Ледниковые эпохи в истории земли. История ледниковых периодов

В кайнозойской эре млекопитающие начали подвергаться воздействию особого фактора, не существовавшего, насколько нам известно, в меловое время. Этот фактор - похолодание климата. Поэтому к отмеченным изменениям, которым подверглись континенты в течение кайнозойской эры, мы должны добавить еще одно - изменение преобладающего климата. Массивы суши стали холоднее. Наиболее сильным было охлаждение полярных районов, самым слабым - экваториальных, но так или иначе оно проявилось повсюду. Влияние этого похолодания распространялось широко и сказывалось не только на млекопитающих, но и на других организмах. Начнем с обзора данных, на которых основан наш вывод об изменении температур, происходившем с начала кайнозоя.

Свидетельства изменения климата . В первую очередь следует отметить три группы фактов.

1. При бурении в глубоководных областях океана в слоях тонкообломочных кайнозойских отложений найдены ископаемые раковины микроскопических беспозвоночных. В некоторых слоях встречены раковины животных, обитающих в холодной воде; выше и ниже залегают слои, содержащие раковины животных, характерных для более теплой воды.

2. В некоторых слоях тонкообломочных отложений, слагающих дно в глубоководных областях океана вокруг Антарктиды, встречены зерна кварцевого песка, несущие на поверхности следы ледниковой обработки. Эти зерна, вероятно, заносились в море с айсбергами, из которых по мере таяния песчаный материал опускался на дно моря. Песчинки такого типа встречены в донных отложениях начиная с эоцена, что указывает на существование ледников в Антарктиде уже в это время. Эти песчинки встречаются в тех же слоях, к которым приурочены ископаемые раковины холодноводных беспозвоночных.

3. В некоторых слоях кайнозойских отложений на континентах найдены ископаемые листья растений, произраставших в холодном климате. Ископаемые растения, характерные для более теплых климатов, найдены в слоях, залегающих и выше, и ниже.

Таким образом, существует три вида данных, различных, но свидетельствующих об одном и том же: понижении температур в кайнозое, наиболее сильно проявившемся в высоких широтах южного полушария. По этим и некоторым другим данным была построена кривая (рис. 62), которая показывает повышения и понижения температуры в течение кайнозойской эры. За исключением ее крайней правой части, кривая построена исключительно на основе перечисленной выше информации. Кривая показывает также, что изменения температур были медленными и постепенными, но отнюдь не постоянными.

Рис. 62. Предполагаемая схема колебаний температур на земной поверхности в течение всего кайнозоя до наших дней. Кривая неточна, так как дана в обобщенном виде для всей Земли. На ней показаны главные эпохи повышения и понижения температур. Более полная информация, возможно, позволила бы выделить множество мелких колебаний, наложенных на крупные, показанные на кривой

Колебания климата: ледниковые эпохи . Изменение климата не было постоянным. Температуры снова и снова колебались, от более теплых к более холодным, и снова к теплым. Похолодание проявилось сначала в Антарктике, затем на Аляске и других районах Крайнего Севера. Но средние широты похолодание захватило лишь около двух миллионов лет назад, и когда это произошло, эффект похолодания был очень сильным и очевидным. В этих широтах происходило накопление снега и образование огромных мощных ледников, покрывших большую часть Северной Америки и северную часть Европы. Сравнительно недавние эпохи, когда огромные покровы льда надвигались на области средних широт, представляют собой то, что мы привыкли называть ледниковыми эпохами; так они и названы на рисунке 62. И все же, строго говоря, в таких районах, как Антарктика и Аляска, подобные ледниковые эпохи имели место на много миллионов лет раньше, чем показано на рисунке. Эти древние ледниковые эпохи гораздо менее известны; они были установлены только в 60-х годах нашего века, и еще не ясно, как изменить определение термина "ледниковая эпоха" так, чтобы оно включало и эти древние события. Однако гораздо важнее то, что в пределах одного только четвертичного периода было несколько ледниковых эпох, возможно даже больше, чем схематически показано извилистой кривой на нашей схеме.

Последняя ледниковая эпоха . Последняя ледниковая эпоха была сравнительно недавно. Она достигла своей наивысшей точки только 20 000 лет назад, когда мощный ледниковый покров, огромный ледник, занял почти всю Канаду и большую часть США; край его заходил далеко на юг от районов теперешних городов Нью-Йорк, Чикаго, Сиэтл. Другой ледник охватил территорию Европы, распространившись к югу до мест, где сейчас находятся города Копенгаген, Берлин и Ленинград. Общая площадь ледников, покрывавших Северную Америку и Европу, превышала 23 миллиона км 2 , а толщина льда была более полутора километров, так что лед полностью скрывал под собой почти все горы, расположенные на занятой льдом территории. Таким образом, объем ледников, вероятно, мог достигать 37 миллионов км 3 льда. Сейчас же общий объем ледников в Соединенных Штатах (за исключением Аляски) менее 83 км 3 . В настоящее время льды существуют в виде тысячи мелких горных ледничков, большей частью расположенных в штатах Вашингтон и Орегон. В Канаде ныне объем льда гораздо больше, предположительно около 41 000 км 3 , потому что Канада частично находится в холодных арктических областях и лед там дольше не тает. Но даже и 41000 км 3 - это лишь ничтожная доля того объема ледяного покрова, который существовал в Канаде 20 000 лет назад.

Когда мы думаем о том поразительном количестве льда, которое так недавно покрывало земную поверхность, у нас возникают два основных вопроса. Во-первых, была ли ледниковая эпоха исключительным явлением, свойственным только кайнозойской эре? И во-вторых, каковы причины возникновения ледниковых эпох? Постараемся ответить на эти вопросы.

Древние ледниковые эпохи . Итак, во-первых, происходили ли оледенения в более ранние геологические периоды, задолго до начала кайнозойской эры? Конечно, да. Доказательства этого неполны, но они вполне определенны, и некоторые из этих свидетельств распространяются на большие площади. Доказательства существования пермской ледниковой эпохи присутствуют на нескольких континентах (не исключено, что в то время эти континенты были частью одного массива суши), и кроме того, на континентах обнаружены следы ледников, относящиеся к другим эпохам палеозойской эры вплоть до ее начала, ранне-кембрийского времени. Даже в гораздо более древних породах, образовавшихся до начала фанерозоя, мы находим следы, оставленные ледниками, и ледниковые отложения. Возраст некоторых из этих следов составляет более двух миллиардов лет, то есть, возможно, составляет половину возраста Земли как планеты. А можно ли утверждать, что не существовало еще более древних, еще до сих пор не открытых ледниковых эпох?

Во всяком случае, даже рассматривая только известные нам оледенения, происходившие на протяжении более двух миллиардов лет, мы должны признать, что они не противоречат принципу актуализма, согласно которому - в применении к геологическим процессам - нет ничего нового под Солнцем. Поэтому ледниковые события, происходившие 20 000 лет назад, - или современное оледенение Антарктиды - всего лишь повторение таких же событий, которые в той или иной форме неоднократно повторялись с тех пор, как существует Земля.

Таков ответ на первый из двух вопросов. Оледенение - это не более необычное событие, чем возникновение огромной горной цепи, - и то и другое повторяется всякий раз,-как создаются соответствующие условия. Этот ответ позволяет легче разобраться во втором вопросе - почему происходят оледенения? Все, что от нас требуется - это определить "соответствующие условия" и затем понять, что же происходит, когда эти условия возникают.

Отчего бывают оледенения?

Основные условия . Ответ на этот вопрос может быть дан только в свете некоторых общих сведений о ледниках. Во многих районах средних широт, как, например, Соединенные Штаты и Европа, часть атмосферных осадков выпадает в виде снега. Даже в высоких горах снегопады происходят в основном зимой. Если зимние температуры достаточно низки, снег остается лежать на земле, но при наступлении весны и лета он тает. Однако в очень высоких горах, как, например, в северной части Скалистых гор, температуры даже летом настолько низки, что отдельные пятна снежного покрова сохраняются в течение всего лета и на следующую зиму покрываются свежевыпавшим снегом. Накапливаясь таким образом год за годом, снег на горном склоне уплотняется и подвергается воздействию силы тяжести, направленной вниз. Это воздействие заставляет его сползать вниз по склону. В процессе этого сползания спрессованный снег становится ледником. Если снегопады достаточно обильны, а температура настолько низка, что снег не тает, ледник может принять языковидную форму и продолжать увеличиваться в длину, перемещаясь вниз по горной долине, подобно водному потоку, но, конечно, гораздо медленнее.

Сотни крупных лопастеобразных языков льда, расположенных рядом друг с другом, можно видеть в горах, например в Альпах. Ледники в смежных долинах сливаются между собой, когда одна долина впадает в другую. У подножия гор весь лед, медленно движущийся вниз по долинам, сливается, распространяясь в виде единого непрерывного ледяного покрова. Что может помешать льду распространяться до бесконечности? Только одно, но очень существенное обстоятельство - таяние. При спуске с гор или переходе в более низкие широты повышается температура. И рано или поздно температура на внешнем крае движущегося ледника повышается настолько - именно настолько, - что весь лед, который приносится сюда в виде медленно движущегося ледяного потока, тает. С этого момента край ледника не может продвинуться дальше. Правда, лед продолжает двигаться, но весь поступающий лед тает по мере поступления и превращается в потоки талых вод.

Таковы условия существования языковидных ледников, которые обычно видят туристы в Альпах, Скалистых горах Канады и других горных районах. Такие ледники занимают горные долины, а положение их нижних концов определяется соотношением скорости течения льда и скорости таяния. При существующих ныне климатах ледники не могут существенно меняться. Но стоит температуре на поверхности Земли хоть немного понизиться, и все они начнут увеличиваться в длину. Если температура в достаточной степени понизится, повторится ледниковая эпоха, когда половина территории Северной Америки была непригодна для обитания человека и большинства животных.

Смысл сказанного сводится к тому, что ледниковая эпоха - это закономерный результат снижения температуры (Непосредственная причина оледенения значительно сложнее - она заключается в увеличении количества твердых осадков, накопленных на суше, что в свою очередь может зависеть от двух различных причин: и понижения температуры, уменьшающей таяние, и повышения температуры (воздух становится влажнее, осадки увеличиваются). - Прим. ред ) на Земле всего на несколько градусов. Загадочно в оледенениях не то, откуда берется снег и лед, загадочна причина снижения температуры. Пока сохраняется незыблемым принцип актуализма и пока продолжается круговорот воды в природе, в наиболее холодных местах планеты всегда будут существовать снег и лед. Ледниковая эпоха начинается только тогда, когда температура падает настолько, что на обширных территориях осадки выпадают в виде снега, лето становится прохладным и таяние льда уменьшается.

Это равновесие очень неустойчиво. И сейчас мы не так далеки от оледенения, как это многим кажется. Данные расчетов, основанные на многолетних наблюдениях погоды в горах южной Норвегии, в районе лыжных курортов между Осло и Бергеном, показывают, что снижения средней годовой температуры всего лишь на 3°С в течение длительного периода будет достаточно, чтобы вызвать такие изменения ледников, что в результате начнется новое оледенение Европы. И действительно, большая часть льда, распространившегося в северо-западной части Европы до максимальных пределов около 20 000 лет назад, имела своим источником снегопады именно в этих горах южной Норвегии. Конечно, к этому добавлялся снег, выпадавший на гораздо более обширной площади самого ледника, и, однажды начавшись, оледенение разрасталось, как снежный ком, катящийся по склону.

Совершенно ясно, что состояние ледника зависит в основном от климата. Там, где температуры достаточно высоки, ледников нет. Там, где температуры низки, ледники образуются, но границей их распространения служит линия, где приток льда уравновешивается таянием. Отсюда следует, что ледниковая эпоха, когда ледники велики и многочисленны, является эпохой низких температур и, следовательно, временем, когда выпадение осадков происходит в виде снега. Естественным результатом этого является смещение линии равновесия притока и таяния льда в более низкие широты, так что льды покрывают обширные площади. После достижения "пика" оледенения по мере повышения температур критическая линия смещается обратно в высокие широты, ледники сокращаются и ледниковая эпоха приходит к концу.

К настоящему моменту пик последней ледниковой эпохи остался далеко позади - 20 000 лет назад. Большая часть льдов, достигавших 20 000 лет назад объема более 23 миллионов км 3 , растаяла, и талые воды стекли в море. Но даже в настоящее время, через 20 000 лет после момента наибольшего похолодания, лед сохраняется там, где большие высоты или холодный климат препятствуют его таянию. Даже сейчас все еще существует более тысячи ледников в Соединенных Штатах (не считая Аляски) и более 1200 в Альпах. В Гренландии до сих пор существует один большой ледник [ледниковый щит. - Ред.], покрывающий большую часть острова и имеющий 2400 километров в длину и 800 километров в ширину. Объем ледника Гренландии, представляющего самый большой ледяной массив северного полушария, достигает 3,3 миллиона км 3 . Весь этот лед образовался в результате того, что когда-то в прошлом здесь выпал снег и до сих пор не растаял.

Обращаясь к южному полушарию, мы видим в самом центре его, как раз вокруг Южного полюса, материк Антарктиду. По сравнению с размерами ледникового покрова этого материка огромная глыба ледника Гренландии кажется ничтожной. Его объем более 20 миллионов км 3 (Объем льда Антарктиды - 24 миллиона км3, Гренландии - 1 миллион км3. - Прим. ред ), что составляет более 90% всего льда на Земле и более 75% общих запасов пресной воды как в жидком, так и в твердом виде. Антарктический ледниковый покров занимает почти весь континент, и его площадь почти на 1/3 больше всей площади Соединенных Штатов, включая Аляску. Поэтому справедливо будет считать, что в Антарктиде в отличие от Северной Америки ледниковая эпоха не кончилась. Лед до сих пор почти полностью покрывает этот континент, хотя возможно, что его площадь 20 000 лет назад была еще больше. В Северной Америке оледенение было несколько раз, ледник приходил и уходил, однако, насколько мы можем судить, в течение по крайней мере последних 10 миллионов лет Антарктида была непрерывно покрыта льдами. Ледниковый покров увеличивался или уменьшался в объеме при колебаниях климата, но, вероятно, полностью не исчезал в отличие от ледниковых покровов Северной Америки и Европы. Причина этого различия очевидна, поскольку Антарктида - это самый высокий континент, обладающий наибольшими средними высотными отметками поверхности. Еще более важным обстоятельством является то, что она расположена на Южном полюсе, где постоянно очень низкие температуры. Все осадки выпадают здесь в виде снега и не тают. Поэтому однажды образовавшийся лед сохраняется не только в течение всего года, но и в течение миллионов лет. Он сползает вниз к внешнему краю покрытого им континента, как огромная масса теста на сковороде. При достижении льдом берега, когда он спускался в океан, от него отламывались глыбы, образующие большие плосковерхие айсберги. Несколько измеренных айсбергов оказались огромными. Один айсберг по величине в два раза превосходил площадь штата Коннектикут. Превратившись в плавающий в море айсберг, лед постепенно тает, но движение льда по поверхности континента в направлении к морю происходит непрерывно.

Пульсация . Суммируя основные условия, необходимые для возникновения ледников, заметим, что для этого нужно только, чтобы суша располагалась на достаточных высотах или в достаточно высоких широтах, обеспечивающих настолько низкие температуры, что снег там не тает в течение всего года. Как мы видели, возвышенности образуются при движении плит коры и столкновении континентов. Время от времени при этом образуются высокие горы, но такие движения происходят очень медленно. Измеренная скорость движений плит коры составляет величины порядка нескольких сантиметров в год. Если бы движения плит и образование новых гор были бы единственными причинами оледенений, то оледенение не могло бы (как это было в действительности) закончиться на протяжении всего лишь 20 000 лет или менее того. Если бы все объяснялось движениями плит коры, то ничто не помешало бы однажды образовавшемуся и распространившемуся на большей части континента леднику сохраняться в течение миллионов лет до тех пор, пока горы не будут постепенно снижены эрозией или пока континент, плавающий вместе с плитой коры, не будет медленно перенесен в более теплые широты, где покров льда мог бы таять.

Оледенения, по крайней мере те из них, которые происходили в средних широтах, начинались и кончались гораздо быстрее, чем это могло бы быть, если бы причиной их был медленный и негибкий процесс движения континентов. Изменения происходили в течение не миллионов, а всего лишь тысяч лет. Благодаря многочисленным радиоуглеродным датировкам стало возможным построить приблизительную, но достаточно надежную хронологическую шкалу, воспроизводящую ход стаивания огромной массы льда, занимавшей большую часть Северной Америки только 20 000 лет назад. Процесс разрушения ледника начался приблизительно 15 000 лет назад и закончился около 6000 лет назад. Иначе говоря, таяние всего этого огромного ледяного покрова заняло всего около 9000 лет (рис. 63). При этом около 37 миллионов км 3 льда было превращено в воду, которая стекла в ближайшие реки и через них в океан.

Мало того, что этот процесс продолжался всего 9000 лет, но на начальных стадиях ход его несколько раз прерывался периодами, когда толщина льда увеличивалась и он снова наступал, а затем снова начиналось его сокращение. Такие периоды в Европе, Северной Америке и Новой Зеландии наступали примерно в одно время. Отсюда очевиден вывод, что существует другая причина климатических изменений, которая действует быстро и проявляется одновременно во всем мире и не зависит от горообразования и движения плит коры Земли.

Рис. 63. Схема таяния ледникол Северной Америки в конце последней ледниковой эпохи (главным образом по данным Геологической службы Канады). А. Северная Америка 20 000-15 000 лет назад

Рис. 63. Схема таяния ледникол Северной Америки в конце последней ледниковой эпохи (главным образом по данным Геологической службы Канады). Б. Около 12 000-10 000 лет назад

Рис. 63. Схема таяния ледникол Северной Америки в конце последней ледниковой эпохи (главным образом по данным Геологической службы Канады). В. Около 9000 лет назад

Рис. 63. Схема таяния ледникол Северной Америки в конце последней ледниковой эпохи (главным образом по данным Геологической службы Канады). Г. Около 7000 лет назад

Было сделано много попыток установить эту причину и предложено несколько гипотез, но ни одна из них не является общепринятой среди ученых, изучающих эту проблему. Нам придется довольствоваться одной гипотезой, которая объясняет факты, хотя сама еще не доказана. Эта теория предполагает, что количество тепловой энергии, которую Земля получает от Солнца, изменяется, медленно пульсируя, в результате чего температуры постоянно колеблются в небольших пределах. Идея достаточно проста, но мы еще не располагаем средствами доказать ее правильность или ошибочность. Приняв за неимением лучшей данную гипотезу, мы сможем утверждать, что во время преобладания низменностей и обширных морей (скажем, в меловой период) на Земле могли существовать лишь очень немногочисленцые ледники (или их совсем не было), и, следовательно, предполагаемые медленные пульсации тепловой энергии, поступающей на поверхность Земли, могли оказывать лишь слабое воздействие на климат. Но в то время (предположим, в кайнозойское), когда существовали возвышенности и многочисленные горные области, а значительная часть площади континентов находилась в довольно высоких широтах, на возвышенностях могло существовать много ледников. В таком случае пульсация, которая хотя бы немного понижала температуру, могла привести к катастрофическому увеличению площади ледников. И наоборот, небольшое увеличение температуры могло иметь противоположный, но в такой же степени катастрофический результат. Большего мы пока сказать не можем.

Воздействие ледников на поверхность Земли

Ледниковая эрозия . Составление карты древних ледников возможно главным образом потому, что движущийся лед оставляет заметные следы на поверхности, по которой он движется. Лед выскабливает, полирует и различными другими способами разрушает поверхность, а затем он отлагает продукты разрушения горных пород. В результате часто можно видеть, как на эродированной ледником поверхности, отделенные от нее резкой границей, залегают рыхлыe продукты-отложения ледника. Как скальная поверхность, так и залегающие на ней отложения несут отчетливые, в большинстве случаев легко распознаваемые следы прежнего присутствия ледника.

Обломки породы различного размера, подхваченные движущимся льдом, вмерзают в нижнюю поверхность льда и, как частицы песка на наждачной бумаге, скребут и царапают скальную поверхность, оставляя на ложе ледника множество прерывистых борозд и царапин (фото 51), которые совершенно не похожи на следы, оставленные водными потоками. Местами целые глыбы породы отделяются по трещинам от коренного ложа и уносятся ледником, увеличивая собой количество обломков, вмерзших в подошву ледника.

Фото 51. Ледниковые штрихи и царапины на поверхности песчаников. Обломки оставлены ледником, который двигался в направлении от фотокамеры

Ледниковая аккумуляция . Обломки пород, включенные в лед, разносятся им и отлагаются вдоль пути движения ледника, образуя слой отложений, который местами, ближе к краю ледника, может достигать значительной мощности. Так как лед - это твердое тело, отложение обломков льдом происходит совсем не так, как рекой. В реке отложение частиц происходит в соответствии с их размерами. Отложение же обломочного материала в основании ледника происходит в таком же порядке, как и при переносе, то есть без всякой сортировки, грубые частицы вперемешку с тонкими, валуны рядом с илистыми частицами (фото 52). Образовавшиеся отложения часто выглядят как груда грунта, которую сгреб бульдозер. Кроме того, в отличие от окатанных речных галек, которые поток переворачивает и окатывает, обломки породы в ледниковых отложениях сохраняют неправильную форму и имеют плоские грани, образующиеся при трении о скальную поверхность обломка, вмерзшего в основание ледника (фото 53).

Фото 52. Обломочные отложения времени последнего оледенения, состоящие из неокатанных обломков горных пород различного размера, несортированных и неслоистых. Эти признаки отличают их от водных отложений. Рукоятка ледоруба имеет длину 45 см. Северный склон горы Рейнир, штат Вашингтон

В некоторых местах вдоль внешнего края ледника и вблизи него отлагающиеся обломки перемещаются водой при таянии ледника. В таких местах этот материал теряет типично ледниковый характер и приобретает сортировку и слоистость в результате переработки текучими водами. При этом серии слоистых отложений беспорядочно перемежаются с толщами неслоистого материала.

Фото 53. Шесть галек, произвольно выбранных из ледниковых отложений на территории штата Нью-Йорк. У каждой гальки есть одна или несколько плоских граней, оглаженных ледником

Но независимо от того, есть ли в них слоистый материал или нет, в целом ледниковые отложения имеют тенденцию образовывать большие или малые гряды, расположенные вдоль края ледника. Такая гряда представляет собой конечную морену, характерную форму, создаваемую оледенением. В некоторых районах наблюдается несколько морен, расположенных одна за другой, каждая из которых фиксирует положение края ледника во время ее отложения.

Потоки талых вод, вытекающих из-под края ледника, отмеченного конечной мореной, отлагали в своих долинах гальку и песок, отсортированные и слоистые, как настоящие речные отложения. Некоторые из этих отложений достигают 30 метров мощности или даже больше, а в ширину распространяются на всю ширину долины. Ледниковое происхождение имеют многие пес-чано-галечные отложения вдоль долин рек Огайо или Миссисипи, прослеживающиеся по долине Миссисипи до самой дельты. И все же, несмотря на большой объем этих отложений, даже если мы прибавим к ним ледниковые отложения, распространенные в границах оледенения, далее к северу, общая мощность слоя продуктов выветривания и коренных пород, удаленных огромными ледниковыми покровами, покрывавшими когда-то Северную Америку и Европу, оказывается на удивление мала. Точно мы не знаем, но можем предполагать, что в среднем толщина этого слоя, вероятно, не более 7,5 метра.

Озерные впадины . Более явным результатом влияния ледника, и в частности великих ледниковых покровов, на рельеф было образование больших и малых впадин, многие из которых заполнились водой и стали озерами. На любой хорошей крупномасштабной карте Канады, Соединенных Штатов или Северной Европы можно видеть, что большинство озер сосредоточено в районах древнего оледенения. В одной только Северной Америке число озер исчисляется сотнями тысяч.

Впадины создаются ледником несколькими способами. Одни образуются в результате частичного удаления движущимся льдом трещиноватых коренных пород. Другие представляют собой понижения неровной поверхности ледниковых отложений. Третьи представляют собой речные долины, подпруженные ледниковыми отложениями. (Такое происхождение, по крайней мере частично, имеют Великие озера Америки.) Множество мелких впадин образовалось в результате вытаивания глыб льда размером от нескольких метров до десятков километров в поперечнике, которые были погребены под ледниковыми отложениями. Когда такая глыба вытаивает, образуется впадина, в которую проседают залегавшие ранее на льду отложения. Среди многих тысяч озер штата Миннесота многие именно такого происхождения.

Более слабые колебания климата

Климат после 1800 г. Данные измерений температур, производившихся правительственными учреждениями в большинстве стран, показывают изменения температур с начала XIX в. В самом общем виде эти изменения приведены на кривой рисунка 64. Она свидетельствует о том, что за последние сто лет средние годовые температуры увеличивались более чем на полградуса Цельсия, причем это увеличение шло неравномерно. Оно затронуло большую часть планеты, как тропические, так и высокие широты, как северное, так и южное полушарие. Затем, после 1940 г., начался период похолодания. Температуры понизились, и к 1970 г. достигли того уровня, который наблюдался около 1920 г. Таким образом, устанавливается тот факт, что климаты Земли не являются чем-то постоянным и неизменным, но подвергаются существенным изменениям. Теплые зимы и жаркие летние сезоны, отмечавшиеся в 30-х годах двадцатого века на западе США, представляются частью общего потепления климата, проявлявшегося в широких масштабах.

Не удивительно, что летопись колебаний размеров небольших ледников в горах Северной Америки и в Альпах обнаруживает сходство с температурной кривой (рис. 64). Измерения, проведенные на одних и тех же ледниках в течение ряда лет, показывают, что в промежутке между концом XIX в. и серединой XX в. многие ледники в целом сократились. Но приблизительно с 1950 г. некоторые ледники снова начали увеличиваться. Их режим отражает изменение тенденции, которое устанавливается по температурной кривой, но пока еще прошло слишком мало времени, чтобы можно было судить, изменилось ли направление развития ледников.

Рис. 64. Кривая колебаний температур (средних для периодов в пять лет)

Климат за последнюю 1000 лет . Измерения температур с помощью термометра начали производиться лишь незадолго до начала XVIII в., но общее представление о колебаниях температуры в широких масштабах в Европе, а также в Японии за последнюю тысячу лет можно получить, используя различные косвенные методы. Различные данные показывают, что приблизительно с XI по XIII в. климат был теплее, чем когда-либо с тех пор. Это был "период викингов" - время, когда лето было настолько теплым и сухим и когда северные моря были настолько свободны от плавучих льдов, что норвежцы могли повсюду плавать в небольших лодках. Они даже основали на юге Гренландии колонии с населением в 3000 человек или несколько больше, торговавшие с Европой продуктами сельского хозяйства. Однако приблизительно после 1500 г. торговля прекратилась и сообщение с Европой почти прервалось. Колонии оказались изолированными, и в XVIII в. прибывший туда корабль не обнаружил потомков поселенцев этой некогда процветавшей колонии.

Проведенные в XX в. археологические исследования ста погребений на кладбище одной из колоний помогли восстановить часть позднейшей истории колонии. Грунт в месте захоронений был мерзлым, как это наблюдается сейчас в большинстве арктических районов, хотя очевидно, что в то время, когда производилось погребение, он не был мерзлым. Останки принадлежали молодым людям, что указывает на малую продолжительность жизни, небольшого роста, что в сочетании с деформацией скелетов и необычно сильно разрушенными зубами предполагает плохое питание. Вполне вероятно, что эти люди умирали от болезней, голода и других причин, явившихся результатом длительного постепенного ухудшения климата.

После "периода викингов" и до XVII в. повсеместно в Европе ощущалось общее снижение температуры. В Норвегии и в Альпах жители горных селений были вынуждены отступить перед надвигавшимися ледниками. Снизилась постепенно и нижняя граница древесной растительности в Альпах, перестали давать урожаи и были заброшены виноградники в горах Германии. Зимы стали длиннее и холоднее. Каждый, кто внимательно рассматривал голландские пейзажи XVII в., помнит, что многие из них изображают зимние сцены, где люди катаются на коньках по замерзшим каналам. В наше время такое встретишь не часто.

Суммируя вышесказанное, можно отметить, что летопись изменений климата за последнюю тысячу лет включает как ранний "период викингов", который был теплее современного, так и позднейший холодный период, который был холоднее современного. Потепление, отмечавшееся в начале настоящего столетия, ознаменовало конец этого очень холодного периода. В целом приведенные данные подтверждают изменчивость климатов.

Последние 10 000 лет . В Швеции, Финляндии и других северных странах растительность распределена в виде ясно выраженных зон, которые в основном определяются температурой (вспомним рис. 35). Территория этих стран испещрена озерными впадинами, созданными великими ледниками прошлого, как было описано выше. Возраст почти всех впадин моложе 15 000 лет, а многих моложе 10 000 лет (рис. 63). Некоторые озера целиком заполнились отложениями, преимущественно остатками растений в виде торфа, и превратились в болота. Другие, хотя все еще остаются озерами, постепенно заполняются торфом. Отложения включают не только стебли и листья растений, но также большое количество пыльцы от растений, растущих вокруг озера.

Ученые предполагали, что, пробурив скважину в торфяных отложениях, заполняющих болото или озеро, и определив растения, встречающиеся в каждом слое, они смогут в деталях восстановить смену растительности, окружавшей озеро (рис. 65). Изменение состава растительности при переходе от одного слоя к другому должно было бы отражать изменение климата, начавшееся с таяния ледника. Они ожидали, что растительность будет меняться от тундровой в нижних горизонтах (представленной арктическими травами и кустарниками, произраставшими вблизи ледника) до современной древесной растительности в верхней части разреза.

Рис. 65. Болото, занимающее впадину в ледниковых отложениях, в котором ежегодно отлагается пыльца растений, произрастающих в окрестностях. Постепенно в нем накапливаются слои опавших листьев, стеблей и других растительных остатков, образующие торф

Проделав этот эксперимент, ученые обнаружили и определили ископаемые растения (главным образом по пыльце), но были удивлены изменением растительности снизу вверх. Растительность изменялась от тундровой к еловым и пихтовым лесам, затем к березовым и сосновым лесам и далее к дубу, буку, ольхе и орешнику, показывая, таким образом, постепенное потепление. Но выше, в верхних слоях, эти растения снова сменялись березой и сосной, которые главным образом и произрастают здесь в настоящее время. Дуб, бук и орешник сейчас растут гораздо южнее. Однако радиоуглеродная датировка слоя, содержащего дуб, бук и орешник, показывает, что этот слой образовался около 5000 лет назад.

В таком случае очевидно, что самый теплый климат был около 5000 лет назад (3000 лет до н. э.). В это время средние температуры были выше современных (в тех же точках) приблизительно на 1° С. Затем тенденция изменений климата сменилась на противоположную, климат стал влажнее и холод-неб, дубовые деревья, окружавшие болото, погибли и сменились березой и сосной. Таким образом, мы получили еще одно надежное свидетельство колебаний климата; вместо того чтобы становиться постепенно теплее со времени начала таяния ледников периода великого оледенения, климат 5000 лет назад стал более сухим и теплым, чем в настоящее время. В то время ледники в Альпах и Скалистых горах были менее многочисленны и меньше по размерам. Многие из современных ледников начали образовываться менее 5000 лет назад и, таким образом, представляют собой "современные" ледники, а не остатки ледников последней ледниковой эпохи (Изменения климата и размеров ледников происходят непрерывно. Похолодание и увеличение ледников были в XVIII - начале XIX вв. ("малый ледниковый период"), в 40-60-х годах XIX в. (незначительное), потепление в 1920-1940-х годах, в 1970-х годах (незначительное). - Прим. ред ).

Будущее

Ученым, которые занимаются вопросом истории климата, часто задают два вопроса. Первый из них: "Будет ли новое оледенение?", и второй: "Если будет, то когда?" Легче всего ответить на первый вопрос. Большинство ученых согласно с тем, чтобы сказать: "Да, вероятно", потому что за последние два миллиона лет произошло уже несколько оледенений, а главные условия, необходимые для возникновения оледенения, - поднятие суши, многочисленные горы и присутствие обширного ледяного щита на Южном полюсе - все еще существуют.

Гораздо менее ясен будет ответ на второй вопрос. Имеющаяся у нас информация о климатах все еще недостаточно точна, чтобы судить о том, существует ли четкая закономерность в повторяемости оледенений. Если бы мы знали, что такая закономерность существует, и могли бы измерить интервалы между оледенениями прошлого, тогда можно было бы предсказать, что сулит нам климат будущего. Может быть, такое предсказание и станет возможным в будущем, но в настоящее время оно невозможно.

Литература

Flint R. F. 1971, Glacial and Quaternary geology: John Wiley & Sons, New York. Есть русский перевод: Флинт РФ., Ледники и палеогеография плейстоцена, М., ИЛ, 1963.

Hovgaard William, 1925, The Norsemen in Greenland: "Georg. Rev.", v. 15, p. 605-616.

Lamb H. H., 1965, The early medieval warm epoch and its sequel: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 1, p. 13-37.

Pjst Austin, LaChapelle E. R., 1971, Glacier ice: The Mountaineers: University of Washington Press, Seattle.

Schwarzbach Martin, 1963, Climates of the past: D. Van Nostrand Company, Princeton, N. J. Есть русский перевод: Шварцбах М., Климаты прошлого, М., ИЛ, 1955.

В истории Земли существовали длительные периоды, когда вся планета была теплой - от экватора до полюсов. Но были и настолько холодные времена, что оледенения достигали тех регионов, которые в настоящее время относятся к умеренным зонам. Скорее всего, смена этих периодов была цикличной. В теплые времена льда могло быть относительно мало, и находился он только в полярных регионах или на вершинах гор. Важная черта ледниковых периодов заключается в том, что они меняют характер земной поверхности: каждое оледенение влияет на внешний вид Земли. Сами по себе эти изменения могут быть маленькими и незначительными, но они носят постоянный характер.

История ледниковых периодов

Мы не знаем точно, сколько ледниковых периодов было на протяжении истории Земли. Нам известно как минимум о пяти, возможно, семи ледниковых периодах, начиная с докембрийского, в частности: 700 миллионов лет назад, 450 миллионов лет назад (ордовикский период), 300 миллионов лет назад - пермо-карбоновое оледенение, один из крупнейших ледниковых периодов, затронувший южные континенты. Под южными континентами подразумевается так называемая Гондвана - древний суперконтинент, включавший в себя Антарктиду, Австралию, Южную Америку, Индию и Африку.

Самое недавнее оледенение относится к периоду, в котором мы живем. Четвертичный период кайнозойской эры начался около 2,5 миллионов лет назад, когда ледники Северного полушария достигли моря. Но первые признаки этого оледенения датируются 50 миллионами лет назад в Антарктике.

Структура каждого ледникового периода периодична: есть относительно короткие теплые эпохи, а есть более длинные периоды обледенения. Естественно, холодные периоды не являются следствием одного лишь оледенения. Оледенение - это наиболее наглядное следствие холодных периодов. Однако существуют достаточно длительные интервалы, которые являются очень холодными, несмотря на отсутствие оледенений. Сегодня примерами таких регионов являются Аляска или Сибирь, где бывает очень холодно зимой, но оледенений нет, так как недостаточно осадков, способных обеспечить достаточное количество воды для образования ледников.

Открытие ледниковых периодов

О том, что на Земле бывают ледниковые периоды, нам известно с середины XIX века. Среди множества имен, связанных с открытием этого феномена, первым обычно называют имя Луи Агассиса, швейцарского геолога, жившего в середине XIX века. Он изучал ледники Альп и осознал, что когда-то они были гораздо более обширными, чем сегодня. Это заметил не только он. В частности, Жан де Шарпантье, еще один швейцарец, также отметил этот факт.

Неудивительно, что эти открытия были сделаны в основном в Швейцарии, так как в Альпах до сих пор существуют ледники, хоть они и достаточно быстро тают. Легко заметить, что когда-то ледники были значительно больше - достаточно посмотреть на швейцарский ландшафт, троги (ледниковые долины) и так далее. Однако именно Агассис первым выдвинул эту теорию в 1840 году, опубликовав ее в книге «?tude sur les glaciers», а позже, в 1844-м, он развил эту идею в книге «Syst?me glaciare». Несмотря на первоначальный скептицизм, со временем люди стали понимать, что это действительно правда.

С появлением геологического картирования, особенно в Северной Европе, стало понятно, что раньше ледники имели огромный масштаб. Тогда шли обширные дискуссии на тему того, как эта информация соотносится с Всемирным потопом, потому что возник конфликт между геологическими доказательствами и библейскими учениями. Изначально ледниковые отложения называли делювиальными, потому что их считали доказательством Всемирного потопа. Только потом стало известно, что такое объяснение не подходит: эти отложения были доказательством холодного климата и обширных оледенений. К началу ХХ века стало понятно, что оледенений было множество, а не одно, и с того момента начала развиваться эта область науки.

Исследования ледниковых периодов

Известны геологические подтверждения ледниковых периодов. Основные доказательства оледенений происходят из характерных отложений, сформированных ледниками. Они сохраняются в геологическом срезе в форме толстых упорядоченных слоев особых наносов (седиментов) - диамиктона. Это просто ледниковые накопления, но они включают в себя не только отложения ледника, но и наносы талой воды, сформированные ее потоками, ледниковыми озерами или ледниками, двигающимися в море.

Существует несколько форм ледниковых озер. Их основное отличие заключается в том, что они представляют собой водное тело, огражденное льдом. Например, если у нас есть ледник, который поднимается в долину реки, то он блокирует долину, как пробка в бутылке. Естественно, когда лед блокирует долину, река все еще будет течь, а уровень воды будет повышаться до тех пор, пока не перельется через края. Таким образом, ледниковое озеро формируется через прямой контакт со льдом. Существуют определенные отложения, которые содержатся в таких озерах и которые мы можем выявить.

Из-за того, как тают ледники, что зависит от сезонных изменений температуры, происходит ежегодный сход льда. Это приводит к ежегодному приросту незначительных отложений, попадающих из-под льда в озеро. Если мы потом посмотрим в озеро, мы увидим там слоистость (ритмичные слоистые осадки), которые также известны под шведским названием «варвы» (varve), что означает «ежегодные накопления». Таким образом, мы действительно можем увидеть ежегодную слоистость в ледниковых озерах. Мы можем даже сосчитать эти варвы и узнать, как долго существовало это озеро. В целом при помощи этого материала мы можем получить очень много информации.

В Антарктике мы можем увидеть огромного размера шельфовые ледники, которые сходят с земли в море. И естественно, лед плавуч, поэтому он держится на воде. По мере того как он плывет, он несет с собой гальку и незначительные отложения. Из-за теплового воздействия воды лед тает и сбрасывает этот материал. Это приводит к формированию процесса так называемого рафтинга пород, которые уходят в океан. Когда мы видим ископаемые отложения этого периода, мы можем узнать, где был ледник, как далеко он протянулся и так далее.

Причины оледенений

Исследователи полагают, что ледниковые периоды возникают потому, что климат Земли зависит от неравномерного прогрева ее поверхности Солнцем. Так, например, экваториальные регионы, где Солнце находится практически вертикально над головой, являются самыми теплыми зонами, а полярные регионы, где оно находится под большим углом к поверхности, - самыми холодными. Это означает, что различие в обогреве разных участков поверхности Земли управляет океанно-атмосферной машиной, которая постоянно пытается перенести тепло с экваториальных регионов к полюсам.

Если бы Земля была обычным шаром, этот перенос был бы очень эффективным, а контраст между экватором и полюсами очень мал. Так было в прошлом. Но так как сейчас есть континенты, они становятся на пути этой циркуляции, и структура ее потоков становится очень сложной. Простые потоки сдерживаются и изменяются - во многом из-за гор, что приводит к тем схемам циркуляции, которые мы видим сегодня и которые управляют пассатами и океаническими течениями. Например, одна из теорий о том, почему ледниковый период начался 2,5 миллиона лет назад, связывает это явление с возникновением Гималайских гор. Гималаи все еще очень быстро растут, и оказывается, что существование этих гор в очень теплой части Земли управляет такими вещами, как система муссонов. Начало четвертичного ледникового периода также ассоциируется с закрытием Панамского перешейка, который соединяет север и юг Америки, что предотвратило перенос тепла с экваториальной зоны Тихого океана в Атлантический.

Если бы расположение континентов относительно друг друга и относительно экватора позволяло циркуляции эффективно работать, то на полюсах было бы тепло, а относительно теплые условия сохранялись бы по всей земной поверхности. Количество тепла, получаемого Землей, было бы постоянно и лишь немного варьировалось. Но так как наши континенты создают серьезные преграды циркуляции между севером и югом, мы имеем ярко выраженные климатические зоны. Это означает, что полюса относительно холодные, а экваториальные регионы - теплые. Когда все происходит так, как сейчас, Земля может меняться под влиянием вариаций в количестве солнечного тепла, которое она получает.

Эти вариации практически полностью постоянны. Причина этого состоит в том, что со временем земная ось меняется, как меняется и земная орбита. С учетом такого сложного климатического зонирования изменение орбиты может поспособствовать долгосрочным изменениям в климате, что приводит к колебанию климата. Из-за этого мы имеем не сплошное обледенение, а периоды обледенений, прерывающиеся теплыми периодами. Это происходит под влиянием орбитальных изменений. Последние орбитальные изменения рассматриваются как три отдельных явления: одно длиной в 20 тысяч лет, второе - в 40 тысяч лет, а третье - в 100 тысяч лет.

Это привело к отклонениям в схеме циклических изменений климата во время ледникового периода. Обледенение, скорее всего, возникло во время этого циклического периода в 100 тысяч лет. Последняя межледниковая эпоха, которая была такой же теплой, как нынешняя, длилась около 125 тысяч лет, а затем наступила длительная ледниковая эпоха, которая заняла около 100 тысяч лет. Сейчас мы живем в очередную межледниковую эпоху. Этот период не будет длиться вечно, поэтому в будущем нас ждет очередная ледниковая эпоха.

Почему завершаются ледниковые периоды

Орбитальные изменения меняют климат, и оказывается, что ледниковые периоды характеризуются чередованиями холодных периодов, которые могут длиться до 100 тысяч лет, и теплых периодов. Мы называем их ледниковой (гляциал) и межледниковой (интергляциал) эпохами. Межледниковая эпоха обычно характеризуется примерно такими же условиями, что мы наблюдаем и сегодня: высокий уровень моря, ограниченные территории обледенения и так далее. Естественно, и сейчас существуют оледенения в Антарктиде, Гренландии и других подобных местах. Но в целом климатические условия относительно теплые. В этом суть интергляциала: высокий уровень моря, теплые температурные условия и в целом достаточно ровный климат.

Но во время ледниковой эпохи среднегодовая температура значительно меняется, вегетативные пояса вынуждены сместиться на север или юг в зависимости от полушария. Регионы вроде Москвы или Кембриджа становятся необитаемыми, по крайней мере зимой. Хотя они могут быть обитаемыми летом из-за сильно выраженного контраста между сезонами. Но что на самом деле происходит: холодные зоны существенно расширяются, среднегодовая температура снижается, и общие климатические условия становятся очень холодными. В то время как самые большие ледниковые события относительно ограничены по времени (возможно, около 10 тысяч лет), весь длинный холодный период может длиться 100 тысяч лет или даже больше. Так выглядит ледниково-межледниковая цикличность.

Из-за длительности каждого периода трудно сказать, когда мы выйдем из текущей эпохи. Это обусловлено тектоникой плит, расположением континентов на поверхности Земли. В настоящее время Северный полюс и Южный полюс изолированы: Антарктика находится на Южном полюсе, а Северный Ледовитый океан на севере. Из-за этого существует проблема с циркуляцией тепла. До тех пор пока не изменится расположение континентов, этот ледниковый период будет продолжаться. В соответствии с долгосрочными тектоническими изменениями можно предположить, что это займет еще 50 миллионов лет в будущем, пока не произойдут существенные изменения, которые позволят Земле выйти из ледникового периода.

Геологические последствия

Это высвобождает огромные участки континентального шельфа, которые сегодня затоплены. Это будет означать, например, что однажды можно будет пройти пешком из Британии во Францию, из Новой Гвинеи в Юго-Восточную Азию. Одно из самых критических мест - это Берингов пролив, связывающий Аляску с Восточной Сибирью. Он достаточно мелкий, около 40 метров, так что если уровень моря опустится до ста метров, то этот участок станет сушей. Это важно также потому, что растения и животные смогут мигрировать через эти места и попадать в регионы, куда сегодня попасть не могут. Таким образом, колонизация Северной Америки зависит от так называемой Берингии.

Животные и ледниковый период

Важно помнить, что мы сами являемся «продуктами» ледникового периода: мы эволюционировали в течение него, поэтому мы можем его пережить. Однако дело не в отдельных индивидах - это вопрос всей популяции. Проблемой сегодня является то, что нас слишком много и наша деятельность существенно изменила естественные условия. В естественных условиях многие животные и растения, которых мы видим сегодня, имеют длинную историю и отлично переживают ледниковый период, хотя есть и те, что эволюционируют незначительно. Они мигрируют, адаптируются. Существуют зоны, в которых животные и растения пережили ледниковый период. Эти так называемые рефугиумы располагались дальше на север или юг от их сегодняшнего места распространения.

Но в результате человеческой деятельности часть видов погибла или вымерла. Это происходило на всех континентах, - возможно, за исключением Африки. Огромное количество больших позвоночных, а именно млекопитающих, а также сумчатых в Австралии, было истреблено человеком. Это было вызвано либо непосредственно нашей деятельностью, например охотой, либо косвенно - разрушением среды их обитания. Животные, обитающие в северных широтах сегодня, в прошлом жили в Средиземноморье. Мы разрушили этот регион настолько, что этим животным и растениям, скорее всего, будет очень сложно вновь его колонизировать.

Последствия глобального потепления

В нормальных условиях по геологическим меркам мы бы достаточно скоро вернулись в ледниковый период. Но из-за глобального потепления, которое является последствием человеческой активности, мы отсрочиваем его. Мы не сможем совсем его предотвратить, так как причины, вызвавшие его в прошлом, существуют и сейчас. Деятельность человека, непредусмотренный природой элемент, влияет на атмосферное потепление, которое уже, возможно, вызвало задержку следующего гляциала.

Сегодня изменения климата - это очень актуальный и волнующий вопрос. Если Гренландский ледяной щит растает, то уровень моря поднимется на шесть метров. В прошлом, во время предыдущей межледниковой эпохи, которая была примерно 125 тысяч лет назад, Гренландский ледяной щит обильно таял, а уровень моря стал на 4–6 метров выше сегодняшнего. Это, конечно, еще не конец света, но и не временная сложность. В конце концов, Земля оправлялась от катастроф и раньше, она сможет пережить и эту.

Долгосрочный прогноз для планеты неплох, но для людей это другой вопрос. Чем больше мы проводим исследований, чем лучше понимаем, как Земля меняется и к чему это ведет, тем лучше мы понимаем планету, на которой живем. Это важно, потому что люди наконец стали задумываться об изменении уровня моря, глобальном потеплении и влиянии всех этих вещей на сельское хозяйство и население. Многое из этого связано с изучением ледниковых периодов. При помощи этих исследований мы узнаем механизмы оледенений, и мы можем использовать это знание с упреждением, пытаясь смягчить некоторые из этих изменений, которые сами и вызываем. Это и есть один из основных результатов и одна из целей исследований ледниковых периодов.
Конечно, главное следствие ледникового периода - это огромные ледниковые щиты. Откуда берется вода? Конечно, из океанов. А что происходит во время ледниковых периодов? Ледники формируются как следствие осадков на суше. Из-за того, что вода не возвращается в океан, уровень моря падает. Во времена наиболее сильных оледенений уровень моря может упасть больше чем на сто метров.

Палеогеновый период геологической истории Земли, начавшийся 67 миллионов лет назад, длился 41 миллион лет. Следующий, неогеновый, - 25 миллионов лет. Последний, самый короткий, - около 1 миллиона лет. Его-то и называют ледниковым.

Устоялось представление о том, что поверхность суши и моря, даже недра планеты испытали влияние мощнейших оледенений. Получены данные, свидетельствующие о последовательном похолодании климата Земли со времени палеогена (60-65 миллионов лет назад) до наших дней. Среднегодовая температура воздуха в умеренных широтах снизилась с характерных для тропической зоны 20° С до 10. В нынешних климатических условиях процессы оледенения формируются и развиваются на площади 52 миллиона квадратных километров. Им подвержена десятая часть поверхности планеты.

В течение последних 700 тысяч лет, полагают ученые, на севере Евразии и Северной Америки существовали огромные по протяженности ледниковые покровы - гораздо более обширные, чем современный Гренландский и даже Антарктический. Размеры этого палеооледенения оцениваются крупным специалистом в этой области - американским ученым РФ. Флинтом - в 45,2 миллиона квадратных километров. На Северную Америку приходилось 18, Гренландию - 2, Евразию - 10 миллионов квадратных километров льдов. Иными словами, предполагаемая площадь оледенения в Северном полушарии была более, чем в два раза обширнее, чем в сегодняшней Антарктиде (14 миллионов квадратных километров). В работах гляциологов реконструируются ледниковые щиты в Скандинавии, на Северном море, значительной части Англии, равнинах Северной Европы, низменностях и горных районах севера Азии и почти на всей территории Канады, Аляски и севера США. Толщина этих щитов определяется в 3-4 километра. С ними связываются грандиозные (вплоть до глобальных) изменения природной обстановки на Земле.

Специалисты рисуют весьма впечатляющие картины былого. Они полагают, что под натиском льдов, надвигавшихся с Севера, древние люди и животные покидали места обитания и искали пристанища в южных районах, где климат был тогда намного холоднее, чем сейчас.

Считается, что уровень Мирового океана в то время понизился на 100-125 метров, так как ледниковые покровы «сковали» огромное количество его вод. Когда ледники начали таять, море затопило обширные низменные пространства суши. (С предполагаемым наступлением моря на материки связывают иногда легенду о всемирном потопе.)

Насколько верны бытующие в науке представления о последней ледниковой эпохе? - вопрос актуальный. Знание характера, размеров древних ледников, масштабов их геологической деятельности необходимо для объяснения многих аспектов развития природы и древнего человека. Последнее особенно важно. Мы живем в четвертичном периоде, который называют антропогенным.

Познавая прошлое, можно предсказывать будущее. Поэтому ученые думают о том, грозит ли человечеству в ближайшей или отдаленной перспективе новое «великое оледенение».

Итак, чего ожидать человечеству, если климат на Земле опять станет значительно холоднее нынешнего?

С ИДЕЯМИ СВЫКАЮТСЯ, КАК С ЛЮДЬМИ

Книга «Исследования о ледниковом периоде», написанная узником Петропавловской крепости - известным ученым и революционером П.А. Кропоткиным, - вышла в свет в 1876 году. В его работе полно и ясно излагались соображения о «великом оледенении», зародившемся в горах Скандинавии, заполнившем котловину Балтийского моря и вышедшем на Русскую равнину и Прибалтийские низменности. Эта концепция древнего оледенения получила широкое признание в России. Одно из главных ее оснований - факт распространения на равнинах Северной Европы своеобразных отложений: несортированных глин и суглинков, содержащих каменные обломки в виде гальки и валунов, размеры которых достигали 3-4 метров в поперечнике.

Ранее ученые вслед за великими естествоиспытателями XIX века Ч.Лайелем и Ч.Дарвином считали, что суглинки и глины отлагались на дне холодных морей - современных равнинах Северной Европы, а валуны разносились плавающими льдами.

«Дрифтовая (от слова "дрейф") теория», быстро теряя сторонников, отступала под натиском идей П.А.Кропоткина. Они подкупали возможностью объяснить многие загадочные факты. Откуда, например, взялись на равнинах Европы отложения, содержащие крупные валуны? Ледники, наступавшие широким фронтом, позднее растаяли, и эти валуны оказались на поверхности земли. Это звучало вполне убедительно.


Спустя тридцать три года немецкие исследователи А.Пенк и Э.Брюкнер, изучавшие территорию Баварии и высказавшие идею о четырехкратном древнем оледенении Альп, решились четко увязать каждый из его этапов с террасами рек бассейна верхнего течения Дуная.

Оледенения получили имена, главным образом, притоков Дуная. Самое древнее - «гюнц», более молодое - «миндель», затем следовали «рисс» и «вюрм». Следы их впоследствии стали искать и находить на равнинах Северной Европы, в Азии, Северной и Южной Америке и даже в Новой Зеландии. Исследователи настойчиво увязывали геологическую историю того или иного региона с «эталонной» Центральной Европой. Никто не задумался над тем, правомерно ли выделять древние оледенения в Северной или Южной Америке, Восточной Азии или островах Южного полушария по аналогии с Альпами. Вскоре на палеогеографических картах Северной Америки появились оледенения, соответствующие альпийским. Они получили имена штатов, которых достигали, как полагают ученые, спускаясь к югу. Наиболее древнее - небрасское - соответствует альпийскому гюнцу, канзасское - минделю, иллинойское - риссу, висконсинское - вюрму.

Представления о четырех покровных оледенениях в недавнем геологическом прошлом были приняты и для территории Русской равнины. Их назвали (в порядке убывания возраста) окским, днепровским, московским, валдайским и соотнесли с миндельским, рисским, вюрмским. А как же самое древнее альпийское оледенение - гюнц? Иногда под разными названиями на Русской равнине выделяют и пятое, соответствующее ему оледенение.

Предпринятые в последние годы попытки «усовершенствовать» альпийскую модель привели к выделению еще двух догюнцевских (наиболее ранних) «великих оледенений» - дуная и бибера. А в связи с тем, что с некоторыми из предполагаемых альпийских оледенений сопоставляются по два-три (на равнинах Европы и Азии), общее их число в четвертичном периоде достигает, по мнению некоторых ученых, одиннадцати и более.

С идеями свыкаются, сродняются, как с людьми. Расстаться с ними подчас очень трудно. Проблема древних «великих оледенений» в этом смысле - не исключение. Накопленные учеными данные о строении, времени зарождения и истории развития нынешних ледниковых покровов Антарктиды и Гренландии, о закономерностях структуры и формирования современных мерзлых пород и явлениях, с ними связанных, ставят под сомнение многие бытующие в науке представления о характере, масштабах проявления древних ледников и их геологической деятельности. Однако (традиции сильны, энерция мышления велика) эти данные либо не замечаются, либо им не придают значения. Они по-новому не осмысливаются и серьезно не анализируются. Рассмотрим же в их свете проблему древних покровных оледенений и попытаемся понять, что на самом деле происходило с природой Земли в недалеком геологическом прошлом.

ФАКТЫ ПРОТИВ ТЕОРИИ

Четверть века назад почти все ученые были согласны с тем, что современные ледниковые покровы Антарктиды и Гренландии развивались синхронно с предполагаемыми «великими ледниками» в Европе, Азии и Северной Америке. Покровное оледенение Земли, считали они, начиналось в Антарктиде, Гренландии, на арктических островах, затем охватывало материки Северного полушария. В межледниковые эпохи антарктические и гренландские льды таяли полностью. Уровень Мирового океана поднимался на 60-70 метров выше современного. Значительные территории приморских равнин затапливались морем. Никто не сомневался в том, что современная эпоха - еще незакончившаяся ледниковая. Дескать, ледниковые покровы просто не успели растаять. Более того: в эпохи похолоданий не только возникали огромные ледники на континентах Северного полушария, но существенно разрастались Гренландский и Антарктический ледниковые щиты... Минули годы, и результаты исследований труднодоступных полярных районов полностью опровергли эти представления.

Оказалось, что ледники в Антарктиде появились задолго до «ледникового периода» - 38-40 миллионов лет назад, когда по северу Евразии и Северной Америки простирались субтропические леса, а на берегах современных арктических морей раскачивались пальмы. Ни о каком оледенении на континентах Северного полушария тогда, конечно, не может быть и речи. Ледниковый покров Гренландии также возник не менее 10-11 миллионов лет назад. В то время на побережьях арктических морей на севере Сибири, Аляски и Канады произрастали смешанные леса (среди берез, ольхи, елей, лиственниц встречались широколиственный дуб, липа, вяз), соответствующие теплому влажному климату.

Данные о древности ледниковых покровов Антарктиды и Гренландии остро поставили вопрос о причинах оледенения Земли. Их видят в общепланетарных потеплениях и похолоданиях климата. (Еще в 1914 году югославский ученый М.Миланкович вычертил графики колебаний прихода солнечной радиации на земную поверхность за последние 600 тысяч лет, отождествляемых с эпохами оледенений и межледниковыми периодами.) Но мы теперь знаем, что когда на севере Евразии и Северной Америки климат был теплым, Антарктида и Гренландия укрылись ледниковыми щитами, размеры которых позднее никогда существенно не уменьшались. Значит, дело не в колебаниях прихода солнечного тепла и общеземных похолоданиях и потеплениях, а в сочетании определенных факторов, приводящих к оледенению в данных конкретных условиях.

Исключительная стабильность гренландского и антарктического ледниковых покровов не свидетельствует в пользу представления о неоднократности развития и исчезновения «великих оледенений» на материках Северного полушария. Непонятно, почему более 10 миллионов лет непрерывно существует гренландский ледниковый щит, в то время как рядом с ним менее чем за 1 миллион лет в силу каких-то совершенно неясных причин неоднократно возникал и исчезал североамериканский.

Положите на стол два куска льда - один в 10 раз больший другого. Какой из них растает быстрее? Если вопрос покажется риторическим, спросите себя: какой ледниковый покров должен был исчезнуть первым при общем потеплении климата в Северном полушарии - Гренландский площадью 1,8 миллиона квадратных километров или предполагаемый рядом с ним североамериканский - в 10 раз больший? Очевидно, что второй обладал большей устойчивостью (во времени) ко всем внешним изменениям.

Опираясь на господствующую сейчас теорию, не объяснить этого парадокса. Согласно ей, огромный гипотетический североамериканский ледниковый щит возникал за последние 500-700 тысяч лет четыре-пять или более раз, т. е. примерно через каждые 100-150 тысяч лет, а размеры расположенного по соседству (несравненно меньшего) почти не менялись. Невероятно!

Если устойчивость антарктического ледового покрова в течение десятков миллионов лет (допустим, что ледники Северного полушария в это время возникали и исчезали) можно объяснить близостью материка к полюсу, то в отношении Гренландии следует помнить: ее южная оконечность находится близ 60 градуса северной широты - на одной параллели с Осло, Хельсинки, Ленинградом, Магаданом. Так могли ли предполагаемые «великие оледенения» возникать и исчезать в Северном полушарии столь часто, как принято утверждать? Вряд ли. Что касается критериев и способов установления их количества, то они ненадежны. Красноречивое доказательство тому - разнобой в оценке численности оледенений. Сколько их все-таки было: 1-4, 2-6, или 7-11? И какое из них можно считать максимальным?

Термины «похолодание» и «оледенение» употребляются обычно как синонимы. Само собой, вроде бы, разумеется: чем холоднее был климат Земли, тем более широким фронтом наступали с севера древние ледники. Говорят: «было столько-то эпох похолоданий», подразумевая, что было столько же эпох оледенений. Однако и тут новейшие исследования поставили немало неожиданных вопросов.

А.Пенк и Э.Брюкнер считали максимальным самое древнее или одно из самых древних оледенений ледникового периода. Они были убеждены, что размеры последующих последовательно уменьшались. В дальнейшем укрепилось и практически безраздельно господствовало мнение: самым крупным являлось оледенение, приходящееся на середину ледникового периода, а самым ограниченным - последнее. Для Русской равнины было аксиомой: наиболее обширное днепровское оледенение, имевшее два больших «языка» по долинам Днепра и Дона, опускалось по ним южнее широты Киева. Границы следующего - московского проводили значительно севернее (несколько южнее Москвы), еще более молодого - валдайского рисовали севернее Москвы (примерно на полпути от нее до Ленинграда).

Пределы распространения гипотетических ледовых покровов на равнинах восстанавливают двумя способами: по отложениям древних ледников (тиллю - несортированной смеси глины, песка, крупных каменных обломков), по формам рельефа и по ряду других признаков. И вот что примечательно: в пределах распространения самого молодого (из предполагаемых) оледенения находили отложения, которые относили затем ко всем или почти ко всем предшествующим (двум, трем, четырем и т.д.). Близ южных границ днепровского оледенения (в долинах Днепра и Дона в их нижнем течении) обнаруживается только один слой тилля, как и у южных пределов предположительно максимального иллинойского (в Северной Америке). И тут и там севернее устанавливается больше слоев отложений, которые по тем или иным признакам причисляют к ледниковым.

На севере и особенно северо-западе рельеф Русской равнины имеет резкие («свежие») очертания. Общий характер местности позволяет полагать, что еще недавно здесь был ледник, подаривший ленинградцам и жителям Прибалтики излюбленные места отдыха и туризма - живописные сочетания гряд, холмов и озер, лежащих в западинах между ними. Озера на Валдайской и Смоленской возвышенностях нередко глубоки и отличаются прозрачностью и чистотой воды. А к югу от Москвы ландшафт меняется. Здесь почти нет участков холмисто-озерного рельефа. Преобладают увалы и пологие холмы, изрезанные речными долинами, ручьями и оврагами. Поэтому считается, что бывший здесь когда-то ледниковый рельеф переработан и изменен почти до неузнаваемости. Наконец, для южных пределов предполагаемого распространения ледниковых покровов на Украине и по Дону характерны расчлененные, изрезанные реками пространства, почти лишенные признаков ледникового рельефа (если он был тут), что дает, дескать, основание считать: здешний ледник - один из самых древних...

Все эти представления, казавшиеся бесспорными, в последнее время поколеблены.

ПАРАДОКС ПРИРОДЫ

Сенсационными оказались результаты изучения льда из кернов глубоких скважин в Антарктиде, Гренландии и донных отложений океанов и морей.

По соотношению тяжелых и легких изотопов кислорода во льду и морских организмах ученые могут теперь определять древние температуры, при которых накапливался лед и отлагались слои осадочных пород на дне моря. Выяснилось: одно из сильнейших похолоданий приходится не на начало и середину «ледникового периода», а почти на самый его конец - на интервал времени, отстоящий от наших дней на 16-18 тысяч лет. (Ранее предполагали, что самое большое оледенение на 84-132 тысячи лет старше.) Признаки очень резкого похолодания климата в конце «ледникового периода» обнаружены и другими методами в разных частях Земли. В частности, по ледяным жилам на севере Якутии. Вывод о том, что наша планета недавно пережила одну из самых холодных или самую холодную эпоху, кажется теперь весьма достоверным.

Но как объяснить феноменальный природный парадокс, состоящий в том, что времени очень сурового климата соответствует минимальное из предполагаемых наземных покровных оледенений? Оказавшись в «тупиковом» положении, некоторые ученые пошли по наиболее легкому пути - отказались от всех прежних представлений и предложили считать последнее оледенение одним из максимальных, поскольку климат в это время был одним из самых холодных. Таким образом, отрицается вся система геологических доказательств последовательности природных событий в ледниковом периоде, рушится все здание «классической» ледниковой концепции.

МИФИЧЕСКИЕ СВОЙСТВА ЛЕДНИКОВ

Нельзя разобраться в сложных вопросах истории «ледникового периода», не изучив предварительно проблем геологической деятельности древних ледников. Оставленные ими следы - единственные свидетельства их распространения.

Ледники бывают двух основных типов: большие щиты или купола, сливающиеся в огромные покровы, и горные ледники (глетчеры). Геологическая роль первых наиболее полно освещена в работах американского ученого Р.Ф.Флинта, обобщившего представления многих ученых (в том числе и советских), согласно которым ледники совершают огромную разрушительную и созидательную работу - выпахивают большие рытвины, котловины и накапливают мощные толщи отложений. Допускается, например, что они, подобно бульдозеру, способны выскребать котловины глубиной несколько сот метров, а в отдельных случаях (Согне-фиорд в Норвегии) - до 1,5-2,5 тысячи метров (глубина этого фиорда 1200 м плюс такая же высота склонов). Совсем неплохо, если иметь в виду, что ледник должен был «рыть» здесь твердые скальные породы. Правда, чаще всего с ледниковым выпахиванием связывают образование котловин глубиной «только» 200-300 метров. Но сейчас с достаточной степенью точности установлено, что лед движется двумя способами. Либо его глыбы скользят по сколам-трещинам, либо действуют законы вязкопластического течения. При длительных и все возрастающих напряжениях твердый лед становится пластичным и начинает, хотя и очень медленно, течь.

В центральных частях Антарктического покрова скорость движения льда 10-130 метров в год. Она несколько возрастает лишь в своеобразных «ледяных реках», текущих в ледяных же берегах (выводных ледниках). Движение придонной части ледников настолько медленно и плавно, что они физически не в состоянии совершать ту грандиозную работу, которая им приписывается. Да и везде ли касается ледник поверхности своего ложа? Снег и лед - хорошие теплоизоляторы (эскимосы издавна строят жилища из спрессованного снега и льда), а из недр земли к ее поверхности постоянно поступает в небольших количествах внутриземное тепло. В покровах большой толщины лед снизу подтаивает, под ним возникают реки и озера. В Антарктиде близ советской станции «Восток» под четырехкилометровой толщей ледника существует водоем площадью 8 тысяч квадратных километров! Значит, лед не только не сдирает здесь подстилающие его породы, а как бы «плавает» над ними или, если слой воды невелик, скользит по их смоченной поверхности. Горные ледники в Альпах, на Кавказе, Алтае и в других районах продвигаются со средней скоростью 100-150 метров в год. Их придонные слои и здесь в основном ведут себя как вязко-пластичное вещество и текут в соответствии с законом ламинарного течения, приспосабливаясь к неровностям ложа. Стало быть, и они не могут выпахивать корытообразные долины-троги шириной несколько километров и глубиной 200-2500 метров. Это подтверждают любопытные наблюдения.

В средние века площадь ледников в Альпах увеличилась. Они продвинулись вниз по речным долинам и погребли под собой постройки римской эпохи. А когда альпийские ледники вновь отступили, из-под них показались прекрасно сохранившиеся фундаменты зданий, разрушенных людьми и землетрясениями, и мощеные римские дороги с выбитыми на них колеями от повозок. В центральной части Альп, близ Инсбрука в долине реки Инн, под отложениями отступившего ледника обнаружены слоистые осадки древнего озера (с остатками рыб, листьями и ветками деревьев), существовавшего здесь около 30 тысяч лет назад. Значит ледник, надвинувшийся на озеро, практически не повредил слоя мягких осадков - даже не смял их.

С чем же связана большая ширина и корытообразная форма долин горных ледников? Думается, с активным обрушением склонов долин в результате выветривания. На поверхности ледников оказывалось огромное количество обломков каменного материала. Движущийся лед, как лента транспортера, уносил их вниз. Долины не загромождались. Их склоны, оставаясь крутыми, быстро отступали. Они приобретали большую ширину и поперечный профиль, напоминающий корыто: плоское дно и крутые борта.

Признавать способность ледниковых потоков механически разрушать горные породы - значит приписывать им мифические свойства. Благодаря тому, что ледники не выпахивают свое ложе, во многих долинах, ныне свободных ото льда, сохранились древние речные отложения и связанные с ними россыпи золота и ряда других ценных полезных ископаемых. Если бы ледники производили приписываемую им вопреки фактам, логике и физическим законам огромную разрушительную работу, в истории человечества не было бы «золотых лихорадок» Клондайка, Аляски, а Джек Лондон не написал бы нескольких прекрасных повестей и рассказов.

С ледниками связывается и разнообразная созидательная геологическая деятельность. Но нередко это делается без должного обоснования. В горах действительно часто встречаются толщи, состоящие из хаотической смеси глыб, щебня и песка, перегораживающие иногда долины от одного до другого склона. Ими сложены иной раз и значительные по протяженности участки долин. На равнинах к отложениям древних ледниковых покровов относят обычно неслоистые и несортированные глины, суглинки, супеси, содержащие каменные включения - преимущественно гальку и валуны. Однако известно, что в холодноводных озерах валуны могут разноситься плавающими льдами. Переносят их и речные льды. Поэтому многие разновидности морских и речных отложений содержат каменные включения. Причислять их только на этом основании к ледниковым отложениям нельзя. Большая роль принадлежит тут селям, наиболее интенсивным в горах или предгорьях и в поясах, для которых характерна смена дождливых (увлажненных) и засушливых периодов.

Одним из очевидных свидетельств ледникового происхождения таких отложений считаются «валунные отмостки» - скопления валунов, верхняя поверхность которых якобы сточена льдом. Мы только что доказали: ледник не мог этого сделать. Те, кто бывал на берегах приполярных рек и морей, знают: валунные отмостки - обычное здесь явление. При резких подвижках льда в береговой зоне он проделывает впечатляющую работу: словно бритвой срезает выступающие выпуклые края валунов, стальные трубы и бетонные сваи. В содержащих валуны отложениях несортированных глин и суглинков есть остатки раковин морских организмов. Стало быть, они накапливались в море. Иногда встречаются валуны, к гладкой поверхности которых прикрепились морские раковины. Такие находки отнюдь не свидетельствуют в пользу ледникового происхождения этих округлых каменных глыб.

ГЕОЛОГИЧЕСКАЯ РОЛЬ ПОДЗЕМНОГО ОЛЕДЕНЕНИЯ

Под влиянием представлений о «великих» наземных суперледниках роль подземного оледенения в истории Земли или не замечалась, или природа его истолковывалась ошибочно. Об этом феномене иной раз говорили как о явлении, сопутствующем древним оледенениям.


Зона распространения мерзлых горных пород на Земле очень велика. Она занимает около 13 процентов площади суши (в СССР - почти половину территории), включает огромные пространства Арктики и Субарктики, а в восточных районах Азиатского материка достигает средних широт.

Наземное и подземное оледенения в целом свойственны областям охлаждения Земли, т. е. регионам с отрицательными среднегодовыми температурами воздуха, испытывающим дефицит тепла. Дополнительное условие образования наземных ледников - преобладание твердых атмосферных осадков (снега) над их расходом, а подземное оледенение приурочено к районам, где атмосферных осадков не хватает. В первую очередь - к территории севера Якутии, Магаданской области и Аляски. В Якутии, где выпадает очень мало снега, находится полюс холода Северного полушария. Здесь зарегистрирована рекордно низкая температура - минус 68°С.

Для зоны распространения мерзлых горных пород наиболее характерен подземный лед. Чаще всего это более или менее равномерно распределенные в толщах отложений небольшие по размерам прослойки и прожилки. Пересекаясь между собой, они нередко образуют ледяную сетку или решетку. Встречаются и залежи подземного льда толщиной до 10-15 метров и более. А самая впечатляющая его разновидность - вертикальные ледяные жилы высотой 40-50 и шириной свыше 10 метров в верхней (самой толстой) части.

В соответствии с концепцией В.А.Обручева крупные ледяные жилы, линзы и пласты подземных льдов еще совсем недавно считали захороненными остатками былых ледниковых покровов и обосновывали этим теоретическую реконструкцию огромного ледникового покрова почти на всей территории Сибири вплоть до арктических морей и их островов.

Советские (главным образом) ученые раскрыли механизм образования ледяных жил. В условиях низких температур грунт, укрытый тонким слоем снега, интенсивно охлаждается, сжимается и разбивается трещинами. Зимой в них попадает снег, летом вода. Она замерзает, поскольку нижние окончания трещин проникают в сферу постоянно мерзлых горных пород, имеющих температуру ниже 0°С. Периодическое возникновение новых трещин на старом месте и заполнение их дополнительными порциями снега и воды приводят сначала к образованию ледяных жил клиновидной формы высотой не более 12-16 метров. В дальнейшем они растут в высоту и ширину, выжимая часть вмещающего их минерального вещества к земной поверхности. Последняя за счет этого постоянно повышается - ледяные жилы как бы «закапываются» в грунт. С увеличением глубины залегания создаются условия для их дальнейшего роста вверх. Он прекращается, когда общая льдонасыщенность отложений достигает максимального значения 75-90 процентов от общего объема всей льдогрунтовой массы. Общее повышение поверхности может достигать при этом 25-30 метров. Согласно расчетам, на образование ледяных жил большой вертикальной протяженности требуется 9-12 тысяч лет.


Когда возможности роста ледяной жилы исчерпываются, происходит ее вскрытие, она начинает протаивать. Возникает термокарстовая воронка, которая при отсутствии стока из нее превращается в озеро, имеющее часто крестообразную форму в связи с тем, что располагается оно на взаимном пересечении ледяных жил. Наступает стадия массового протаивания льдистых пород.

Ледяные жилы порождают озера, а озера ликвидируют их, подготавливая условия для повторного появления и развития жильных льдов.


Вопрос о связи образования крупных ледяных жил с морозобойным растрескиванием грунтов и замерзанием воды в них решен практически однозначно, обсуждаются лишь детали этого процесса, связь его с теми или другими ландшафтами в условиях континентальной суши. Проблема происхождения крупных залежей подземного льда, имеющих форму линз и прослоев, оказалась более сложной и до сих пор является предметом острой дискуссии. Одни ученые считают, что это захороненные остатки древних ледников. Другие утверждают: такие залежи образуются в процессе промерзания грунтов. Некоторые исследователи неправильно относят к ледниковым погребенные линзы и пласты льда, вынесенные когда-то морем на сушу.

Особенно много линз и пластов подземного льда на севере Западно-Сибирской низменности и приморских равнинах Чукотки. Результаты работ там советских мерзлотоведов позволяют сделать вполне определенный вывод: подземные линзы и пласты льда в этих районах образовались в процессе промерзания горных пород и являются характерным его следствием. Ряд деталей их строения (прежде всего наличие в подземных залежах льда крупных каменных включений - гальки и валунов) не укладываются в рамки стандартных представлений о подземном льдообразовании. Именно валуны рассматриваются как главное и прямое свидетельство того, что содержащие их льды - остатки былых ледниковых покровов. Однако попадание валунов в массивы «чистого» подземного льда вполне объяснимо. Горные породы разбиты трещинами. Проникшая в них вода, замерзая, выталкивала валуны вверх, где их обволакивал «чистый» лед.

Другая специфическая черта подземных линзовидных залежей льда - иногда свойственная им складчатость. При росте к поверхности ледяные жилы сминают в куполообразные складки перекрывающие их отложения. Предполагают, что деформации во льду отражают процесс былого движения ледника, а смятия горных пород связывают с его динамическим воздействием на свое ложе («гляциодинамические дислокации»). Выше уже говорилось о нереальности подобных представлений. Деформированные крупные скопления подземного льда линзовидной формы представляют собой внедрения воды и грунта в процессе промерзания отложений после того, как поверхность их оказалась выше уровня моря. О справедливости подобной точки зрения однозначно свидетельствует тот факт, что в целом ряде случаев скопления деформированного льда перекрыты смятыми в пологие складки морскими слоистыми осадками, содержащими остатки морских организмов.

Теорию древних оледенений используют обычно для объяснения природных явлений, ставящих в тупик исследователя, который не может дать правдоподобной интерпретации способа их образования. Именно так обстоит дело с проблемой происхождения залежей подземного льда, содержащего валуны. Однако отсутствие объяснения сложного природного явления не есть доказательство того, что оно обязательно обусловлено деятельностью древнего ледника.

Наконец, изучение области современного распространения мерзлых горных пород дает ключ к расшифровке происхождения характерного холмисто-западинного рельефа, который принято называть «типично ледниковым». Дело в том, что подземный лед в мерзлых горных породах распределяется очень неравномерно. Его количество нередко эквивалентно поднятию высоты земной поверхности на 40-60 метров. Естественно, что при протаивании мерзлых пород здесь образуются понижения соответствующей глубины. А там, где содержание льда было намного меньшим, после протаивания возникнут холмы. Процесс локального неравномерного протаивания льдистых пород можно наблюдать в северных районах распространения вечной мерзлоты. При этом возникает холмисто-озерный рельеф, совершенно аналогичный тому, который принимают за «типично ледниковый» на равнинах Северной Европы. Для этой зоны (кроме сказанного выше) характерно интенсивное торфообразование, следы которого зафиксированы в мощных черноземах Европы и Азии.


ИЗУЧАЯ ПРОШЛОЕ, ПРОГНОЗИРОВАТЬ БУДУЩЕЕ

Итак ясно, что геологическая роль и, следовательно, размеры и число древних наземных «великих ледниковых покровов» во многом преувеличены. Крупные похолодания климата действительно были свойственны последнему периоду геологической истории Земли, но они, по-видимому, приводили к развитию наземных ледников лишь в горных районах и на прилегающих к ним территориях, расположенных в условиях холодного, но достаточно влажного климата с высоким количеством зимних атмосферных осадков. Роль подземного оледенения в истории Земли, напротив, явно недооценивается. Наиболее широко оно развивалось в областях с суровым климатом при некотором дефиците твердых осадков.

Есть все основания полагать, что в эпохи холодной аридизации климата (аридный климат - сухой, свойственный пустыням и полупустыням; аридизация происходит при высоких или низких температурах воздуха в условиях малого количества атмосферных осадков) площадь подземного оледенения в Северном полушарии, как и в настоящее время, намного превосходила масштабы наземных ледников. Огромные пространства морей также покрывались льдом.

Были ли эти эпохи для нашей планеты следствием каких-то астрономических факторов или сугубо земных (скажем, смещения Северного полюса) - однозначного ответа сейчас нет. Но можно утверждать: последний период в геологической истории Земли не столько ледниковый, сколько в целом ледовый, ибо площади подземных и морских льдов превосходят (и превосходили) площади распространения наземных ледников.

Изучая геологическое прошлое, познавая закономерности развития природы, ученые пытаются прогнозировать ее будущее. Что же ждет человечество, если климат Земли вновь станет значительно холоднее современного? Возникнут ли ледниковые суперпокровы? Исчезнет ли под ними вся Северная Европа и почти половина Северной Америки? Думается, можно дать вполне определенный отрицательный ответ. Ледники возникнут, по-видимому, только в Скандинавии и в пределах других горных территорий, получающих зимой снега больше, чем расходуется его летом, а обширные пространства Евразии и Северной Америки будут ареной развития подземного оледенения. При дефиците влаги это приведет к холодной аридизации огромных регионов Земли.

Следы древних похолоданий, оставленные широко распространявшимися ледниковыми покровами, установлены на всех современных материках, на дне океанов, в отложениях разных геологических эпох.

Накоплением первых, самых древних из найденных до сих пор ледниковых отложений началась протерозойская эра. В период с 2,5 по 1,95 млрд лет до нашей эры отмечена Гуронская эпоха оледенения. Примерно через миллиард лет началась новая, Гнейсесская, эпоха оледенения (950-900 млн лет назад), а еще через 100-150 тыс. лет - Стерская ледниковая эпоха. Завершает докембрий Варангская эпоха оледенения (680-570 млн лет до н.э.).

Фанерозой начинается с теплого кембрийского периода, но через 110 млн лет от его начала отмечено Ордовикское оледенение (460-410 млн лет до нашей эры), а около 280 млн лет назад достигло кульминации Гондванское оледенение (340-240 млн лет до н.э.). Новая теплая эпоха продолжалась примерно до середины Кайнозойской эры, когда началась современная нам Кайнозойская эпоха оледенения.

С учетом фаз развития и завершения ледниковые эпохи занимали за последние 2,5 млрд лет около половины времени эволюции Земли. Климатические условия в эпохи оледенений были более изменчивыми, чем в теплые «безледные» эпохи. Ледники отступали и наступали, но неизменно сохранялись на полюсах планеты. В эпохи оледенений средняя температура Земли была на 7-10 °С ниже, чем в теплые эпохи. Когда ледники разрастались, разница увеличивалась до 15-20 °С. Например, в ближайший к нам теплый период средняя температура на Земле была около 22 °С, а сейчас - в Кайнозойскую ледниковую эпоху - только 15 °С.

Кайнозойская эра - это эра постепенного и последовательного понижения средней температуры на поверхности Земли, эра перехода от теплой эпохи к эпохе оледенения, начавшейся около 30 млн лет назад. Климатическая система в кайнозое изменилась таким образом, что около 3 млн лет назад общее падение температуры сменилось почти периодическими ее колебаниями, что связывается с периодическим разрастанием покровного оледенения.

В высоких широтах похолодание было наиболее сильным - несколько десятков градусов, - в то время как в экваториальной зоне оно составляло несколько градусов. Климатическая зональность, близкая к современной, установилась около 2,5 млн лет назад, хотя области сурового арктического и антарктического климата в ту эпоху были меньше, а границы умеренного, субтропического и тропического климата находились в более высоких широтах. Колебания климата и оледенения Земли состояли в чередовании «теплых» межледниковых и «холодных» ледниковых эпох.

В «теплые» эпохи Гренландский и Антарктический ледниковые щиты имели размеры, близкие к современным - 1,7 и 13 млн кв. км соответственно. В холодные эпохи ледники, конечно, увеличивались, но основное приращение оледенения происходило за счет возникновения больших ледниковых покровов в Северной Америке и Евразии. Площадь ледников достигала примерно 30 млн км? в Северном полушарии и 15 млн км? в южном. Климатические условия межледниковий были подобными современным и даже более теплыми.

Около 5,5 тыс. лет назад «климатический оптимум» сменился так называемым «похолоданием железного века», кульминация которого состоялась около 4 тыс. лет назад. Вслед за этим похолоданием началось новое потепление, продолжавшееся и в первом тысячелетии нашей эры. Это потепление известно как «малый климатический оптимум» или период «забытых географических открытий».

Первыми исследователями новых земель были монахи-ирландцы, которые, благодаря улучшившимся вследствие потепления условиям мореплавания в северной Атлантике, в середине первого тысячелетия открыли Фарерские острова, Исландию и, как предполагают современные ученые, Америку. Вслед за ними это открытие повторили викинги Нормандии, которые в начале нынешнего тысячелетия заселили Фарерские острова, Исландию и Гренландию, а впоследствии добрались и до Америки. Викинги заплывали примерно до широты 80-й параллели, причем льды как препятствие плаванию в древних сагах практически не упоминаются. Кроме того, если в современной Гренландии жители занимаются в основном добычей рыбы и морского зверя, то в нормандских поселениях было развито скотоводство - раскопки показали, что здесь разводили коров, овец и коз. В Исландии возделывали зерновые, а зона выращивания винограда выходила к Балтийскому морю, т.е. была севернее современной на 4-5 географических градуса.

В первой четверти нашего тысячелетия началось новое похолодание, продолжавшееся до середины XIX в. Уже в XVI в. морской лед отрезал Гренландию от Исландии и привел к гибели поселений, заложенных викингами. Последние сведения о нормандских поселенцах в Гренландии относятся к 1500 г. Природные условия в Исландии в XVI-XVII столетиях стали необычайно суровыми; об этом достаточно сказать, что с начала похолодания до 1800 г. население страны из-за голода сократилось вдвое. На равнинах Европы, в Скандинавии частыми стали суровые зимы, ранее не замерзающие водоемы покрывались льдом, участились неурожаи, падение скота. Побережья Франции достигали отдельные айсберги.

Потепление, последовавшее за «малым ледниковым периодом», началось уже в конце XIX в., но как явление крупного масштаба оно привлекло внимание климатологов лишь в 30-х гг. XX столетия, когда было обнаружено значительное повышение температуры воды в Баренцевом море.

В 30-х гг. температура воздуха в умеренных и особенно в высоких северных широтах была значительно выше, чем в конце XIX в. Так, зимние температуры в западной Гренландии повысились на 5 °С, а на Шпицбергене - даже на 8-9 °С. Наибольшее глобальное повышение средней температуры у поверхности Земли во время кульминации потепления составляло всего 0,6 °С, но даже с таким небольшим изменением - в несколько раз меньшим, чем во время малого ледникового периода - было связано заметное изменение климатической системы.

На потепление бурно реагировали горные ледники, которые повсеместно отступали, причем величина этого отступления исчислялась сотнями метров длины. Исчезали существовавшие в Арктике острова, сложенные льдом; только в советском секторе Арктики с 1924 по 1945 гг. площадь льдов в навигационный период в это время сократилась почти на 1 млн км?, т.е. наполовину. Это позволяло даже обычным судам заплывать в высокие широты и совершать сквозные плавания по Северному морскому пути в течение одной навигации. Уменьшилось количество льдов и в Гренландском море, несмотря на то, что вынос льдов из Арктического бассейна усилился. Продолжительность ледовой блокады берегов Исландии сократилась с 20 недель в конце XIX в. до двух недель в 1920-1939 гг. Повсюду происходило отступление на север границ многолетней мерзлоты - до сотен километров, увеличилась глубина протаивания мерзлых грунтов, а температура мерзлой толщи повысилась на 1,5-2 °С.

Потепление было настолько интенсивным и продолжительным, что повлекло за собой изменение границ экологических ареалов. В Гренландии стал гнездоваться сизоголовый дрозд, в Исландии появились ласточки и скворцы. Потепление океанических вод, особенно заметное на севере, привело к изменению мест нереста и откорма промысловых рыб: так, у берегов Гренландии в промысловых количествах появились треска и сельдь, а в заливе Петра Великого - тихоокеанская сардина. Около 1930 г. в водах Охотского моя появилась скумбрия, а в 1920-х гг. - сайра. Известно высказывание российского зоолога, академика Н.М. Книповича: «В какие-нибудь полтора десятка лет и даже еще более короткий промежуток времени произошло такое изменение в распределении представителей морской фауны, какое связывается обыкновенно с представлением о долгих геологических промежутках». Потепление коснулось и Южного полушария, но в значительно меньшей степени, а наиболее четко оно проявилось в зимний период в высоких широтах Северного полушария.

В конце 1940-х гг. снова появились признаки похолодания. Через некоторое время стала заметной реакция ледников, которые во многих частях Земли перешли в наступление или замедлили отступление. После 1945 г. произошло заметное увеличение площади распространения арктических льдов, которые стали чаще появляться у берегов Исландии, а также между Норвегией и Исландией. С начала 40-х и до конца 60-х гг. XX в. площадь льда в Арктическом бассейне возросла на 10%.

Человечество родилось и окрепло в период великих оледенений планеты. Этих двух фактов вполне достаточно, чтобы нам проявить особый интерес к проблемам ледникового времени. Им посвящено и посвящается регулярно великое множество книг и журналов - горы фактов и гипотез. Даже если вам посчастливится овладеть ими, впереди неизбежно будут маячить нечеткие контуры новых гипотез, догадок, предположений.

В наше время ученые всех стран и всех специальностей нашли общий язык. Это математика: цифры, формулы, графики.

Почему происходят оледенения Земли, до си пор неясно. Не потому, что трудно найти причину похолоданий. Скорее потому, что причин найдено слишком много. При этом ученые приводят множество фактов в защиту своих мнений, используют формулы и результаты многолетних наблюдений.

Вот некоторые гипотезы (из огромного их числа):
Во всем виновата Земля
1) Если наша планета прежде находилась в расплавленном состоянии, значит, со временем она остывает и покрывается ледниками.

К сожалению, это простое и ясное объяснение противоречит всем имеющимся научным данным. Оледенения случались и в «молодые годы» Земли.

2) Двести лет назад немецкий философ Гердер предположил, что полюса Земли перемещаются.

Геолог Вегнер «вывернул наизнанку» эту идею: не полюса перемещаются на материки, а глыбы материков подплывают к полюсам по текучей, ниже лежащей оболочке планеты. Убедительно доказать движение материков пока не удается. Да и только ли в нем дело? В Верхоянске, например, значительно холоднее, чем на Северном полюсе, а ледники там все равно не образуются.

3) Вверх по склонам гор через каждый километр подъема температура воздуха снижается на 5-7 градусов. Начавшиеся миллионы лет назад движения земной коры привели ныне к ее поднятию на 300-600 метров. Уменьшение площади океанов дополнительно охладило планету: ведь вода - хороший аккумулятор тепла.

Но как же быть с многократными наступаниями ледника за одну и ту же эпоху? Не могла же поверхность земли так часто колебаться то вверх, то вниз.

4) Для роста ледников необходимы не только холода, но и много снега. Значит, если по какой-то причине растают льды Ледовитого океана, его воды будут усиленно испаряться и выпадать на ближайших материках. Зимние снега не успеют растаять в короткое северное лето, начнут накапливаться льды. Все это - предположения, почти без доказательства. (К слову подумалось, что было бы здорово если бы наше образование помимо стандартных предметов и тем, включало в себя и такие необычные, но в то же время важные темы, как теория оледенения Земли.)

Место под солнцем

Астрономы привыкли мыслить на языке математики. Выводы их о причинах и ритмах оледенений отличаются точностью, наглядностью и… вызывают множество сомнений. Расстояние от Земли до Солнца, наклон земной оси не остаются постоянными. На них сказывается влияние планет, формы Земли (она не шар и ось собственного вращения не проходит через ее центр).

Сербский ученый Миланкович построил график, отражающий увеличение или уменьшение со временем количества солнечного тепла для определенной параллели, в зависимости от положения Земли относительно Солнца. В дальнейшем эти графики уточнялись и дополнялись. Выявилось удивительное совпадение их с оледенениями. Казалось бы, все стало абсолютно ясно.

Однако Миланкович составил свой график лишь для последнего миллиона лет жизни Земли. А раньше? И тогда положение Земли относительно Солнца менялось периодически, а оледенений не было десятки миллионов лет! Значит, точно рассчитано влияние второстепенных причин, а самые главные остались не учтенными. Все равно, что определять часы, минуты, секунды солнечных затмений, не зная, в какие дни и годы затмения произойдут.

Этот недостаток астрономической теории пытались устранить, предполагая перемещение материков к полюсам. Но дрейф материков и сам по себе не доказан.

Пульс звезды

Ночью на небе мерцают звезды. Это красивое зрелище - оптический обман, нечто вроде миража. Ну, а если звезды и наше действительно мерцают (конечно, очень медленно)?

Тогда причину оледенений следует искать на Солнце. Но как уловить неторопливые, тысячелетиями продолжающиеся колебания его излучения?

До сих пор достоверно не установлена связь климата Земли с солнечными пятнами. На увеличение солнечной активности чутко реагируют верхние слои атмосферы. Возбуждение свое они передают к поверхности Земли. В годы высокой активности Солнца накапливается в озерах и морях больше осадков, утолщаются годичные кольца деревьев.

Достаточно убедительны доказательства одиннадцатилетнего и столетнего циклов солнечной активности. Между прочим, они прослеживаются в слоистых отложениях, отлагавшихся миллионы и даже сотни миллионов лет назад. Наше светило отличается завидным постоянством.

Но зато длительные солнечные циклы, с которыми можно связывать оледенения, почти совсем не изучены. Исследовать их - дело будущего.

Туманности…

Некоторые ученые для объяснения оледенений привлекают силы космоса. Самое простое: в своем галактическом путешествии Солнечная система минует более или менее нагретые части космоса.

Есть другое мнение: периодически изменяется интенсивность излучения Млечного Пути. В начале прошлого века была предложена очередная гипотезу. В межзвездном пространстве витают гигантские облака космической пыли. Когда Солнце проходит сквозь эти скопления (словно самолет в тучах), частицы пыли поглощают часть солнечных лучей, предназначенных Земле. Планета охлаждается. Когда среди космического облака встречаются просветы, поток тепла возрастает и Земля вновь «согревается».

Математические расчеты опровергли это предположение. Оказалось, что плотность туманностей невелика. На коротком расстоянии от Земли до Солнца влияние пыли почти не скажется.

Другие исследователи связывали повышение активности Солнца с прохождением его через космические водородные облака, считая, что тогда за счет притока нового материала яркость Солнца может увеличиваться на 10 процентов.

Гипотезу эту, как и некоторые другие, трудно опровергнуть или доказать.

Как бы это могло быть.

Слишком часто приверженцы одной какой-нибудь научной теории непримиримы к своим противникам и общая сплоченность в поисках истины уступает место несогласованным усилиям. В настоящее время этот недостаток все чаще преодолевается. Все чаще ученые высказываются за обобщение множества гипотез в единое целое.

Возможно, на своем космическом пути Солнце, попадая в различные области Галактики, то увеличивает, то уменьшает силу своего излучения (или это происходит за счет внутренних изменений в самом Солнце). Начинается медленный спад или подъем температуры на всей поверхности Земли, где главный источник тепла - солнечные лучи.

Если во время медленного «солнечного похолодания» происходят значительные поднятия земной коры, увеличивается площадь суши, изменяется направление и сила ветров, а с ними - и океанских течений, то климат в приполярных областях может существенно ухудшиться. (Не исключено дополнительное влияние перемещения полюса или дрейфа материков).

Изменения температуры воздуха будут идти быстро, в то время как океаны еще будут хранить тепло. (В частности, Северный океан еще не будет Ледовитым). Испарение с их поверхности будет высоким, и количество атмосферных осадков, в особенности снега, увеличится.

Земля вступит в ледниковую эпоху.

На фоне общего похолодания отчетливее выявится влияние на климат астрономических факторов. Но не столь четко, как показано на графике Миланковича.

Надо будет учесть и вероятные колебания излучения самого Солнца. А как же кончаются ледниковые эпохи?

Утихают движения земной коры, «жарче припекает» Солнце. Лед, вода, ветер сглаживают горы и возвышенности. Все больше осадков накапливается в океанах, и от этого, а главное - от начавшегося таяния ледников, уровень морей повышается, вода надвигается на сушу. За счет увеличения водной поверхности - дополнительное «согревание» Земли.

Потепление, как и оледенение, нарастает, словно лавина. Первые незначительные изменения климата влекут за собой другие, к ним подключаются все новые и новые…

Наконец, поверхность планеты сгладится. Потоки теплого воздуха станут беспрепятственно растекаться от экватора к полюсам. Обилие морей, хранителей солнечного тепла, будет способствовать смягчению климата. Наступит долгое «тепловое спокойствие» планеты. До грядущих оледенений.