несколько миллионов лет тому назад, когда люди научились использовать огонь. Огонь давал им тепло и свет, был источником вдохновения и оптимизма, оружием против врагов и диких зверей, лечебным средством, помощником в земледелии, консервантом продуктов, технологическим средством и т.д.
На протяжении многих лет огонь поддерживался путем сжигания растительных энергоносителей (древесины, кустарников, камыша, травы, сухих водорослей и т.п.), а затем была обнаружена возможность использовать для поддержания огня ископаемые вещества: каменный уголь, нефть, сланцы, торф.
Прекрасный миф о Прометее, даровавшем людям огонь появился в Древней Греции значительно позже того, как во многих частях света были освоены методы довольно изощренного обращения с огнем, его получением и тушением, сохранением огня и рациональным использованием топлива.
Сейчас известно, что древесина - это аккумулированная с помощью фотосинтеза солнечная энергия. При сгорании каждого килограмма сухой древесины выделяется около 20 000 к Дж тепла, теплота сгорания бурого угля равна примерно 13 000 кДж/кг, антрацита 25 000 кДж/кг, нефти и нефтепродуктов 42 000 кДж/кг, а природного газа 45 000 кДж/кг. Самой высокой теплотой сгорания обладает водород 120 000 кДж/кг.
Человечеству нужна энергия, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных природных топлив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива - урана и тория, из которого можно получить в реакторах-размножителях плутоний. Практически неисчерпаемы запасы термоядерного топлива - водорода, и вот, в "атомный" век, учёные смогли контролировать ядерный распад атомов и использовать большую энергию, выделяющуюся при этом процессе.
Эти реакции называются термоядерные. О них в дальнейшем и пойдёт речь. Само название уже говорит за себя, ведь слово "термоядерные" произошло от thermos, что означает температура. Таким образом, термоядерные реакции - это реакции, протекающие при большой температуре, когда кинетическая энергия атомов играет значительную роль. Как дальше будет показано энергия, которая выделяется при термоядерных реакциях, достигает колоссальных величин. Сейчас уже достоверно известно, что термоядерные реакции являются основным источником энергии в звёздах. Именно в них природа создаёт такие условия, при которых имеют место эти реакции. Основные примеры термоядерных реакций: протон-протонная цепочка (pp -цикл) и углеродно-азотный цикл Г. Бёте (CNO - цикл). В pp-цикле четыре протона образуют одно ядро гелия (при этом два протона должны превратиться в нейтроны). Такое соединение протонов в ядро гелия может идти различными путями, но результат один и тот же. Энергия, выделяющаяся при одной реакции:
;где Dm - это избыток массы четырех протонов над массой одного ядра гелия:
Е = (4*1,00727647 - 4,002603267)*931,5016 = 24,687 МэВ на одно ядро.
Эта энергия достаточно впечатлительная величина, если учесть, что интенсивность протекания рр-цепочки в звёздах очень велика.
В CNO-цикле ядро атома углерода, с массовым числом 12, является катализатором, т. е. в результате нескольких реакций ядро углерода последовательно захватывает 4 протона и, испытывая ядерный распад, опять становится
С, испуская ядро He.ГЛАВА I . ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ИСТОРИЯ
НЕМНОГО ИСТОРИИ
В 1926 г. Эддингтон опубликовал свою книгу "The Internal Constitution of the Stars" ("Внутреннее строение звёзд"). В этой книге были блестяще изложены представления того времени о физических основах процессов, происходивших в звёздах. Сам Эддингтон внёс существенный вклад в формирование этих представлений. Ещё до него в принципе было ясно, как функционируют звёзды. Однако не было точно известно, откуда берётся энергия, которая поддерживает излучение звёзд.
Уже тогда было понятно, что богатое водородом звёздное вещество может быть идеальным источником энергии. Учёные знали, что при превращении водорода в гелий освобождается столько энергии, что Солнце и другие звёзды могут светить миллиарды лет. Таким образом, было ясно, что если разобраться, в каких условиях идёт слияние атомов водорода, то был бы найден великолепный источник энергии звёзд. Однако наука тех лет была ещё очень далека от того, чтобы осуществить превращение водорода в гелий в экспериментальных условиях.
Астрофизикам того времени оставалось только верить, что звёзды представляют собой гигантские ядерные реакторы. Действительно, нельзя было бы представить никакого другого процесса, который мог бы обеспечить энергией Солнца в течение миллиардов лет. Наиболее последовательно это мнение выразил Эддингтон. Он исходил из многочисленных и многократно повторённых измерений светимости звёзд, которые проводили астрономы-наблюдатели. К сожалению, физики того времени считали, что атомные ядра в звёздах не могут реагировать друг с другом.
Эддингтон уже тогда смог рассчитать, какая температура должна наблюдаться в недрах Солнца. По его расчётам она должна составлять примерно 40 миллионов градусов. Такая температура, на первый взгляд очень высокой, но ядерщики считали, что её недостаточно для протекания ядерных реакций. При этой температуре атомы во внутренних областях солнца перемещаются относительно друг друга со скоростями около 1000 километров в секунду. При таких высоких температурах атомы водорода уже теряют свои электроны, протоны уже свободно перемещаются в пространстве. Представим себе, что два протона налетают друг на друга и, в следствия взаимодействия, взаимно отталкиваются. При скоростях 1000 километров в секунду протоны могут приблизится на очень малое расстояние, но под действием силы электрического отталкивания они разлетятся прежде чем смогут объединиться в одно ядро. Как показали расчёты, только при температуре свыше 10 миллиардов градусов частицы движутся с такими скоростями, что, несмотря на силы электрического отталкивания, они могу приблизится друг другу и слиться. Солнце с температурой 40 миллионов градусов казалось физикам слишком холодным, чтобы в его недрах могло происходить превращение водорода в гелий. Однако Эддингтон был убеждён, что только ядерная энергия может поддерживать излучение звезд, и оказался прав.
СТРОЕНИЕ АТОМА
Всё что нас окружает, - горные породы, и минералы, вещества в атмосфере и морях, клетки растений и животных, газовые туманности и звёзды во Вселенной во всём их многообразии - всё это состоит из 92 элементарных кирпичиков - химических элементов. Это было установлено наукой 19-го столетия, которая тем самым упростила картину окружающего мира. Как показывают опыты, существует 3 основных типа элементарных частиц, из которых состоят атомы: электроны, протоны и нейтроны.
Например, ядро водорода состоит из протона, а вокруг него вращается электрон.
Протон - это положительно заряженная частица, масса которой
1,672*10 кг. Электрон - это отрицательно заряженная частица. Его масса на три порядка меньше массы протона, а заряд электрона равен заряду протона. Таким образом, атом в целом нейтрален. Электрон удерживается в атоме кулоновскими силами взаимодействия и поэтому его удерживает ядро. В следующем элементе - гелии, ядро состоит иначе, в нём есть ещё одна новая частица (точнее две) - нейтрон . Нейтрон - это частица не имеющего заряда (нейтральная). Как мы дальше выясним, она необходима в ядре для связи протонов в ядре, т. к. протоны стремятся оттолкнуться друг от друга. Целиком ядро гелия представлено двумя протонами и двумя нейтронами, а вокруг ядра вращаются два электрона. Все атомы и ядра состоят из определенного количества протонов и нейтронов. Сколько протонов находится в ядре, столько же электронов обращается вокруг ядра в электронных оболочках. Поэтому положительный заряд протонов ядра в точности компенсируется отрицательным зарядом электронов. Собственно говоря, дело обстоит ещё проще. Если быть более точным, то атомы состоят не из трёх типов элементарных частиц: протонов, нейтронов и электронов, а всего из двух. В атомных ядрах нейтрон может превратиться в протон и электрон, испустив последний за пределы ядра (т. к. при распаде нейтрона энергия избытка масс нейтрона над протоном и электроном переходит в кинетическую энергию и распределяется между двумя последними частицами). Последний процесс физики называют b- распад. Так как при b- распаде в ядре количество протонов увеличивается на 1, а следственно и заряд, то порядковый номер ядра увеличивается и оно становится уже ядром нового элемента. Кстати, именно таким образом были синтезированы многие последние элементы таблицы Менделеева. Но возвратимся к нашему нейтрону. Если каким-то образом, в ходе эксперимента будет получен свободный нейтрон, то он нестабилен и через 17,3 минут распадается по выше указанному правилу. Поэтому можно считать, что окружающий нас мир во всём своём многообразии построен только из протонов и электронов. Интересно заметить, что химическое свойство атома определяет заряд ядра. Это объясняется, прежде всего, тем, что электроны в атоме образуют электронные оболочки согласно заряду ядра, а именно они (оболочки) и определяют химические связи в молекулах. Поэтому ядра с разным массовым числом, но с одинаковым зарядом ядра называются изотопами, т. к. они имеют одинаковые химические, но разные физические свойства. Так, например, кроме обычного водорода существует так называемый тяжёлый водород. В ядре этого изотопа кроме одного протона есть ещё и один нейтрон. Такой изотоп называется дейтерием. Он в небольшом количестве встречается в природе. Однако количество изотопов для данного вещества ограниченно. Это связанно с тем, что протоны и нейтроны в ядре создаю свою своеобразную структуру, т. е. существуют некоторые подуровни, которые заполняются нуклонами (нуклоны - это протоны и нейтроны, т. е. те которые в ядре) и, если количество некоторых (протонов или нейтронов) больше критического значения, то ядро претерпевает ядерную реакцию. Более тяжёлые элементы, такие как железо, имеют в ядре 26 протонов и 30 нейтронов. Как видно нейтронов больше, чем протонов. Всё дело в том, что 26 положительно заряженных частиц за счёт кулоновского отталкивания стремятся разлететься в разные стороны, а их удерживает так называемые ядерные силы. Эти силы обуславливаются взаимными превращениями нуклонов в ядре. Нейтрон, в ядре, испускает новую частицу - p-мезон и превращается в протон, а протон захватывает эту частицу, превращаясь в нейтрон. Так происходит взаимопереход одних частиц в другие и ядро не распадается. В лёгких ядрах силы отталкивания не очень велики и на каждый протон хватает по одному нейтрону, а в более тяжёлых элементах, для стабильного ядра нужен избыток нейтронов.1.9. Термоядерные реакции.
Термоядерные реакции на Солнце и звездах. Водородный цикл. Углеродный цикл. Нуклеосинтез. Термоядерный взрыв. Управляемый термоядерный синтез
Термоядерные реакции – реакции слияния (синтеза) легких атомных ядер в более тяжелые, происходящие при очень высоких температурах (более 10 8 К ). Термоядерные реакции – это процесс образования плотно упакованных ядер из более рыхлых легких ядер. Это экзоэнергетические реакции, идущие с выделением в продуктах реакции избыточной кинетической энергии, равной увеличению полной энергии связи.
Для всех реакций синтеза ядер необходимо сблизить реагирующие ядра на расстояние радиуса действия ядерных сил. Для этого следует преодолеть электростатический кулоновский барьер отталкивания ядер. На рис 1.15 показан график зависимости потенциальной энергии от расстояния между ядрами.
Рис. 1.15. Потенциальная энергия межъядерного взаимодействия как функция расстояния между ядрами. Штриховкой показано «срезание» барьера отталкивания на боровском радиусе отрицательного мюона в кулоновском поле ядра
Чтобы преодолеть кулоновский барьер, необходима энергия сталкивающихся ядер ~ 0,1 МэВ. Механизмы преодоления кулоновского барьера следующие:
1. Бомбардировка ядер пучком дейтронов бесперспективна. Энергия дейтронов будет тратиться на ионизацию и возбуждение электронов в атомах мишени. Эффективное сечение взаимодействия дейтронов с электронами s e ~ 10 -16 см 2 , а с ядрами s я ~ 10 -24 см 2 s e >> s я.
2. Мюонный катализ (теоретически возможен, экспериментально не реализован). Кулоновское поле ядра можно экранировать мюоном («тяжелым электроном» с временем жизни 2,2 . 10 -6 сек) на боровской орбите. Размер атома уменьшается в 212 раз, т.к. . Образуются мезомолекулярные ионы. DH m . Возможна реакция
3. «Смятие» внешней широкой части потенциального кулоновского барьера показано штриховкой (на рис.1.15). Осуществляется силой тяготения , создающей колоссальное давление при плотности плазмы >> 10 4 г/см 3 в звездах.
4. При нагреве вещества до температуры ядер Т Я ~ 10 9 К, (1эВ соответствует 11 000 К, 0,1МэВ = 10 5 эВ ~ 10 9 К). Вещество при таких температурах образует высокотемпературную плазму. Механизм реализован в земных условиях.
Примеры термоядерных реакций:
1. Реакция синтеза изотопов водорода дейтрона и тритона с образованием ядра гелия и нейтрона:
Сечение реакции s ма x = 5 барн. Энергия налетающего дейтрона Т d = 0,1 МэВ. Энерговыделение на один нуклон в термоядерной реакции синтеза ( МэB/нуклон) превышает выделение энергии на 1 нуклон в ядерной реакции деления урана-235 (q дел = 200/235 = 0,85 МэB/нуклон) в 4 раза.
2. Реакция синтеза двух дейтронов:
1-й выходной канал: сечение реакции s ма x = 0,09 барн, Т d = 1 МэВ.
2-й выходной канал: сечение реакции s ма x = 0,16 барн, Т d = 2 МэВ.
Сечения термоядерных реакций при малых значениях энергий (Е
,
где А и В постоянные.
Скорости термоядерных реакций
Термоядерные реакции происходят в результате парных столкновений между ядрами. Число столкновений в единице объема в единицу времени равно
N
12 =
n
1
n
2 v
s
(v
)>
,
Термоядерный взрыв
Искусственная термоядерная реакция реализуется в земных условиях в неуправляемом режиме в термоядерном (водородном) устройстве, где температура > 10 7 K создается взрывoм плутониевого или уранового детонатора. Вещество дейтери – гидрид лития . Время разлета составляет микросекунды. Вероятная схема реакций
МэB, (1.94)
МэB. (1.97)
Нейтроны для реакции (1.97) происходят от деления ядер . Основная энергия выделяется в реакциях (1.96) и (1.97), которые образуют цикл, взаимно поддерживая друг друга и оставляют без изменения количество нейтронов и ядер трития. Реакции (1.94) и (1.95) служат начальным источником нейтрон и ядер трития. Скорость реакции (1.94) и (1.95) в 100 раз меньше, чем скорость реакций (1.96) и (1.97) .
Управляемый термоядерный синтез (УТС)
Управляемый термоядерный синтез – процесс слияния легких атомных ядер , проходящий с выделением энергии при высоких температурах в регулируемых управляемых условиях. УТС до сих пор не реализован (2010г.).
Для реакции синтеза необходимо сблизить ядра на расстояние ~ 10 –11 см, после чего начинается слияние ядер за счет туннельного эффекта. Для протонов необходима энергия 10 кэB, что соответствует Т = 10 8 К.
Все работы по УТС основаны на осуществлении реакции
Воспроизводство трития можно осуществить, окружив рабочую зону слоем лития, и использовать реакцию
Пусть t – среднее время удержания частиц в активной зоне , n – концентрация частиц (ядер). Пусть коэффициент преобразования в электрическую энергию энергии ядерной реакции. энергии электромагнитного излучения плазмы и тепловой энергии частиц плазмы одинаков и равен . В условиях стационарной работы системы при нулевой полезной мощности уравнение баланса энергии в термоядерном реакторе имеет вид нагревание очень малых объемов термоядерного вещества.
Работы по УТС продолжаются путем создания термоядерных реакторов на основе токамака (тороидальной камеры с дейтериево-тритьевой плазмой и тороидальным магнитным полем) и стелларатора (тороидальная система с дейтериево-тритьевой плазмой и магнитным полем, создаваемым внешними обмотками).
Схема Международного термоядерного реактора – экспериментального реактора-токамака ИТЭР представлена на рис.1.17. Его параметры: большой радиус плазмы 8,1 м, малый радиус плазмы 3 м, тороидальное магнитное поле на оси 5,7 Тл, номинальный ток плазмы 21 МА, номинальная термоядерная мощность с дейтерий-тритьевым топливом 1500 МВт. Реактор содержит следующие основные узлы: соленоид 1, индуцированное или электрическое поле осуществляет пробой газа и нагревает плазму , первая стенка 9 обращена к высокотемпературной плазме и воспринимает поток тепла в виде излучения и частиц, бланкет 2 – защита, в которой воспроизводится тритий, сгоревший в плазме, катушки 8 из сверхпроводника NB 3 Sn создают тороидальное магнитное поле. Дивертор 10 служит для отвода тепла из плазмы в виде потока заряженных частиц и откачки продуктов реакции гелия и протия (водорода). Вакуумная камера 4 и средства откачки 5 создают высокий вакуум в рабочей камере реактора , где создается плазма. Строительство намечено во Франции (2010 г.). Участники проекта: Россия, США, Евроатом, Япония. Стоимость порядка 2 млрд. долл.
Рис.1.17. Проект международного термоядерного реактора ИТЭР
Протекающая при очень высокой температуре (выше 108 К). При этом образуется большое количество энергии в виде нейтронов с высоким энергетическим показателем и фотонов - частиц света.
А следовательно, и большие энергии ядер, которые сталкиваются, необходимы для преодоления электростатического барьера. Этот барьер обусловлен взаимным отталкиванием ядер (как одноименно заряженных частиц). Иначе они не смогли бы сблизиться на расстояние, достаточное для действия ядерных сил (а это примерно 10-12 см).
Термоядерная реакция представляет собой процесс образования ядер, которые сильно связаны между собой, из более рыхлых. Почти все подобные реакции относятся к реакциям слияния (синтеза) более легких ядер в тяжелые.
Необходимая для преодоления взаимного отталкивания, должна увеличиваться по мере увеличения заряда ядра. Поэтому легче всего проходит синтез легких ядер, обладающих малым электрическим зарядом.
В природе термоядерная реакция может протекать лишь в недрах звезд. Для ее осуществления в земных условиях необходимо разогреть вещество одним из возможных способов:
- ядерным взрывом;
- бомбардировкой интенсивным пучком частиц;
- мощным импульсом лазерного излучения или газовым разрядом.
Термоядерная реакция, которая идет в недрах звезд, играет архиважную роль в эволюции Вселенной. Во-первых, из водорода в звездах образуются ядра будущих химических элементов, а во-вторых, это энергетический источник звезд.
Термоядерные реакции на Солнце
На Солнце в качестве основного источника энергии выступают реакции протон-протонного цикла, когда из четырех протонов рождается одно ядро гелия. Энергия, которая выделяется в процессе синтеза, уносится образующими ядрами, нейтронами, нейтрино и квантами электромагнитного излучения. Изучая идущий от Солнца поток нейтрино, ученые могуть установить, природу и интеснивность ядерных реакций, которые происходят в его центре.
Средняя интенсивность энерговыделения Солнца по земным меркам ничтожна - всего 2 эрг/с*г (на 1 грамм солнечной массы). Эта величина гораздо меньше, чем скорость электровыделения в живом организме в процессе стандартного обмена веществ. И только благодаря огромной массе Солнца (2*1033 г) общий объем излучаемой им мощности составляет такую гигантскую величину, как 4*1028 Вт.
Благодаря огромным размерам и массе Солнца и остальных звезд, проблема удержания и термоизоляции плазмы решается в них идеально: реакции протекают в горячем ядре, а теплоотдача происходит с более холодной поверхности. Только поэтому звезды могут настолько эффективно производить энергию в столь медленных процессах, как протон-протонных цикл. В земных условиях такие реакции практически неосуществимы.
Термоядерная энергетика - основа будущего
На нашей планете есть смысл применять и использовать только наиболее эффективные из термоядерных реакций - прежде всего синтез гелия из ядер лейтерия и трития. Подобные реакции в сравнительно крупных масштабах осуществимы пока только в испытательных взрывах водородных бомб. Тем не менее, постоянно ведутся все новые разработки с целью эффективного получения мирной электроэнергии. Традиционная атомная энергетика использует реакцию распада, а в термоядерной энергетике задействован синтез. При этом термоядерная реакция имеет ряд неоспоримых преимуществ перед реакцией ядерного распада.
1. При термоядерных реакциях есть возможность избежать выделения радиоактивного излучения, поскольку энергетическим продуктом в данном случае является «чистая» энергия света.
2. По количеству получаемой энергии термоядерные процессы намного обгоняют традиционные атомные реакции, которые используются в современных реакторах.
3. Чтобы поддерживать реакцию ядерного распада, необходим постоянный контроль потока нейтронов, иначе может последовать неуправляемая цепная реакция, опасная для человечества. Для получения термоядерной энергии вместо потока нейтронов используется высокая температура, поэтому подобные риски исчезают.
4. Топливо для термоядерных реакций безвредно, в отличие от продуктов распада реакторов.
Не так давно американские ученые сумели создать рабочую модель термоядерной реакции, в которой энергоотдача в сто раз превышает энергозатраты. Это является хорошей заявкой на дальнейшее успешное "приручение" термоядерной энергетики.