Разница между изометрией и аксонометрией. Учебное пособие: Проекционное черчение, аксонометрия

В изометрической проекции все коэффициенты равны между собой:

к = т = п;

3 к 2 = 2,

k = yj 2УЗ - 0,82.

Следовательно, при построении изометрической проекции размеры предмета, откладываемые по аксонометрическим осям, умножают на 0,82. Такой перерасчет размеров неудобен. Поэтому изометрическую проекцию для упрощения, как правило, выполняют без уменьшения размеров (искажения) по осям х, у, I, т.е. принимают приведенный коэффициент искажения равным единице. Получаемое при этом изображение предмета в изометрической проекции имеет несколько большие размеры, чем в действительности. Увеличение в этом случае составляет 22% (выражается числом 1,22 = 1: 0,82).

Каждый отрезок, направленный по осям х, у, z или параллельно им, сохраняет свою величину.

Расположение осей изометрической проекции показано на рис. 6.4. На рис. 6.5 и 6.6 показаны ортогональные (а) и изометрические (б) проекции точки А и отрезка Л В.

Шестигранная призма в изометрии. Построение шестигранной призмы по данному чертежу в системе ортогональных проекций (слева на рис. 6.7) приведено на рис. 6.7. На изометрической оси I откладывают высоту Н, проводят линии, параллельные осям хиу. Отмечают на линии, параллельной оси х, положение точек / и 4.

Для построения точки 2 определяют координаты этой точки на чертеже - х 2 и у 2 и, откладывая эти координаты на аксонометрическом изображении, строят точку 2. Таким же образом строят точки 3, 5 и 6.

Построенные точки верхнего основания соединяют между собой, проводят ребро из точки / до пересечения с осью х, затем -

ребра из точек 2 , 3, 6. Ребра нижнего основания проводят параллельно ребрам верхнего. Построение точки Л, расположенной на боковой грани, по координатам х А (или у А) и 1 А очевидно из

Изометрия окружности. Окружности в изометрии изображаются в виде эллипсов (рис. 6.8) с указанием величин осей эллипсов для приведенных коэффициентов искажения, равных единице.

Большая ось эллипсов расположена под углом 90° для эллипсов, лежащих В ПЛОСКОСТИ хС>1 к ОСИ у, В ПЛОСКОСТИ у01 К ОСИ X, в плоскости хОу К ОСИ?.


При построении изометрического изображения от руки (как рисунка) эллипс выполняют по восьми точкам. Например, лоточкам 1, 2, 3, 4, 5, 6, 7 и 8 (см. рис. 6.8). Точки 1, 2, 3 и 4 находят на соответствующих аксонометрических осях, а точки 5, 6, 7 и 8 строят по величинам соответствующих большой и малой осей элипса. При вычерчивании эллипсы в изометрической проекции можно заменять овалами и строить их следующим образом 1 . Построение показано на рис. 6.8 на примере эллипса, лежащего в плоскости xOz. Из точки / как из центра, делают засечку радиусом R = D на продолжении малой оси эллипса в точке О, (строят также аналогичным образом и симметричную ей точку, которая на чертеже не показана). Из точки О, как из центра проводят дугу CGC радиуса D, которая является одной из дуг, составляющих контур эллипса. Из точки О, как из центра проводят дугу радиуса O^G до пересечения с большой осью эллипса в точках О у Проводя через точки О р 0 3 прямую, находят в пересечении с дугой CGC точку К, которая определяет 0 3 К - величину радиуса замыкающей дуги овала. Точки К являются также точками сопряжения дуг, составляющих овал.

Изометрия цилиндра. Изометрическое изображение цилиндра определяется изометрическими изображениями окружностей его основания. Построение в изометрии цилиндра высотой Н по ортогональному чертежу (рис. 6.9, слева) и точки С на его боковой поверхности показано на рис. 6.9, справа.


Предложено Ю.Б. Ивановым.

Пример построения в изометрической проекции круглого фланца с четырьмя цилиндрическими отверстиями и одним треугольным приведен на рис. 6.10. При построении осей цилиндрических отверстий, а также ребер треугольного отверстия использованы их координаты, например координаты х 0 и у 0 .


Аксонометрические проекции применяются для наглядного изображения различных предметов. Предмет здесь изобра­жают так, как его видят (под определенным углом зрения). На таком изображении отраже­ны все три пространственных измерения, по­этому чтение аксонометрического чертежа обычно не вызывает затруднений.

Аксонометрический чертеж можно получить как с помощью прямоугольного проецирова­ния, так и с помощью косоугольного проеци­рования. Предмет располагают так, чтобы три основных направления его измерений (высота, ширина, длина) совпадали с осями координат и вместе с ними спроецировались бы на плос­кость. Направление проецирования не должно совпадать с направлением осей координат, т. е. ни одна из осей не будет проецироваться в точ­ку. Только в этом случае получится наглядное изображение всех трех осей.

Для получения прямоугольных аксонометри­ческих проекций оси координат наклоняют от­носительно плоскости проекций Р А так, чтобы их направление не совпадало с направлением проецирующих лучей. При косоугольном прое­цировании можно варьировать как направле­нием проецирования, так и наклоном коорди­натных осей относительно плоскости проекций. При этом координатные оси в зависимости от их угла наклона к аксонометрической плоско­сти проекций и направления проецирования будут проецироваться с разными коэффициен­тами искажения. В зависимости от этого будут получаться разные аксонометрические проек­ции, отличающиеся расположением осей коор­динат. ГОСТ 2.317-69 (СТ СЭВ 1979-79) предусматривает следующие аксонометричес­кие проекции: прямоугольная изометрическая проекция; прямоугольная диметрическая про­екция; косоугольная фронтальная изометриче­ская проекция; косоугольная горизонтальная изометрическая проекция; косоугольная фрон­тальная диметрическая проекция.

§ 26. ПРЯМОУГОЛЬНЫЕ АКСОНОМЕТРИ­ЧЕСКИЕ ПРОЕКЦИИ

Изометрическая проекция отлича­ется большой наглядностью и широко приме­няется в практике. Координатные оси при по­лучении изометрической проекции наклоняют относительно аксонометрической плоскости проекций так, чтобы они имели одинаковый угол наклона (рис. 236). В этом случае они проецируются с одинаковым коэффициентом искажения (0,82) и под одинаковым углом друг к другу (120°).

В практике коэффициент искажения по осям обычно принимают равным единице, т. е. от­кладывают действительную величину размера. Изображение получается увеличенным в 1,22 раза, но это не приводит к искажениям формы и не сказывается на наглядности, а упрощает построения.

Аксонометрические оси в изометрии прово­дят, предварительно построив углы между ося­ми х, у и z (120°) или углы наклона осей х и у к горизонтальной прямой (30°). Построение осей в изометрии с помощью циркуля показано на рис. 237, где радиус R взят произвольно. На рис. 238 показан способ построения осей х и у с использованием тангенса угла 30°. От точки О - точки пересечения аксонометриче­ских осей откладывают влево или вправо по горизонтальной прямой пять одинаковых отрез­ков произвольной длины и, проведя через последнее деление вертикальную прямую, откла­дывают на ней вверх и вниз по три таких же отрезка. Построенные точки соединяют с точ­кой О и получают оси Ох и Оу.


Откладывать (строить) размеры и произво­дить измерения в аксонометрии можно только по осям Ох, Оу и Оz или на прямых, парал­лельных этим осям.

На рис. 239 показано построение точки А в изометрии по ортогональному чертежу (рис. 239, а). Точка А расположена в плоско­сти V. Для построения достаточно построить вторичную проекцию а " точки А (рис. 239, б) на плоскости xOz по координатам Х А и Z A . Изображение точки А совпадает с ее вторичной проекцией. Вторичными проекциями точки называют изображения ее ортогональ­ных проекций в аксонометрии.

На рис. 240 показано построение точки В в изометрии. Сначала строят вторичную проек­цию точки В на плоскости хОу. Для этого от начала координат по оси Ох откладывают коор­динату Х в (рис. 240, б), получают вторичную проекцию точки b х. Из этой точки параллельно оси Оу проводят прямую и на ней откладывают координату Y B .

Построенная точка b на аксо­нометрической плоскости будет вторичной про­екцией точки В. Проведя из точки b прямую, параллельную оси Oz, откладывают координа­ту Z B и получают точку В, т. е. аксонометри­ческое изображение точки В. Аксонометрию точки В можно построить и от вторичных про­екций на плоскости zОх или zОу.

Прямоугольная диметрическая проекция. Координатные оси располагают так, чтобы две оси Ох и Оz имели одинаковый угол наклона и проецировались с одинаковым коэффициентом искажения (0,94), а третья ось Оу была бы наклонена так, чтобы коэффициент искажения при проецировании был в два раза меньше (0,47). Обычно коэффициент искажения по осям Ох и Oz принимают рав­ным единице, а по оси Оу - 0,5. Изображение получается увеличенным в 1,06 раза, но это так же, как и в изометрии, не сказывается на наглядности изображения, а упрощает постро­ение. Расположение осей в прямоугольной диметрии показано на рис. 241. Строят их, от­кладывая углы 7° 10" и 41°25" от горизонталь­ной линии по транспортиру, или откладывая одинаковые отрезки произвольной длины, как показано на рис. 241. Полученные точки сое­динить с точкой О . При построении прямо­угольной диметрии необходимо помнить, что действительные размеры откладывают только на осях Ох и Oz или на параллельных им линиях. Размеры по оси Оу и параллельно ей откладывают с коэффициентом искажения 0,5.

§ 27. КОСОУГОЛЬНЫЕ АКСОНОМЕТРИ­ЧЕСКИЕ ПРОЕКЦИИ

Фронтальная изометрическая проекция. Расположение аксонометриче­ских осей показано на рис. 242. Угол наклона оси Оу к горизонтали обычно равен 45°, но может иметь значение 30 или 60°.

Горизонтальная изометрическая проекция. Расположение аксонометричес­ких осей показано на рис. 243. Угол наклона оси Оу к горизонтали обычно равен 30°, но может иметь значение 45 или 60°. При этом угол 90° между осями Ох и Оу должен сохра­няться.

Фронтальную и горизонтальную косоуголь­ные изометрические проекции строят без иска­жения по осям Ох, Оу и Oz.

Фронтальная диметрическая про­екция. Расположение осей показано на рис. 244. Рис. 245 иллюстрирует проецирова­ние осей координат на аксонометрическую плоскость проекций. Плоскость xOz параллель­на плоскости Р. Допускается ось Оу прово­дить под углом 30 или 60° к горизонтали, коэффициент искажения по оси Ох и Oz при­нят равным 1, а по оси Оу - 0,5.

ПОСТРОЕНИЕ ПЛОСКИХ ГЕОМЕТ­РИЧЕСКИХ ФИГУР В АКСОНОМЕТРИИ

Основанием ряда геометрических тел явля­ется плоская геометрическая фигура: много­угольник или окружность. Чтобы построить геометрическое тело в аксонометрии, надо уметь строить прежде всего его основание, т. е. плоскую геометрическую фигуру. Для примера рассмотрим построение плоских фигур в пря­моугольной изометрической и диметрической проекции. Построение многоугольников в аксо­нометрии можно выполнять методом коорди­нат, когда каждую вершину многоугольника строят в аксонометрии как отдельную точку (построение точки методом координат рассмотрено в § 26), затем построенные точки соеди­няют отрезками прямых линий и получают ло­маную замкнутую линию в виде многоугольни­ка. Эту задачу можно решить иначе. В пра­вильном многоугольнике построение начинают с оси симметрии, а в неправильном много­угольнике проводят дополнительную прямую, которая называется базой, параллельно одной из осей координат на ортогональном чертеже.

Определите осей. Для этого начертите из точки О окружность произвольного радиуса. Центральный угол ее равен 360?. Разделите окружность на 3 равные , использовав в качестве базового радиуса ось ОZ. При этом угол каждого сектора будет равен 120?. Два радиуса как раз и представляют собой нужные вам оси ОX и OY.

Определите положение . Разделите углы между осями пополам. Соедините точку О с этими новыми точками тонкими линиями. Положение центра окружности зависит от условий . Отметьте его точкой и проведите к ней в обе стороны перпендикуляр. Эта линия определит положение большого диаметра.

Вычислите размеры диаметров. Они зависят от того, применяете вы коэффициент искажения или нет. В этот коэффициент по всем осям составляет 0,82, но довольно часто его округляют и принимают за 1. С учетом искажения большой и малый диаметры эллипса составляют соответственно 1 и 0,58 от исходного. Без применения коэффициента эти размеры составляют 1, 22 и 0, 71 диаметра первоначальной окружности.

Видео по теме

Обратите внимание

Для создания объемного изображения можно построить не только изометрическую, но и диметрическую проекцию, а также фронтальную или линейную перспективу. Проекции используются при построении чертежей деталей, а перспективы - в основном в архитектуре. Окружность в диметрии тоже изображается как эллипс, но там другое расположение осей и другие коэффициенты искажения. При выполнении различных видов перспектив учитываются изменения размеров при удалении от наблюдателя.

Для тoгo чтобы получить аксонометрическую проекцию пред­мета (рис. 106), необходимо мысленно: поместить предмет в сис­тему координат; выбрать аксонометрическую плоскость проекций и расположить предмет перед ней; выбрать направление парал­лельных проецирующих лучей, которое не должно совпадать ни с одной из аксонометрических осей; направить проецирующие лучи через все точки предмета и координатные оси до пересечения с аксонометрической плоскостью проекций, получив тем самым изображение проецируемого предмета и координатных осей.

На аксонометрической плоскости проекций получают изобра­жение - аксонометрическую проекцию предмета, а также про­екции осей систем координат, которые называют аксонометриче­скими осями.

Аксонометрической проекцией называется изображение, по­лученное на аксонометрической плоскости в результате парал­лельного проецирования предмета вместе с системой координат, которое наглядно отображает его форму.

Система координат состоит из трех взаимно пересекающихся плоскостей, которые имеют фиксированную точку - начало координат (точку О) и три оси (X, У, Z), исходящие из нее и расположенные под прямым углом друг к другу. Сис­тема координат позволяет производить измерения по осям, определяя положение предметов в пространстве.

Рис. 106. Получение аксонометрической (прямоугольной изометрической) проекции

Можно получить множество аксонометрических проекций, по- разному располагая предмет перед плоскостью и выбирая при этом различное направление проецирующих лучей (рис. 107).

Наиболее употребляемой является так называемая прямо­угольная изометрическая проекция (в дальнейшем будем использовать ее сокращенное название - изометрическая проек­ция). Изометрической проекцией (см. рис. 107, а) называется та­кая проекция, у которой коэффициенты искажения по всем трем осям равны, а углы между аксонометрическими осями составляют 120°. Изометрическая проекция получается с помощью па­раллельного проецирования.


Рис. 107. Аксонометрические проекции, установленные ГОСТ 2.317-69:
а - прямоугольная изометрическая проекция; б - прямоугольная диметрическая проекция;
в - косоугольная фронтальная изометриче­ская проекция;
г - косоугольная фронтальная диметрическая проекция



Рис. 107. Продолжение: д - косоугольная горизонтальная изометриче­ская проекция

При этом проецирующие лучи пер­пендикулярны аксонометрической плоскости проекций, а коор­динатные оси одинаково наклонены к аксонометрической плоско­сти проекций (cм. рис. 106). Если сравнить линейные размеры предмета и соответствующие им размеры аксонометрического изображения, то можно увидеть, что на изображении эти размеры меньше, чем действительные. Величины, показывающие отноше­ние размеров проекций отрезков прямых к действительным их размерам, называют коэффициентами искажения. Коэффициен­ты искажения (К) по осям изометрической проекции одинаковы и равны 0,82, однако для удобства построения используют так называемые практические коэффициенты искажения, которые равны единице (рис. 108).


Рис. 108. Положение осей и коэффициенты искажения изометрической проекции

Существуют изометрические, диметрические и триметрические проекции. К изометрическим проекциям относятся такие проекции, которые имеют одинаковые коэффициенты искажения по всем трем осям. Диметрическими проекциями называются такие проекции, у которых два коэффициента искажения по осям одинаковые, а величина третьего отличается от них. К триметрическим проекциям относятся проекции, у которых все коэффици­енты искажения различны.

Для трёхмерных объектов и панорам.

Ограничения аксонометрической проекции

Изометрическая проекция в компьютерных играх и пиксельной графике

Рисунок телевизора в почти-изометрической пиксельной графике. У пиксельного узора видна пропорция 2:1

Примечания

  1. По ГОСТ 2 .317-69 - Единая система конструкторской документации. Аксонометрические проекции.
  2. Здесь горизонтальной называется плоскость, перпендикулярная оси Z (которая является прообразом оси Z").
  3. Ingrid Carlbom, Joseph Paciorek. Planar Geometric Projections and Viewing Transformations // ACM Computing Surveys (CSUR) : журнал. - ACM , декабрь 1978. - Т. 10. - № 4. - С. 465-502. - ISSN 0360-0300 . - DOI :10.1145/356744.356750
  4. Jeff Green. GameSpot Preview: Arcanum (англ.) . GameSpot (29 февраля 2000).(недоступная ссылка - история ) Проверено 29 сентября 2008.
  5. Steve Butts. SimCity 4: Rush Hour Preview (англ.) . IGN (9 сентября 2003). Архивировано
  6. GDC 2004: The History of Zelda (англ.) . IGN (25 марта 2004). Архивировано из первоисточника 19 февраля 2012. Проверено 29 сентября 2008.
  7. Dave Greely, Ben Sawyer.