Практическая работа по астрономии «Заполнение диаграммы Герцшпрунга-Рассела
педагогические науки
- Кульков Алексей Владимирович , магистр, студент
- Смоленский государственный университет, г. Смоленск
- ФИЗИКА
- ЗВЁЗДЫ
- ПРАКТИЧЕСКАЯ РАБОТА
- АСТРОНОМИЯ
- ДИАГРАММА ГЕРЦШПРУНГА-РАССЕЛА
- КОМПЬЮТЕР
В работе представлена практическая работа по астрономии «Заполнение диаграммы Герцшпрунга- Рассела», выполнение которой основывается на применении компьютерной программы Stellarium – виртуального планетария и использовании навыков поиска информации в сети Интернет. При выполнении работы учащиеся знакомятся с физическими характеристиками различных звёзд, у них формируется представление о типах звезд и их различиях.
- Необходимость и способы преподавания астрономического материала в школьном курсе физики
- Сравнение языков программирования на примере сортировки массива
- Исследовательский индивидуальный итоговый проект учащихся по физике
- Основные трудности понимания речи на слух, их преодоление
В рамках курса физики в 11 классе на изучение раздела «Астрономия» отводится малое количество времени. Например, для базового уровня выделяется всего около 3-4 часов, а для профильного - 6-8 часов [ывф]. Данного времени недостаточно для полного объяснения астрономического материала школьникам и его усвоения ими. Побудить учащихся к самостоятельному изучению предмета (или, по крайней мере, знакомству с ним) можно путём привития интереса к астрономии. Наибольшей интерес позволит вызвать изучение астрономии за компьютером, то есть использование компьютерных программ, виртуальных лабораторий, интерактивных моделей и так далее. Астрономия - это такая наука, которая отличается недоступностью явлений и процессов чувственному восприятию, абстрактностью понятий, интегрированием знаний из разных областей. Большинство космических и вселенских объектов, их движение и строение невозможно увидеть «вживую», в этом случае на помощь и приходят компьютерные средства. Среди таких объектов можно выделить звёзды.
Далее представлена практическая работа по астрономии «Заполнение диаграммы Герцшпрунга- Рассела», выполнение которой основывается на применении компьютерной программы Stellarium - виртуального планетария и использовании навыков поиска информации в сети Интернет. При выполнении работы учащиеся знакомятся с физическими характеристиками различных звёзд, у них формируется представление о типах звезд и их различиях.
Практическая работа «Заполнение диаграммы Герцшпрунга- Рассела»
Цели работы:
- Закрепить теоретический материал по теме «Характеристики звёзд».
- Получить практические навыки в работе с программой Stellarium и поиска информации в Интернете.
- Заполнить диаграмму Герцшпрунга - Рассела.
Ход работы
Задание 1. Запишите этапы эволюции звезд (жизненный путь звезды).
Облако межзвёздного газа ?
Задание 2. Заполните диаграмму Герцшпрунга - Рассела (рисунок 1).
Рисунок 1. Диаграмма Герцшпрунга - Рассела
Порядок действий для заполнения диаграммы:
- Для заполнения диаграммы понадобятся следующие данные о звёздах: спектральный класс, светимость (в светимостях Солнца) и температура звезды. Для определения этих данных используются программа «Stellarium» (виртуальный планетарий) и web-сайт «Википедия - свободная энциклопедия».
- Откройте программу Stellarium. Настройте интерфейс программы Stellarium в панели настроек (панель настроек имеет вид, представленный на рисунке 2)
Сделайте активными следующие иконки: «Название созвездий», «Линия созвездий». Сделайте не активными следующие иконки: «Земля», «Атмосфера». В результате вы получите вид звёздного неба с названиями созвездий и их очертаниями. На рисунке 3 представлено созвездие «Большая Медведица».

- Для заполнения таблицы необходимо выбрать 1 созвездие, содержащее в себе не менее 4 звезд.
- Нажмите на звезду в созвездии. В результате в верхнем левом углу экрана появится информация о звезде (рисунок 4).

- Из полученной инфомации для заполнения диаграммы понадобятся следующие данные: спектральный класс и абсолютная звездная величина.
- По значению абсолютной звёздной величины найдите значение светимость звезды в светимостях Солнца по формуле:
,
где - светимость звезды в светимостях Солнца (L 0 - светимость Солнца), M 0 - абсолютная звёздная величина Солнца, равная +4,83, M - абсолютная звёздная величина звезды.
- Перейдите по ссылке https://ru.wikipedia.org для входа на сайт «Википедия - свободная энциклопедия». В окне поиска введите название выбранной звезды и нажмите на поиск. Появится страница с данными о выбранной звезде. В разделе «Физические характеристики» найдите информация о температуре звезды, её спектральном классе и светимости (рисунок 5).

Сравните полученное значение светимости в светимостях Солнца виличиное по формуле и представленное на сайте Википедии.
- Таким образом, имеются все необходимые данные для заполнения диаграммы Герцшпрунга - Рассела: спектральный класс, светимость (в единицах светимости Солнца) и температура звезды. Расположите выбранную звезду на диаграмму по полученным данным.
- Выполните пункты d-h для всех звёзд выбранного созвездия.
- Сделайте вывод о видах звёзд, входящих в выбранное вами созвездие.
Примечание: для скачивания программы Stellarium необходимо перейти по ссылке http://www.stellarium.org/ru/ или воспользоваться QR кодом, представленным на рисунке 6.

Проведение данной практической работы можно предложить учащимся как в качестве домашнего задания, так и во время аудиторной работы. При проведении работы в классе целесообразно разделить класс на группы, каждой из которых будет предложено своё созвездие. При коллективно-групповой работе можно распечатать диаграмму Герцшпрунга - Рассела на большом формате и повесить её на доску и её заполнения будет происходить коллективно при выполнении задания каждой группой.
В ходе выполнения практической работы «Заполнение диаграммы Герцшпрунга- Рассела» у учащихся не только формируются представления об основных понятиях астрономии, но и развиваются навыки работы в группах, исследовательские способности и навыки поиска информации, её обработки и представления в доступной форме.
Существует связь между характеристиками звезд. Она была обнаружена еще свыше 80 лет назад – в 1914 году.
Диаграмма Герцшпрунга-Рассела
Будем изображать звезды точками на диаграмме Герцшпрунга-Рассела, где по оси абсцисс отложены спектральные классы (или соответствующие им показатели цвета), а по оси ординат – абсолютные величины, являющиеся мерой светимости соответствующих звезд (рис.1). Из рис.1 видно, что звезды лежат на этой диаграмме не беспорядочно, а образуют явно выраженные последовательности. Большинство звезд находится в пределах сравнительно узкой полосы, идущей от левого верхнего угла диаграммы к правому нижнему. Это так называемая «главная последовательность» звезд. В верхнем правом углу группируются звезды в виде довольно беспорядочной кучи. Их спектральные классы – G, К и М, а абсолютные величины находятся в пределах (+2)-(-6). Они называются «красными гигантами», хотя среди них есть и желтые звезды. Наконец, в нижней левой части диаграммы мы видим небольшое количество звезд. Их абсолютные величины слабее +10, а спектральные классы лежат в пределах от В до F. Следовательно, это очень горячие звезды с низкой светимостью. Но низкая светимость при высокой поверхностной температуре может быть, очевидно, только тогда, когда радиусы звезд достаточно малы. Таким образом, в этой части диаграммы «спектр – светимость» находятся очень маленькие горячие звезды. Такие звезды называются «белыми карликами».
Количество точек на диаграмме «спектр – светимость», приведенной на рис.1, не дает правильного представления об относительном количестве звезд различных классов в Галактике. Так, например, звезд-гигантов с высокой светимостью на этой диаграмме непропорционально много по сравнению с «карликами» низкой светимости. Это объясняется условиями наблюдений: благодаря высокой светимости гиганты видны с очень больших расстояний, между тем как значительно более многочисленные карлики на таких расстояниях очень трудно наблюдать (если говорить о спектральных наблюдениях).
Диаграмма Герцшпрунга-Рассела для близких звезд
Некоторое представление об относительном количестве звезд разных последовательностей можно получить, если откладывать на диаграмме «спектр – светимость» все без исключения звезды, находящиеся от Солнца на расстоянии, не превышающем 5 пс (16,3 светового года). Такая диаграмма приведена на рис.2. Обращает на себя внимание отсутствие хотя бы одного гиганта. Зато нижняя правая часть главной последовательности очень отчетливо выражена. Мы видим, что в этом сферическом объеме радиусом 5 пс (довольно типичном для Галактики) подавляющее большинство звезд слабее и холоднее Солнца. Это так называемые «красные карлики», лежащие на нижней правой части главной последовательности. На этой же диаграмме нанесено наше Солнце. Только три звезды (из примерно 50, находящиеся в этом объеме) излучают сильнее Солнца. Это Сириус – самая яркая из звезд, видимых на небе, Альтаир и Процион. Зато на рис.2 мы видим пять белых карликов. Из того простого факта, что в малом объеме радиусом 5 пс наблюдается столь заметное число белых карликов, следует, что число их во всей Галактике очень велико. Подсчеты показывают, что число белых карликов в нашей звездной системе по крайней мере равно нескольким миллиардам, а может быть, даже больше 10 млрд. (напомним, что полное количество звезд всех типов во всей Галактике около 50 млрд.). Число белых карликов в десятки тысяч раз больше, чем гигантов высокой светимости, столь обильно представленных на диаграмме, изображенной на рис.1. Этот пример убедительно показывает, какую заметную роль в астрономии (так же как и в других науках о природе) играет наблюдательная селекция.
На диаграмме «спектр – светимость» (или «цвет – светимость»), кроме отмеченных главной последовательности и группировок красных гигантов и белых карликов, существуют и некоторые другие последовательности. Уже на рис.1 намечается последовательность звезд, расположенная несколько ниже главной. Это так называемые «субкарлики». Хотя в окрестностях Солнца эти звезды сравнительно малочисленны, в центральных областях Галактики, а также в шаровых скоплениях количество их огромно. Субкарлики довольно слабо концентрируются к галактической плоскости, но зато очень сильно – к центру нашей звездной системы. По-видимому, они – самый многочисленный тип звезд в Галактике. Субкарлики отличаются от звезд главной последовательности сравнительно низким содержанием тяжелых элементов. Разница в химическом составе является причиной различия в светимостях при одинаковой температуре поверхностных слоев.
То, что диаграмма «спектр – светимость» теснейшим образом связана с проблемой эволюции звезд, интуитивно чувствовалось астрономами сразу же после открытия этой диаграммы. Сначала считалось, что звезды в основном эволюционируют вдоль главной последовательности. По этим наивным представлениям первоначально образовавшаяся звезда представляет собой красный гигант, ксторый, сжимаясь, увеличивает температуру, пока не превратится в «голубой гигант», находящийся в верхнем левом углу диаграммы «спектр – светимость». Эволюционируя вдоль главной последовательности, она становится «холоднее» и излучает меньше. Отголоском этих представлений является существующая и поныне у астрономов терминология: спектральные классы О, В, А и частично F называются «ранними», a G, К, М – «поздними». Если идти вдоль главной последовательности от спектральных классов О-В до К-M, то массы звезд непрерывно уменьшаются. Например, у звезд класса О массы достигают нескольких десятков солнечной, у звезд В – около 10.
Солнце имеет спектральный класс G2 (см. рис.2). У звезд более поздних классов, чем Солнце, массы меньше солнечной. У карликов спектрального класса М массы примерно в 10 раз меньше, чем у Солнца. Так как вдоль главной последовательности и масса и светимость непрерывно меняются, между ними существует эмпирическое соотношение. На рис.3 приведена зависимость между массой и светимостью для звезд главной последовательности.
Диаграмма «масса-светимость» для звезд главной последовательности
Если считать, что звезды каким-то образом эволюционируют вдоль главной последовательности, то необходимо сделать вывод, что они непрерывно теряют значительную часть своей первоначальной массы. Такие представления сталкиваются с непреодолимыми трудностями. Хотя делались попытки построить теорию эволюции звезд вдоль главной последовательности на основе представлений о непрерывной потере ими массы, они оказались совершенно неудачными. Правильная теория звездной эволюции, основанная на современных представлениях об источниках звездной энергии и на богатом наблюдательном материале, была развита в пятидесятых годах.
Диаграмма Герцшпрунга-Рассела
Звезды, если их нанести на диаграмму в соответствии с физическими характеристиками, разделяются на четко выраженные группы, соответствующие разным стадиям их эволюции.
Звезды бывают множества типов. Есть звезды, диаметр которых в 30 раз превышает диаметр Солнца, и есть звезды размером всего лишь с большой земной город. Есть звезды настолько горячие, что основной цвет в спектре их излучения - фиолетовый, и есть звезды настолько «холодные», что даже темно-красный свет в их спектре выражен крайне тускло. В XIX веке в астрономии произошел перелом - ученые стали сходить с накатанного пути классической астрономии («Где это, и как и куда оно движется?») и переходить на рельсы астрофизики («Что это, и как оно устроено?»). Одной из первоочередных задач на этом пути стала задача хотя бы внешнего упорядочивания классификации наблюдаемых во Вселенной звезд. Это и привело к независимому созданию двумя астрофизиками диаграммы, которую сегодня принято в их честь называть диаграммой Герцшпрунга-Рассела (или, сокращенно, «диаграммы ГР»).
Диаграмма ГР - как это нередко бывает в науке - была практически одновременно разработана двумя учеными, совершенно самостоятельно работавшими на двух разных континентах. Генри Норрис Рассел- один из крупнейших американских астрономов начала XX века - долгие годы интересовался проблемой описания жизненного цикла звезд и, судя по всему, пришел к основной идее диаграммы еще в 1909 году, однако работа с ее представлением была опубликована лишь в 1913 году. Датчанин Эйнар Герцшпрунг пришел к тем же выводам, что и Рассел, несколькими годами раньше своего американского коллеги, однако опубликованы они были (в 1905-м и 1907 годах) в узкоспециализированном «Журнале научной фотографии» (Zeitschrift f?r Wissenschaeftliche Photographie), издающемся к тому же на немецком языке, и публикация эта поначалу попросту осталась незамеченной астрономами. Поэтому вплоть до середины 1930-х годов эту диаграмму принято было называть просто «диаграммой Рассела», пока не был обнаружен случившийся казус, после чего датчанину было воздано должное, и теперь диаграмма носит имена обоих ученых.
Диаграмма ГР представляет собой график, на котором по вертикальной оси отсчитывается светимость (интенсивность светового излучения) звезд, а по горизонтальной - наблюдаемая температура их поверхностей. Оба этих количественных показателя поддаются экспериментальному измерению при условии, что известно расстояние от Земли до соответствующей звезды. Чисто исторически сложилось так, что по горизонтальной оси х температуру поверхности звезд откладывают в обратном порядке: то есть, чем жарче звезда, тем левее она находится; это чистая условность, и я не вижу смысла в том, чтобы ее обсуждать и оспаривать. Смысл же всей диаграммы ГР заключается в том, чтобы нанести на нее как можно больше экспериментально наблюдаемых звезд (каждая из которых представлена соответствующей точкой) и по их расположению определить некие закономерности их распределения по соотношению спектра и светимости.
Выясняется, что это распределение носит отнюдь не случайный характер: по соотношению спектра со светимостью звезды делятся на три достаточно строгие категории или, как принято их называть в астрофизике, «последовательности». Из верхнего левого угла в правый нижний тянется так называемая главная последовательность. К ней относится, в частности, и наше Солнце. В верхней части главной последовательности расположены самые яркие и горячие звезды, а справа внизу - самые тусклые и, как следствие, долгоживущие.
Отдельно - правее и выше - расположена группа звезд с очень высокой светимостью, не пропорциональной их температуре, которая относительно низка - это так называемые красные звезды-гиганты и сверхгиганты. Эти огромные звезды, условно говоря, светят, но не греют. Ниже и левее главной последовательности расположены карлики - группа относительно мелких и холодных звезд. Еще раз отметим, что подавляющее большинство звезд относится к главной последовательности, и энергия в них образуется путем термоядерного синтеза гелия из водорода (см. Эволюция звезд).
На самом деле, три этих последовательности на диаграмме ГР строго соответствуют трем этапам жизненного цикла звезд. Красные гиганты и сверхгиганты в правом верхнем углу - это доживающие свой век звезды с до предела раздувшейся внешней оболочкой (через 6,5 млрд. лет такая участь постигнет и наше Солнце - его внешняя оболочка выйдет за пределы орбиты Венеры). Они излучают в пространство примерно то же количество энергии, что и звезды основного ряда, но, поскольку площадь поверхности, через которую излучается эта энергия, превосходит площадь поверхности молодой звезды на несколько порядков, сама поверхность гиганта остается относительно холодной.
Наконец, обратимся к левому нижнему углу диаграммы ГР: здесь мы видим так называемых белых карликов (см. Предел Чандрасекара). Это очень горячие звезды - но очень мелкие, размером, обычно, не больше нашей Земли. Поэтому, излучая в космос относительно немного энергии, они, по причине весьма незначительной (на фоне других звезд) площади их поверхностной оболочки, светятся в достаточно ярком спектре, поскольку она оказывается достаточно высокотемпературной.
Вообще, по диаграмме Герцшпрунца-Рассела можно проследить весь жизненный путь звезды. Сначала звезда главной последовательности (подобная Солнцу) конденсируется из газо-пылевого облака (см. Гипотеза образования звезд из туманностей) и уплотняется до создания давлений и температур, необходимых для разжигания первичной реакции термоядерного синтеза, и, соответственно появляется где-то в основной последовательности диаграммы ГР. Пока звезда горит (запасы водорода не исчерпаны), она так и остается (как сейчас Солнце) на своем месте в основной последовательности, практически не смещаясь. После того, как запасы водорода исчерпаны, звезда сначала перегревается и раздувается до размеров красного гиганта или сверхгиганта, отправляясь в правый верхний угол диаграммы, а затем остывает и сжимается до размеров белого карлика, оказываясь слева внизу.
Генри Норрис РАССЕЛ
Henry Norris Russell, 1877–1957
Американский астрофизик. Родился в Ойстер-Бэй (штат Нью-Йорк) в семье пресвитерианского священника. Учился в Принстонском университете, где сменил своего учителя К. Юнга на должностях профессора астрономии и директора местной обсерватории, которые занимал вплоть до 1947 года. Долгое время Рассел занимался исследованием связи между спектрами звезд и их светимостью с целью разобраться в том, как эволюционируют светила. В 1913 году - независимо от Герцшпрунга - построил диаграмму, связывающую спектральные характеристики и светимость звезд (которая теперь и называется диаграммой Герцшпрунга - Рассела) по результатам изучения снимков, полученных им на фотопластинках в обсерватории Принстонского университета. Увы, ученый вывел из полученной диаграммы ложное заключение о том, что звезды появляются на свет в виде красных гигантов и со временем вырождаются в белых карликов.
Эйнар ГЕРЦШПРУНГ
Ejnar Hertzsprung, 1873–1967
Датский астроном. Родился в местечке Фредериксборг близ Копенгагена. Учился в Копенгагенском политехническом институте, получил специальность инженера-химика. По окончании института (1898) в течение трех лет работал в Петербурге. Вернувшись на родину, начал изучать астрономию, одновременно проводил фотографические наблюдения в обсерватории Копенгагенского университета и небольшой обсерватории «Урания». Его исследования произвели впечатление на директора Потсдамской обсерватории К. Шварцшильда, который пригласил Герцшпрунга сначала в Гёттингенский университет, а затем в Потсдамскую обсерваторию (1909). С 1919 года Герцшпрунг работал в Лейденской обсерватории, в 1935 году стал ее директором. Выйдя в отставку, возвратился в Данию и продолжил исследования в обсерватории в Брорфельде. Образование фотохимика позволило ученому разработать уникальную для тех лет технологию расчета светимости звезд по их фотоизображениям. Сопоставив полученные результаты с данными о спектрах исследуемых звезд, Герцшпрунг и пришел к своей классификации звезд, согласно которой они подразделяются на гигантов, карликов и основной ряд.
Список литературы
Для подготовки данной применялись материалы сети Интернет из общего доступа
Оригинал взят у taurus_ek в Диаграмма Герцшпрунга-Рассела (лабораторная работа)
Сто лет назад два астронома, Герцшпрунг и Рассел, независимо друг от друга предложили способ визуализации физических параметров звезд. Они отмечали положение каждой звезды на координатной плоскости по двум координатам: по спектральному классу на горизонтальной оси и по светимости на вертикальной. То есть так, что горячие голубые звезды расположены на диаграмме слева, холодные красные - справа; яркие - наверху, тусклые - внизу.
На такой диаграмме легко увидеть глазами связь двух характеристик - яркости и температуры звезд - и понять статистику звездного населения по этим параметрам.
Если бы все звезды были похожи на Солнце, то они попали бы в одну компактную область в центре диаграммы. Если бы звезды имели, скажем, одну температуру и, соответственно, один цвет, но разную яркость, то диаграмма представляла бы собой вертикальную полосу. Если бы звезды были все разные, и корреляции между светимостью и температурой не было бы, то диаграмма Герцшпрунга-Рассела оказалась равномерно засеяна точками, как старая фотография в деревенском доме засижена мухами. И так далее.
Оказалось, однако, что структура такой диаграммы довольно сложная.
Звезды формируют на диаграмме выраженные заполненные области, а в других частях диаграммы их совсем нет. Изучение структуры позволило выявить "ветви", которые формируются звездами разных классов светимости. Полоса, начинающаяся в левом верхнем углу среди ярких горячих звезд и спускающаяся вниз к слабым оранжевым и затем красным - так называемая "главная последовательность
", включающая основную массу, 90% всех звезд; справа от нее - большая группа гигантов
, над ней - сверхгиганты
. Сейчас астрономы выделяют восемь классов светимости от 0 - гипергигантов до VII - белых карликов, да еще добавляют подклассы.
Позже выяснилось, что на диаграмме Герцшпрунга-Рассела можно обнаружить множество закономерностей и особенностей: астрометрических, астрофизических, эволюционных, - провести кривые масс, эволюционные треки и т.п. В общем, это оказался очень мощный инструмент в астрономии.
Я давно хотел убедиться собственными руками , что диаграмма Герцшпрунга-Рассела действительно строится и действительно выглядит так, как рисуют в учебниках. С онлайнизацией Каталога ярких звезд сделать это оказалось достаточно просто, чем я с удовольствием занялся на досуге, и лично убедился: да, диаграмма Герцшпрунга-Рассела - не фейк! :) В конце поста именно она.
Почему я назвал её "лабораторной работой"?
Я строил диаграмму на Каталоге ярких звезд, а значит, тусклых звезд на диаграмме нет. А ведь слабых звезд гораздо больше, чем ярких! Реальная диаграмма Г-Р продолжается вниз, в сторону слабых звезд еще на такой же диапазон яркости, главная последовательность в области слабых красных звезд становится все гуще. На моей диаграмме нет целых классов звезд, например, белых карликов.
Так что приведенная картинка - даже не иллюстрация к астрономическому термину "диаграмма Герцшпрунга-Рассела" и тем более не инструмент для анализа, а типичная лабораторная работа .
Звезды, если их нанести на диаграмму в соответствии с физическими характеристиками, разделяются на четко выраженные группы, соответствующие разным стадиям их эволюции.
Звезды бывают множества типов. Есть звезды, диаметр которых в 30 раз превышает диаметр Солнца, и есть звезды размером всего лишь с большой земной город. Есть звезды настолько горячие, что основной цвет в спектре их излучения — фиолетовый, и есть звезды настолько «холодные», что даже темно-красный свет в их спектре выражен крайне тускло. В XIX веке в астрономии произошел перелом — ученые стали сходить с накатанного пути классической астрономии («Где это , и как и куда оно движется?») и переходить на рельсы астрофизики («Что это , и как оно устроено?»). Одной из первоочередных задач на этом пути стала задача хотя бы внешнего упорядочивания классификации наблюдаемых во Вселенной звезд. Это и привело к независимому созданию двумя астрофизиками диаграммы, которую сегодня принято в их честь называть диаграммой Герцшпрунга—Рассела (или, сокращенно, «диаграммы ГР»).
Диаграмма ГР — как это нередко бывает в науке — была практически одновременно разработана двумя учеными, совершенно самостоятельно работавшими на двух разных континентах. Генри Норрис Рассел — один из крупнейших американских астрономов начала XX века — долгие годы интересовался проблемой описания жизненного цикла звезд и, судя по всему, пришел к основной идее диаграммы еще в 1909 году, однако работа с ее представлением была опубликована лишь в 1913 году. Датчанин Эйнар Герцшпрунг пришел к тем же выводам, что и Рассел, несколькими годами раньше своего американского коллеги, однако опубликованы они были (в 1905-м и 1907 годах) в узкоспециализированном «Журнале научной фотографии» (Zeitschrift f?r Wissenschaeftliche Photographie) , издающемся к тому же на немецком языке, и публикация эта поначалу попросту осталась незамеченной астрономами. Поэтому вплоть до середины 1930-х годов эту диаграмму принято было называть просто «диаграммой Рассела», пока не был обнаружен случившийся казус, после чего датчанину было воздано должное, и теперь диаграмма носит имена обоих ученых.
Диаграмма ГР представляет собой график, на котором по вертикальной оси отсчитывается светимость (интенсивность светового излучения) звезд, а по горизонтальной — наблюдаемая температура их поверхностей. Оба этих количественных показателя поддаются экспериментальному измерению при условии, что известно расстояние от Земли до соответствующей звезды. Чисто исторически сложилось так, что по горизонтальной оси х температуру поверхности звезд откладывают в обратном порядке: то есть, чем жарче звезда, тем левее она находится; это чистая условность, и я не вижу смысла в том, чтобы ее обсуждать и оспаривать. Смысл же всей диаграммы ГР заключается в том, чтобы нанести на нее как можно больше экспериментально наблюдаемых звезд (каждая из которых представлена соответствующей точкой) и по их расположению определить некие закономерности их распределения по соотношению спектра и светимости.
Выясняется, что это распределение носит отнюдь не случайный характер: по соотношению спектра со светимостью звезды делятся на три достаточно строгие категории или, как принято их называть в астрофизике, «последовательности». Из верхнего левого угла в правый нижний тянется так называемая главная последовательность. К ней относится, в частности, и наше Солнце. В верхней части главной последовательности расположены самые яркие и горячие звезды, а справа внизу — самые тусклые и, как следствие, долгоживущие.
Отдельно — правее и выше — расположена группа звезд с очень высокой светимостью, не пропорциональной их температуре, которая относительно низка — это так называемые красные звезды-гиганты и сверхгиганты. Эти огромные звезды, условно говоря, светят, но не греют. Ниже и левее главной последовательности расположены карлики — группа относительно мелких и холодных звезд. Еще раз отметим, что подавляющее большинство звезд относится к главной последовательности, и энергия в них образуется путем термоядерного синтеза гелия из водорода (см. Эволюция звезд).
На самом деле, три этих последовательности на диаграмме ГР строго соответствуют трем этапам жизненного цикла звезд. Красные гиганты и сверхгиганты в правом верхнем углу — это доживающие свой век звезды с до предела раздувшейся внешней оболочкой (через 6,5 млрд. лет такая участь постигнет и наше Солнце — его внешняя оболочка выйдет за пределы орбиты Венеры). Они излучают в пространство примерно то же количество энергии, что и звезды основного ряда, но, поскольку площадь поверхности, через которую излучается эта энергия, превосходит площадь поверхности молодой звезды на несколько порядков, сама поверхность гиганта остается относительно холодной.
Наконец, обратимся к левому нижнему углу диаграммы ГР: здесь мы видим так называемых белых карликов (см. Предел Чандрасекара). Это очень горячие звезды — но очень мелкие, размером, обычно, не больше нашей Земли. Поэтому, излучая в космос относительно немного энергии, они, по причине весьма незначительной (на фоне других звезд) площади их поверхностной оболочки, светятся в достаточно ярком спектре, поскольку она оказывается достаточно высокотемпературной.
Вообще, по диаграмме Герцшпрунца—Рассела можно проследить весь жизненный путь звезды. Сначала звезда главной последовательности (подобная Солнцу) конденсируется из газо-пылевого облака (см. Гипотеза газопылевого облака) и уплотняется до создания давлений и температур, необходимых для разжигания первичной реакции термоядерного синтеза, и, соответственно появляется где-то в основной последовательности диаграммы ГР. Пока звезда горит (запасы водорода не исчерпаны), она так и остается (как сейчас Солнце) на своем месте в основной последовательности, практически не смещаясь. После того, как запасы водорода исчерпаны, звезда сначала перегревается и раздувается до размеров красного гиганта или сверхгиганта, отправляясь в правый верхний угол диаграммы, а затем остывает и сжимается до размеров белого карлика, оказываясь слева внизу.
Генри Норрис РАССЕЛ (РЕССЕЛ)
Henry Norris Russell, 1877-1957
Американский астрофизик. Родился в Ойстер-Бэй (штат Нью-Йорк) в семье пресвитерианского священника. Учился в Принстонском университете, где сменил своего учителя К. Юнга на должностях профессора астрономии и директора местной обсерватории, которые занимал вплоть до 1947 года. Долгое время Рассел занимался исследованием связи между спектрами звезд и их светимостью с целью разобраться в том, как эволюционируют светила. В 1913 году — независимо от Герцшпрунга — построил диаграмму, связывающую спектральные характеристики и светимость звезд (которая теперь и называется диаграммой Герцшпрунга — Рассела) по результатам изучения снимков, полученных им на фотопластинках в обсерватории Принстонского университета. Увы, ученый вывел из полученной диаграммы ложное заключение о том, что звезды появляются на свет в виде красных гигантов и со временем вырождаются в белых карликов.
Эйнар ГЕРЦШПРУНГ
Ejnar Hertzsprung, 1873-1967
Датский астроном. Родился в местечке Фредериксборг близ Копенгагена. Учился в Копенгагенском политехническом институте, получил специальность инженера-химика. По окончании института (1898) в течение трех лет работал в Петербурге. Вернувшись на родину, начал изучать астрономию, одновременно проводил фотографические наблюдения в обсерватории Копенгагенского университета и небольшой обсерватории «Урания». Его исследования произвели впечатление на директора Потсдамской обсерватории К. Шварцшильда, который пригласил Герцшпрунга сначала в Гёттингенский университет, а затем в Потсдамскую обсерваторию (1909). С 1919 года Герцшпрунг работал в Лейденской обсерватории, в 1935 году стал ее директором. Выйдя в отставку, возвратился в Данию и продолжил исследования в обсерватории в Брорфельде. Образование фотохимика позволило ученому разработать уникальную для тех лет технологию расчета светимости звезд по их фотоизображениям. Сопоставив полученные результаты с данными о спектрах исследуемых звезд, Герцшпрунг и пришел к своей классификации звезд, согласно которой они подразделяются на гигантов, карликов и основной ряд.
